Empirical evaluation of intelligent tutoring systems with ontological domain knowledge representation

A CASE STUDY WITH ONLINE COURSES IN HIGHER EDUCATION

Ani Grubišić

Faculty of Science, University of Split, Croatia, ani.grubisic@pmfst.hr

Branko Žitko Slavomir Stankov Retired full professor, slavomirstankov@gmail.com

Suzana Tomaš Faculty of Science, University of Split, Croatia, branko.zitko@pmfst.hr

Emil Brajković Faculty of Philosophy, University of Split, Croatia, suzana.tomas@ffst.hr

Tomislav Volarić Faculty of Science and Education, University of Mostar, Bosnia and University of Mostar, Bosnia and Herzegovina, emilbrajko@fpmoz.ba Herzegovina, tvolaric@fpmoz.ba

Faculty of Science and Education,

Daniel Vasić Faculty of Science and Education, University of Mostar, Bosnia and

Herzegovina, daniel@fpmoz.ba

Ines Šarić

ITS 2016 Zagreb 7-10 June

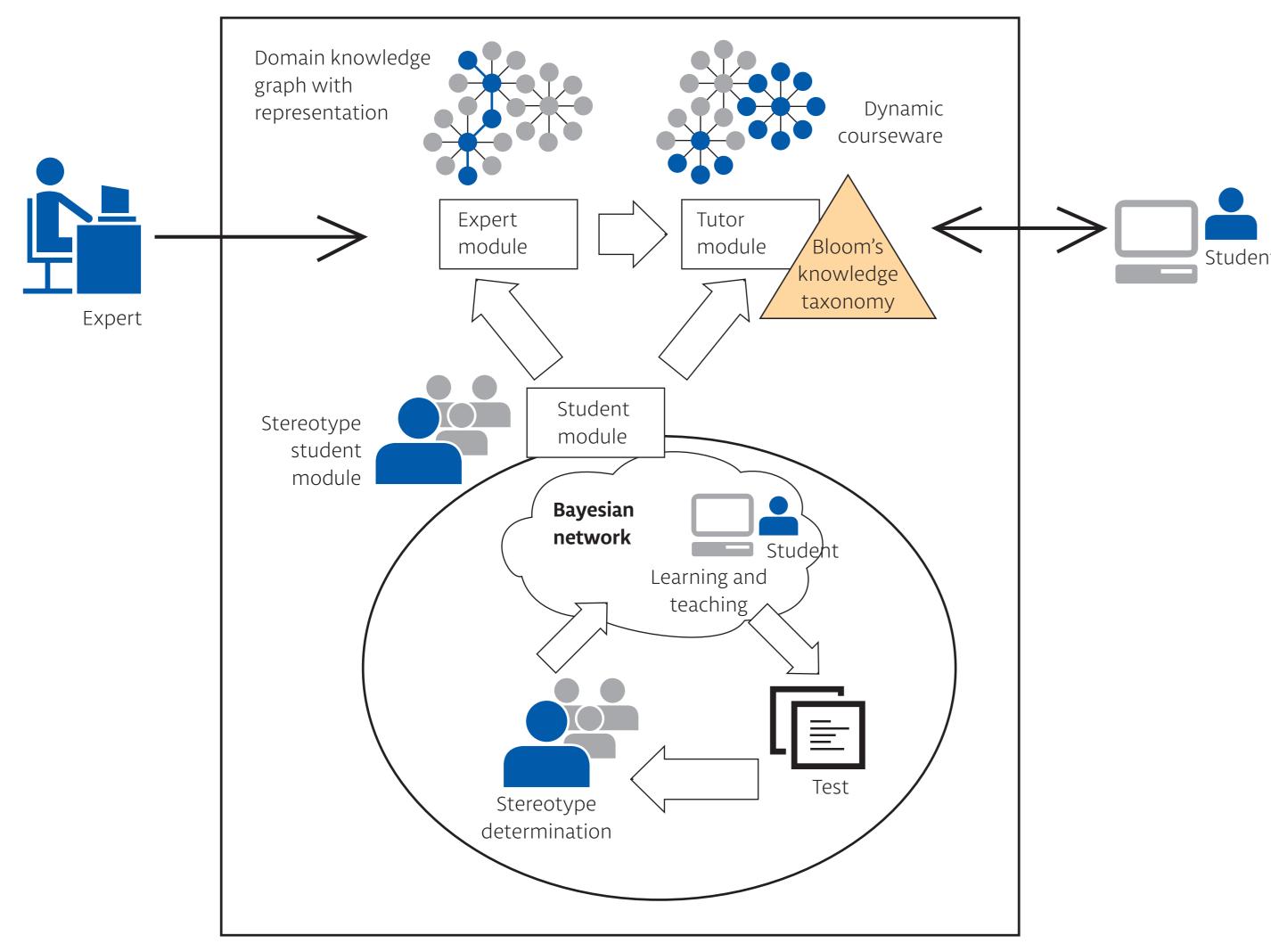
Faculty of Science, University of Split, Croatia, ines.saric@pmfst.hr

Abstract

We present results of empirical evaluation of intelligent tutoring systems (ITS) with ontological domain knowledge representation. This research was done as a first step in the process of

developing a new model of intelligent tutoring system that will include all the characteristics of evaluated systems: adaptive content, communication based on controlled natural language, graphical presentation of ontological domain knowledge representation. The case study results revealed extraordinary effectiveness of evaluated adaptive intelligent tutoring systems when compared with traditional learning and teaching process.

Research methodology, results and findings


In this paper we present the idea and implementation of empirical evaluation of mentioned "Tutors" (CoLaB, ACware and CM) that was conducted with 103 undergraduate and graduate students from two faculties in Croatia and one

faculty in Bosnia and Herzegovina. Domain knowledge that was used in this study was "Computer as a system". The goal is to apply new structural approach to learning analytics in order to calculate the effect sizes and to evaluate students' attitudes towards learning and teaching using mentioned "Tutors" – all of this will serve as a starting point for the development of the new Adaptive Courseware & Natural Language Tutor (AC & NL Tutor).

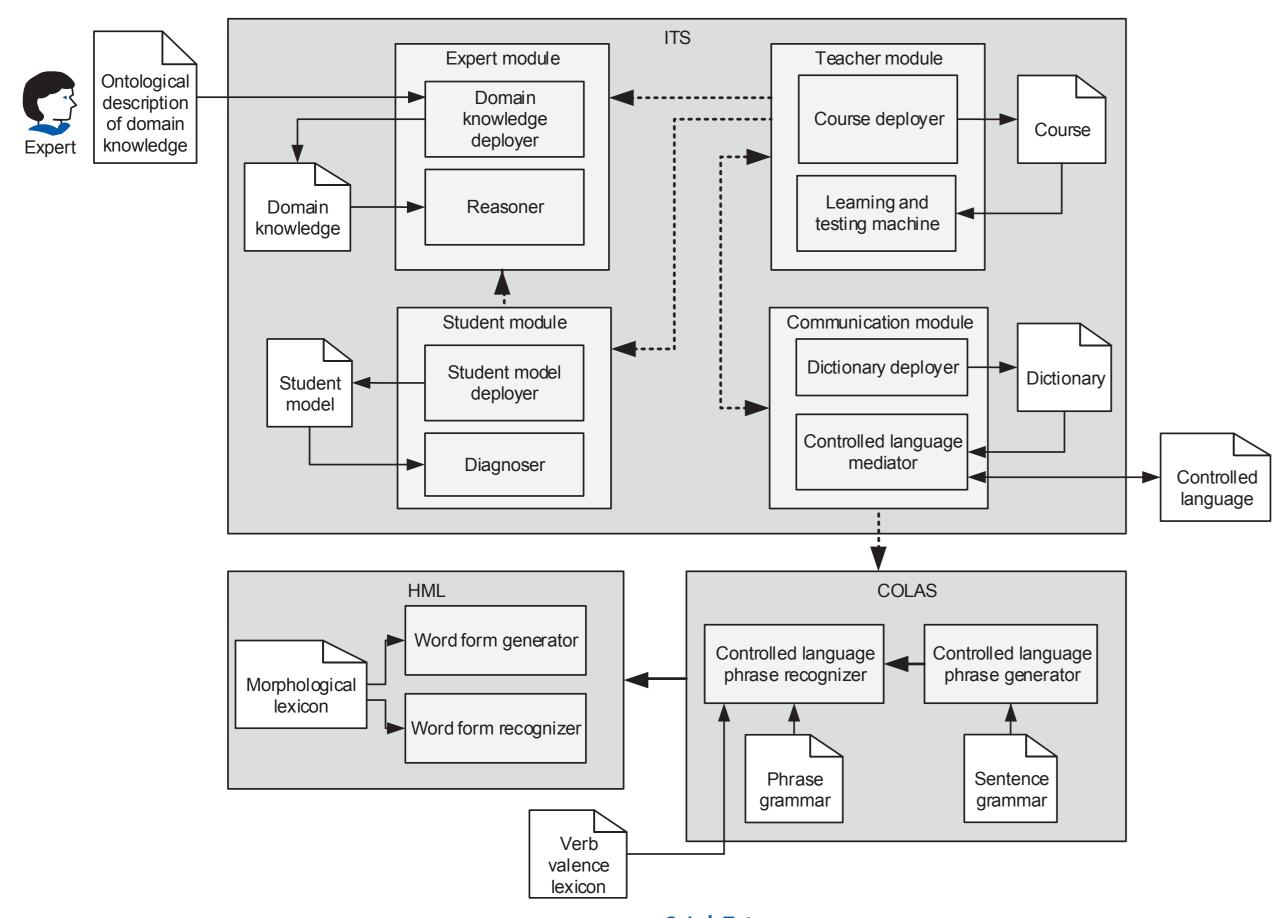
Introduction

Design and implementation of ITSs in modern conditions, takes place under the strong influence on natural language processing and natural language communication, along with

courseware that adapts learning contents to current level of student's knowledge. The authors are university level teachers with more than a decade of experience in research, development and application of ITSs (TEx-Sys [1], CoLaB Tutor [2], ACware Tutor [3], CM Tutor [4]). We plan to develop of a new fully automated ITS which will be able to tutor any declarative domain knowledge and to communicate on natural language.

Null-hypotheses:

1. "There is no significant difference between the control group C and the treatment group T1" (NHO1). 2. "There is no significant difference between the control group C and the treatment group T2" (NHO2). **3.** "There is no significant difference between the control group C and the treatment group T3" (NHO3).

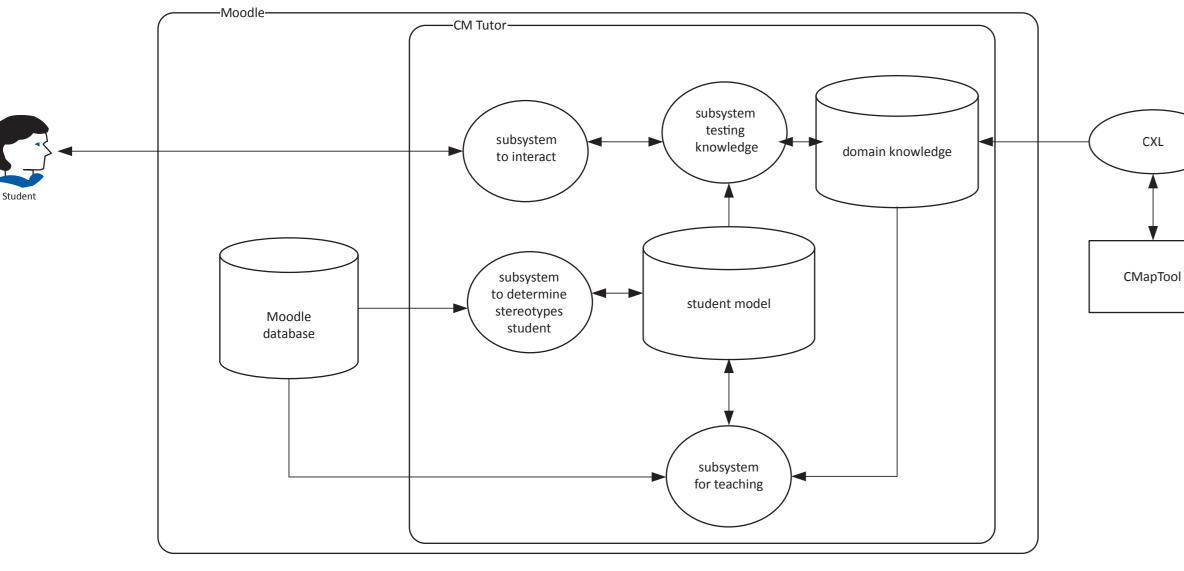

Table 1. Descriptive statistics for the case study

	Group C	Group T1	Group T2	Group T3		
System	-	AC-ware	CoLab	CM Tutor		
Sample size	21	28	21	33		
PRE-TEST						
Mean	24,762	28,143	28,524	29,091		
Median	25	28	32	29		
Standard deviation	5,603	12,776	6,524	11,762		
Variance	31,390	163,238	42,562	138,335		
Shapiro-Wilk (α=0.05)	W=0,917, p=0,075	W=0,989, p=0,986	W=0,927, p=0,123	W=0,960, p=0,258		
POST-TEST						
Mean	25,095	38,286	43,810	58,606		
Median	24	37	46	73		
Standard deviation	8,366	19,550	10,989	30,758		
Variance	69,990	382,212	120,762	946,059		
Shapiro-Wilk (α=0.05)	W=0,941, p=0,227	W=0,977, p=0,764	W=0,961, p=0,537	W=0,661, p=0,000		
Gain = POST-TEST – PRE-TEST						
Mean	0,333	10,143	15,286	29,515		
Median	-1	5	15	38		
Standard deviation	7,220	21,181	12,748	34,533		
Variance	52,133	448,646	162,514	1192,508		
Shapiro-Wilk (α=0.05)	W=0,954, p=0,412	W=0,966, p=0,468	W=0,977, p=0,884	W=0,803, p=0,000		

Table 2. Results of testing null-hypotheses

Null-hypothesis NH01 – AC-ware

ACware Tutor



	PRE-TEST	POST-TEST	Gain POST-TEST and PRE-TEST	
F-test (critical F = 2,059) df (27 T1, 20 C)	5,200	5,461	8,606	
p-value	0,000	0,000	0,000	
t-value (critical t = 2,012) df= 27+20=47	-1,250	-3,201	-2,280	
p-value	0,219	0,003	0,029	
Effect size Cohen's d		0,586		
Confidence interval 95%	from 0,009 to 1,164 – no zero included			
	Null-hypothesis NHO2 - CoLab			
	PRE-TEST	POST-TEST	Gain POST-TEST and PRE-TEST	
F-test (critical F = 2,124) df (20 T2, 20 C)	1,356	1,725	3,117	
p-value	0,502	0,231	0,014	
t-value (critical t = 2,021) df=20+20=40	-2,005	-6,209	-4,677	
p-value	0,052	0,000	0,000	
Effect size Cohen's d		1,443		
Confidence interval 95%	from 0,764 to 2,122 – no zero included			
	Null-hypothesis NHO3 – CM Tutor			
	PRE-TEST	POST-TEST	Gain POST-TEST and PRE-TEST	
F-test (critical F = 2,028) df (32 T3, 20 C)	4,407	13,517	22,874	
p-value	0,001	0,000	0,000	
t-value (critical t = 2,007) df=32+20=52	-1,815	-5,924	-4,456	
p-value	0,076	0,000	0,000	
Effect size Cohen's d		1,063		
Confidence interval 95%	from 0,480 to 1,1645 – no zero included			

The results of this empirical evaluation have shown that the observed intelligent tutoring systems based on ontological domain knowledge representation are effective when compared with traditional learning and teaching process. We have conducted this case study in an everyday learning situation – with undergraduate and graduate students during their regular classes – along with all the problems that that situation brings (for example, large drop-off).

Since the case study has shown great effect sizes and promising student feedback, we will use these research findings for developing a new and unique model of intelligent tutoring system that will include all the characteristics of evaluated intelligent tutoring systems: adaptive content, communication based on controlled natural language,

CoLab Tutor

graphical ontological domain knowledge presentation.

REFERENCES

Student

Stankov, S., Rosic, M., Zitko, B., Grubisic, A.: TEx-Sys model for building intelligent tutoring systems. Computers & Education 51,1017-1036 (2008).

Žitko, B.: Model of intelligent tutoring systems based on controlled knowledge processing over ontology, PhD Thesis, Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia (2010).

ACKNOWLEDGEMENTS

The paper is part of the work supported by the Office of Naval Research grant No. NOO014-15-1-2789

Grubišić, A.: Adaptive student's knowledge aquisition model in e-learning systems, PhD Thesis, Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia (2012).

Volarić, T.: Design of lesson model in intelligent e-learning system. Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Croatia (2014).