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Abstract

In this paper we �nd minimal index and determine all integral elements
with minimal index in the two families of totally real bicyclic biquadratic

�elds of the form Kc = Q
�p

(c� 2) c;
p
(c+ 2) c

�
and of the form Lc =

Q
�p

(c� 2) c;
p
(c+ 4) c

�
:

1 Introduction

Consider an algebraic number �eld K of degree n with ring of integers OK . It
is a classical problem in algebraic number theory to decide if K admits power
integral bases, that is, integral bases of the form

�
1; �; :::; �n�1

	
. If there exist

power integral bases in K, then OK is simple ring extension Z [�] of Z and it is
called monogenic.
Let � 2 OK be a primitive element of K, that is K = Q (�) : Index of � is
de�ned by

I (�) =
h
O+K : Z [�]

+
i
;

where O+K and Z [�]+ respectively denote the additive groups of OK and the
polynomial ring Z [�]. Therefore, the primitive element � 2 OK generates a
power integral basis if and only if I (�) = 1: The minimal index � (K) of K is
the minimum of the indices of all primitive integers in the �eld K: The greatest
common divisor of indices of all primitive integers of K is called the �eld index
of K, and will be denoted by m (K). Monogenic �elds have both � (K) = 1 and
m (K) = 1, but m (K) = 1 is not su¢ cient for the mongenity.
For any integral basis f1; !2; :::; !ng of K let

Li (X) = X1 + !
(i)
2 X2 + :::+ !

(i)
n Xn; i = 1; :::; n;
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where superscripts denote the conjugates. ThenY
1�i<j�n

(Li (X)� Lj (X))2 = (I (X2; :::; Xn))2DK ;

where DK denotes the discriminant of K and I (X2; :::; Xn) is a homogenous
polynomial in n � 1 variables of degree n (n� 1) =2 with rational integer coef-
�cients. This form is called the index form corresponding to the integral basis
f1; !2; :::; !ng : It can be shown that if the primitive integer � 2 OK is repre-
sented by an integral basis as � = x1 + x2!2 + ::: + xn!n, then the index of
� is just I (�) = jI (x2; :::; xn)j : Consequently, the minimal � 2 N for which
the equation I (x2; :::; xn) = �� is solvable in x2; :::; xn 2 Z is a minimal index
� (K).
Biquadratic �elds K = Q (

p
m;
p
n) (where m, n are distinct square-free

integers) were considered by several authors. K. S. Williams [23] gave an ex-
plicit formula for integral basis and discriminant of these �elds. Necessary and
su¢ cient conditions for biquadratic �elds being monogenic where given by M.
N. Gras and F. Tanoe [16]. T. Nakahara [20] proved that in�nitely many �elds
of this type are monogenic but the minimal index of such �elds can be arbitrary
large. I. Gaál, A. Peth½o and M. Pohst [15] gave an algorithm for determin-
ing minimal index and all generators of integral bases in the totally real case by
solving systems of simultaneous Pellian equations. G. Nyul [19] gave a complete
characterization of power integral bases in the monogenic totally complex �elds
of this type. In [18] we have determined a minimal index and all elements with
minimal index for in�nite family of totally real bicyclic biquadratic �elds of the

form K = Q
�p

(4c+ 1) c;
p
(c� 1) c

�
using theory of continued fractions. In

the present paper, we will do the same for the two in�nite families of totally
real bicyclic biquadratic �elds of the form

Kc = Q
�p

(c� 2) c;
p
c (c+ 2)

�
= (1)

Q
�p

(c+ 2) (c� 2);
p
c (c� 2)

�
= Q

�p
(c+ 2) (c� 2);

p
(c+ 2) c

�
and of the form

Lc = Q
�p

(c� 2) c;
p
c (c+ 4)

�
= (2)

Q
�p

(c+ 4) (c� 2);
p
c (c� 2)

�
= Q

�p
(c+ 4) (c� 2);

p
(c+ 4) c

�
:

The main results of the present paper are given the following theorems:

Theorem 1 Let c � 3 be an odd positive integer such that c; c � 2; c + 2 are
square-free integers. Then (1) is totally real bicyclic biquadratic �eld and

i) its �eld index is m (Kc) = 1 for all c;

ii) the minimal index of Kc is � (Kc) = 4;
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iii) all integral elements with minimal index are given by

x1 + x2
p
c (c� 2) + x3

p
c (c� 2) +

p
c (c+ 2)

2
+ x4

1 +
p
(c� 2) (c+ 2)
2

;

where x1 2 Z and (x2; x3; x4) = � (0;�1; 1) ;� (1; 1;�1) ;� (�1;�1; 1) :

Theorem 2 Let c � 3 be an odd positive integer such that c; c � 2; c + 4 are
square-free integers relatively prime in pairs. Then (2) is totally real bicyclic
biquadratic �eld and

i) its �eld index is m (Lc) = 1 for all c;

ii) the minimal index of Lc is � (Lc) = 12 if c � 7 and � (Lc) = 1 if c = 3;

iii) all integral elements with minimal index are given by

x1+x2
p
(c� 2) (c+ 4)+x3

p
(c� 2) (c+ 4) +

p
(c� 2) c

2
+x4

1 +
p
c (c+ 4)

2
;

where x1 2 Z, (x2; x3; x4) = � (0; 1; 1) ;� (0; 1;�1) ;� (1;�1;�1) ;� (1;�1; 1)
if c � 7 and (x2; x3; x4) = � (�1; 1; 0) ;� (0; 1; 0) if c = 3:

2 Preliminaries

Let m, n be distinct square-free integers, l = gcd (m;n) and de�ne m1, n1 by
m = lm1, n = ln1: Under these conditions the quartic �eld K = Q (

p
m;
p
n)

has three distinct quadratic sub�elds, namely Q (
p
m) ; Q (

p
n), Q

�p
m1n1

�
and

Galois group V4 (the Klein four group). These �elds have very nice special
structure.
Integral basis and discriminant of K was described K.S. Williams [23] in

terms in terms of m, n; m1; n1; l. He distinguished �ve cases according to the
congruence behavior of m, n, m1, n1 modulo 4. In [13], I. Gaál, A. Peth½o and
M. Pohst described the corresponding index forms I (x2; x3; x4) : They showed
that in all �ve cases index form is a product of three quadratic factors. For
x2; x3; x4 2 Z the quadratic factors of the index form admit integral values. If
we �x the order of the factors in index form and if we denote the absolute value
of the �rst, second and third factor by F1 = F1 (x2; x3; x4) ; F2 = F3 (x2; x3; x4) ;
F3 = F3 (x2; x3; x4), respectively, then �nding the minimal index � (K) is equiv-
alent to �nd integers x2; x3; x4 such that the product F1F2F3 is minimal. It can
be easily shown that �F1; �F2; �F3 are not independent, i.e. that they are
related, according to �ve possible cases, by relations given in [15, Lemma 1].
Biquadratic �eld K = Q (

p
m;
p
n) is totally complex or totally real (there are

no mixed �elds of this type). In the totally real case the index form is the
product of tree factors F1; F2; F3, of "Pellian type". In this case I. Gaál, A.
Peth½o and M. Pohst [15] gave following algorithm for �nding the minimal index
and all elements with minimal index. Consider system of equations obtained by
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equating the �rst quartic factor of the index form with �F1 and second factor
with �F2: The system of these two equations can be written as

Ax2 �By2 = C (3)

Dx2 � Fz2 = G in x; y; z 2 Z; (4)

where the values of A;B;C;D; F;G and the new variables x; y; z, according to
�ve possible cases, are listed in the table (see [15, p. 104]). In each particular
case, �rst we �nd the �eld index m (K) which we can easy calculate from [13,
Theorem 4]: We proceed with � = � � m (K) (� = 1; 2; :::). For each such �
we try to �nd positive integers F1; F2; F3 with � = F1F2F3 satisfying the
corresponding relation of [15, Lemma 1]. If there exist such F1; F2; F3, then we
calculate all such triples. For each such triple we determine all solutions of the
corresponding system (3) and (4). If none of these systems of equations have
solutions, then we proceed to the next �, otherwise � is the minimal index and
collecting all solutions of systems of equations corresponding to valid factors F1;
F2; F3 of � we get all solutions of equation

I (x2; x3; x4) = ��;

i.e. we obtain all integral elements with minimal index in K.

3 Minimal index of the �eld Kc
Let c � 3 be positive integer such that c; c� 2; c+2 are square-free integers rel-
atively prime in pairs. Let m = m1l, n = n1l where m1; n1; l 2 fc; c� 2; c+ 2g
are distinct integers. Then �eld (1) is totally real bicyclic biquadratic �eld.
First note that if c; c � 2; c + 2 are integers relatively prime in pairs, than

c is an odd positive integer. Furthermore, by [10], there are in�nitely many
positive integers c for which c (c� 2) (c+ 2) is square-free integer. Therefore,
there are in�nitely many positive integers c for which c; c�2; c+2 are square-free
integers relatively prime in pairs, which again implies that there are in�nitely
many totally real bicyclic biquadratic �elds of the form (1).
In order to prove Theorem 1 will use a method of I. Gaál, A. Peth½o and M.

Pohst [15] given in previous section. Let n1 = c� 2; m1 = c+ 2 and l = c: We
have to observe following cases:

i) If c � 1 (mod 4) ; then n1 � 3 (mod 4) ; m1 � 3 (mod 4) ; l � 1 (mod 4)
which implies m = m1l � 3 (mod 4) and n = n1l � 3 (mod 4);

ii) If c � 3 (mod 4) ; then n1 � 1 (mod 4) ; m1 � 1 (mod 4) ; l � 3 (mod 4)
which implies m = m1l � 3 (mod 4) and n = n1l � 3 (mod 4).

Since, in both cases, we have (m;n) � (3; 3) (mod 4) ; by equating the �rst,
second and third quartic factor of the corresponding index form with �F1,
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�F2 and �F3; respectively, according to [15], we obtain the system

cU2 � (c� 2)V 2 = �F1 (5)

cZ2 � (c+ 2)V 2 = �F2 (6)

(c� 2)Z2 � (c+ 2)U2 = �4F3; (7)

where
U = 2x2 + x4; V = x4; Z = x3; (8)

and from [15, Lemma 1] we have that

� (c+ 2)F1 � (c� 2)F2 = �4cF3 (9)

must hold. In this case the integral basis of Kc is(
1;
p
c (c+ 2);

p
c (c+ 2) +

p
c (c� 2)

2
;
1 +

p
(c� 2) (c+ 2)
2

)

and its discriminant is DKc = (4c (c� 2) (c+ 2))
2
:

Now we will prove statement i) of Theorem 1. First we form di¤erences
d1 = m1 � l; d2 = n1 � l; d3 = m1 � n1. We have d1 = 2; d2 = �2; d3 = 4.
Since neither 3 nor 4 divides all three di¤erences d1; d2; d3, according to [13,
Theorem 4], we conclude m (Kc) = 1:
Now we will formulate our strategy of searching the minimal index � (Kc) =:

� (c) and all elements with minimal index. Finding of minimal index � (c) is
equivalent to �nding system of above form with minimal product F1F2F3 which
has solution.
Observe that if (�F1;�F2;�F3) = (2;�2; 1) ; then system (5), (6) and (7)

has solutions (U; V; Z) = (�1;�1;�1) which implies that � (c) � 4 for all c �
1; 3 (mod 4) :
For c = 3 and c = 5 we have discriminant DKc < 106. In [15] I. Gaál, A.

Peth½o and M. Pohst determined the minimal indices and all elements with mini-
mal index in all 196 �elds and totally real bicyclic biquadratic �elds with discrim-
inant < 106: There it can be found that � (3) = � (5) = 4 and all elements with
minimal index are given by (x2; x3; x4) = � (0;�1; 1) ;� (1; 1;�1) ;� (�1;�1; 1).
Let c � 1 (mod 2), c � 3: First suppose that (U; V; Z) is nonnegative integer

solution of the system of equations (5), (6) and (7) with F1F2F3 � 4: Observe
that if one of the integers U; V; Z is equal to zero, then (5), (6) and (7) imply
that other two integers are not equal to zero.

i) If V = 0; then (5) and (6) imply

cU2 = �F1; cZ2 = �F2:

Therefrom we have F1F2 = c2Z2U2 � 4. Since c � 3 and U , Z 6= 0 we
obtain a contradiction.
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ii) If Z = 0; then (6) and (7) imply

� (c+ 2)V 2 = �F2; � (c+ 2)U2 = �4F3:

Therefrom we have F2F3 =
(c+2)2

4 U2V 2 � 4: Since c � 3 and U , V 6= 0
we obtain a contradiction:

iii) If U = 0; then (5), (6) and (7) imply

� (c� 2)V 2 = �F1; cZ2 � (c+ 2)V 2 = �F2; (c� 2)Z2 = �4F3:

Therefrom we have F1F3 =
(c�2)2
4 V 2Z2 � 4 and Z is an even integer.

Since V 6= 0 and Z2 � 4 we obtain a contradiction if c 6= 3: If c = 3; then
F1F3 =

1
4V

2Z2 � 4 which implies (V;Z) = (1; 2) : Additionally, we have

F1F2F3 =
��cZ2 � (c+ 2)V 2�� � (c� 2)2

4
� V 2Z2 � 4: (10)

Now, for c = 3 and (V;Z) = (1; 2) inequality (10) implies a contradiction.

Let (U; V; Z) be a positive integer solution of the system of Pellian equations

cU2 � (c� 2)V 2 = �1; (11)

cZ2 � (c+ 2)V 2 = �2; (12)

where �1 and �2 are non-zero integers such that j�1j � 4 and j�2j � 4. We �nd

V +

r
c

c� 2U >
r

c

c� 2U;

which implies�����
r

c

c� 2 �
V

U

����� =
����� c

c� 2 �
V 2

U2

����� �
�����
r

c

c� 2 +
V

U

�����
�1

<
j�1j

(c� 2)U2 �
r
c� 2
c

� 4p
c (c� 2)U2

�

8<:
3
U2 ; if c = 3
2
U2 ; if c = 5
1
U2 ; if c � 7

:

Similarly,

Z +

r
c+ 2

c
V >

r
c+ 2

c
V

implies�����
r
c+ 2

c
� Z

V

����� =
�����c+ 2c � Z2

V 2

����� �
�����
r
c+ 2

c
+
Z

V

�����
�1

<
j�2j
cV 2

�
r

c

c+ 2
� 4p

c (c+ 2)V 2
�
�

2
V 2 ; if c = 3
1
V 2 ; if c � 5 :
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The simple continued fraction expansion of a quadratic irrational � = a+
p
d

b
is periodic. This expansion can be obtained using the following algorithm.
Multiplying the numerator and the denominator by b, if necessary, we may
assume that bj(d� a2). Let s0 = a, t0 = b and

an =
j
sn+

p
d

tn

k
; sn+1 = antn � sn; tn+1 =

d�s2n+1
tn

for n � 0 (13)

(see [21, Chapter 7.7]). If (sj ; tj) = (sk; tk) for j < k, then

� = [a0; : : : ; aj�1; aj ; : : : ; ak�1]:

Applying this algorithm to quadratic irrationalsr
c+ 2

c
=

p
c(c+ 2)

c
and

r
c

c� 2 =
p
c(c� 2)
c� 2

we �nd that r
c+ 2

c
=
�
1; c; 2

�
; where (s0; t0) = (0; c) ;

(s1; t1) = (c; 2) ; (s2; t2) = (c; c) ; (s3; t3) = (c; 2)

and r
c

c� 2 =
�
1; c� 2; 2

�
; where (s0; t0) = (0; c� 2) ;

(s1; t1) = (c� 2; 2) ; (s2; t2) = (c� 2; c� 2) ; (s3; t3) = (c� 2; 2) :

Let pn=qn denote the nth convergent of �: The following result of Worley [24]
and Dujella [5] extends classical results of Legendere and Fatou concerning Dio-
phantine approximations of the form

���� a
b

�� < 1
2b2 and

���� a
b

�� < 1
b2 .

Theorem 3 (Worley [24], Dujella [5]) Let � be a real number and a and b
coprime nonzero integers, satisfying the inequality����� a

b

��� < M

b2
;

where M is a positive real number. Then (a; b) = (rpn+1 � upn; rqn+1 � uqn) ;
for some n � �1 and nonnegative integers r and u such that ru < 2M .

We would like to apply Theorem 3 in order to determine all values of �1
with j�1j � 4; for which equation (11) has solution in coprime integers and all
values of �2 with j�2j � 4 for which equation (12) has solutions in coprime
integers. Explicit versions of Theorem 3 for M = 2; was given by Worley [24,
Corollary, p. 206]: Recently, Dujella and Ibrahimpa�íc [6, Propositions 2.1 and
2.2] extended Worley�s work and gave explicit and sharp versions of Theorem 3
for M = 3; 4; :::; 12: We need following lemma (see [8, Lemma 1]).
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Lemma 1 Let �� be a positive integer which is not a perfect square, and let
pn=qn denotes the nth convergent of continued fraction expansion of

q
�
� . Let

the sequences (sn) and (tn) be de�ned by (13) for the quadratic irrational
p
��
� .

Then

�(rqn+1+uqn)
2��(rpn+1+upn)2 = (�1)n(u2tn+1+2rusn+2� r2tn+2): (14)

Since the period length of the continued fraction expansions of both
q

c+2
c

and
q

c+2
c is equal to 2, according to Lemma 1, we have to consider only the

fractions (rpn+1 + upn)=(rqn+1 + uqn) for n = 0 and n = 1. By checking all
possibilities, it is now easy to prove the following results.

Proposition 1 Let c � 3 be an odd integer and �1 be an non-zero integer such
that j�1j � 4 and such that the equation (11) has a solution in relatively prime
integers U and V .

i) If c � 7, then �1 2 A1 (c) = f2g :

ii) If c = 5, then �1 2 A1 (5) = f2; 2� c; 32� 7cg = f2;�3g :

iii) If c = 3, then �1 2 A1 (3) = f2; c; 2� c; 8� 3c; 18� 5cg = f2; 3;�1g :

Proposition 2 Let c � 3 be an odd integer and �1 be an non-zero integer such
that j�1j � 4 and such that the equation (12) has a solution in relatively prime
integers V and Z.

i) If c � 5, then �2 2 A2 (c) = f�2g :

ii) If c = 3, then �2 2 A2 (c) = f�2; c; 7c� 18g = f�2; 3g :

Corollary 1 Let c � 3 be an odd integer.

i) Let (U; V ) be positive integer solution of the equation (5) such that gcd (U; V ) =
d and F1 � 4d2. Then

�F1 2
�
�1d

2 : �1 2 A1 (c)
	
;

where sets A1 (c) are given in Proposition 1.

ii) Let (V;Z) be positive integer solution of the equation (6) such that gcd (V;Z) =
g and F2 � 4g2: Then

�F2 2
�
�2g

2 : �2 2 A2 (c)
	
;

where sets A2 (c) are given in Proposition 2.

Proof. Directly from Propositions 1 and 2.
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Proposition 3 Let c � 3 be an odd integer. Let (U; V; Z) be positive integer
solution of the system of Pellian equations (5) and (6) where gcd (U; V ) = d;
gcd (V;Z) = g and F1; F2 � 4: Then

i)
(�F1;�F2) 2 B (c)�D (c) ;

where B (c) = B0 [B1 (c), D (c) = D0 [D1 (c) and

B0 = f2g ; D0 = f�2g ;
B1 (5) = f�3g ; B1 (3) = f3;�1;�4g ; B1 (c) = ;; c � 7;

D1 (3) = f3g ; D1 (c) = ;; c � 5;

ii) Additionally, if F1F2 � 4; then (�F1;�F2) 2 S (c) where S (c) = S0 [
S1 (c) and

S0 = f(2;�2)g

S1 (3) = f(�1;�2) ; (�1; 3)g ; S1 (c) = ; for c � 5:

Proof.

i) From Corollary 1 we have�F1 2
�
�1d

2 : �1 2 A1 (c)
	
and�F2 2

�
�2g

2 : �2 2 A2 (c)
	

where sets A1 (c) and A2 (c) are given in Propositions 1 and 2, respectively.

a) For all c � 3 we have �F1 = 2d2. Additionally, we have �F1 = �3d2
if c = 5 and �F1 = 3d2, �d2 if c = 3. Since F1 � 4; we obtain:
i. F1 = 2d2 � 4 implies d = 1; i.e. �F1 = 2;
ii. F1 = 3d2 � 4 implies d = 1: Thus, �F1 = �3 for c = 5 and

�F1 = 3 for c = 3;
iii. F1 = d2 � 4 implies d = 1; 2. Thus, �F1 = �1;�4 for c = 3:

Therefrom, we obtain sets B (c).

b) For all c � 3 we have �F2 = �2d2. Additionally, we have �F1 = 3d2
if c = 3. Since F2 � 4; we obtain:
i. F2 = 2d2 � 4 implies d = 1; i.e. �F2 = �2;
ii. F2 = 3d2 � 4 implies d = 1: Thus, �F2 = 3 for c = 3:

Therefrom, we get sets D (c).

ii) Directly from i) since S (c) = f(s; t) 2 B (c)�D (c) : jsj � jtj � 4g :

If system (5), (6) and (7) has a solution for some positive integers F1; F2; F3;
F1F2F3 � 4, then (�F1;�F2) 2 S (c) ; where set S (c) is given in Proposition
3 and triple (�F1;�F2;�F3) satis�es one of the equations in (9). First, for
each pair (�F1;�F2) 2 S (c) we check if there exist F3 2 N; F1F2F3 � 4; such
that any of the equations (9) holds. For all pairs of the form (�F1;�F2) =
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(s; t) condition F1F2F3 � 4 is satis�ed if F3 2 F (s; t) = fk 2 N : k jsj jtj � 4g :
Therefore, for each pair (s; t) 2 S (c) and for each k 2 F (s; t), we have to check
if any of these four equations

s (c+ 2) + t (c� 2) = �4kc or s (c+ 2)� t (c� 2) = �4kc (15)

holds. For example, if c � 3; then (�F1;�F2) = (2;�2) 2 S (c) : From (15) we
obtain

8 = �4kc or 4c = �4kc:

Since k 2 F (2;�2) = f1g ; the only possibility is �F3 = 1. We proceed
similarly for (�1;�2) ; (�1; 3) 2 S (3). The only triple we obtain on this way is
(�F1;�F2;�F3) = (2;�2; 1) and the corresponding system is

cU2 � (c� 2)V 2 = 2 (16)

cZ2 � (c+ 2)V 2 = �2 (17)

(c� 2)Z2 � (c+ 2)U2 = 4: (18)

Since this system has solution (U; V; Z) = (�1;�1;�1) ; we have � (c) = 4 for
all c � 1 (mod 2) ; c � 3:
Next step is �nding all elements with minimal index. Therefore we have to

solve the above system. In [17], Ibrahimpa�íc showed that if c � 3 is positive
integer, than the only solutions of the system (16) and (17) are (U; V; Z) =
(�1;�1;�1) : Therefrom we have following proposition which �nishes the proof
of Theorem 1.

Proposition 4 Let c � 3 be an odd positive integer such that c; c + 2; c � 2
are square-free integers. Then all integral elements with minimal index in the

�eld Kc = Q
�p

(c� 2) c;
p
c (c+ 2)

�
are given by (x2; x3; x4) = � (0;�1; 1) ;

� (1; 1;�1) ; � (�1; 1; 1) :

Proof. Since all solutions of the system (16), (17) and (18) are given by
(U; V; Z) = (�1;�1;�1) and since we have U = 2x2 + x4; V = x4; Z = x3, we
obtain

2x2 + x4 = �1; x4 = �1; x3 = �1;

which implies (x2; x3; x4) = � (0;�1; 1) ;� (1; 1;�1) ;� (�1; 1; 1) :

4 Minimal index of the �eld Lc
Let c � 3 be positive integer such that c; c � 2; c + 4 are square-free integers
relatively prime in pairs. Then �eld (2) is totally real bicyclic biquadratic �eld.
Note that c; c � 2; c + 4 are integers relatively prime in pairs except when

c � 0(mod 2) or c � 2(mod 3): Furthermore, by [10], there are in�nitely many
positive integers c for which c (c� 2) (c+ 4) is square-free integer. Therefore,
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there are in�nitely many positive integers c for which c; c�2; c+4 are square-free
integers relatively prime in pairs, which again implies that there are in�nitely
many totally real bicyclic biquadratic �elds of the form (2).
In order to prove Theorem 2 we will use a method of I. Gaál, A. Peth½o and

M. Pohst [15] again. We have to observe following cases:

i) If c � 1 (mod 4) ; l = c� 2; m1 = c+ 4 and n1 = c; then n1 � 1 (mod 4) ;
m1 � 1 (mod 4) ; l � 3 (mod 4) which implies m = m1l � 3 (mod 4) and
n = n1l � 3 (mod 4) ;

ii) Let c � 3 (mod 4) ; l = c� 2; m1 = c+ 4 and n1 = c: Then l � 1 (mod 4) ;
m1 � 3 (mod 4) ; n1 � 3 (mod 4) which implies m = m1l � 3 (mod 4) and
n = n1l � 3 (mod 4).
Since, in both cases, we have (m;n) � (3; 3) (mod 4) ; similarly as in Sec-
tion 3, according to [15], we obtain the system

(c� 2)U2 � cV 2 = �F1 (19)

(c� 2)Z2 � (c+ 4)V 2 = �F2 (20)

cZ2 � (c+ 4)U2 = �4F3; (21)

where
U = 2x2 + x3; V = x4; Z = x3; (22)

and from Lemma [15, Lemma 1] we obtain that

� (c+ 4)F1 � cF2 = �4 (c� 2)F3 (23)

must hold. In this case the integral basis of Lc is(
1;
p
(c� 2) (c+ 4);

p
(c� 2) (c+ 4) +

p
(c� 2) c

2
;
1 +

p
c (c+ 4)

2

)

and its discriminant is D = (4c (c� 2) (c+ 4))2 :

Now we will calculate the �eld index m (Lc) of Lc. We form di¤erences
d1 = m1 � l = 6; d2 = n1 � l = 2; d3 = m1 � n1 = 4. Since neither 3 nor 4
divides all three di¤erences d1; d2; d3, according to [13, Theorem 4], we conclude
m (Lc) = 1: Therefore, we have proved statement i) of Theorem 2.
Will apply the same strategy of searching the minimal index and all elements

with minimal index as in previous case. Observe that if (�F1;�F2;�4F3) =
(�2;�6;�4) ; then system (19), (20) and (21) has solutions (U; V; Z) = (�1;�1;�1)
which implies that � (Lc) =: � (c) � 12:
Also, if c = 3 and (�F1;�F2;�4F3) = (1; 1;�4), then system (19), (20) and

(21) has solutions (U; V; Z) = (�1; 0;�1) which implies that � (3) = 1; i.e. �eld
L3 is monogenic. In [15, p. 109] it can be found that � (3) = 1 and all elements
with minimal index are given by (x2; x3; x4) = � (�1; 1; 0) ;� (0; 1; 0) :
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4.1 Case c � 7
Let c � 1(mod 2), c 6� 2(mod 3); c � 7: First suppose that (U; V; Z) is a non-
negative integer solution of the system of equations (19), (20) and (21) with
F1F2F3 � 12: If one of the integers U; V; Z is equal to zero, then (19), (20) and
(21) imply that other two integers are not equal to zero. Thus we have:

i) If V = 0; then (19) and (20) imply

(c� 2)U2 = �F1; (c� 2)Z2 = �F2:

Therefrom we have F1F2 = (c� 2)2 Z2U2 � 12. If c � 7 and U , Z 6= 0 we
obtain a contradiction.

ii) If Z = 0; then (20) and (21) imply

� (c+ 4)V 2 = �F2; � (c+ 4)U2 = �4F3:

Therefrom we have F2F3 =
(c+4)2

4 U2V 2 � 12: Since c � 7 and U , V 6= 0
we obtain a contradiction:

iii) If U = 0; then (19) and (21) imply

�cV 2 = �F1; cZ2 = �4F3:

Therefrom we have F1F3 = c2

4 V
2Z2 � 12 and Z is an even integer. Since

c � 7, V 6= 0 and Z2 � 4 we obtain a contradiction.

Let (U; V; Z) be positive integer solution of the system of Pellian equations

(c� 2)U2 � cV 2 = �1; (24)

cZ2 � (c+ 4)U2 = �3; (25)

where �1 and �3 are non-zero integers such that j�1j � 12 and j�3j � 48. We
have�����
r

c

c� 2 �
U

V

����� =
����� c

c� 2 �
U2

V 2

����� �
�����
r

c

c� 2 +
U

V

�����
�1

<
j�1j

(c� 2)V 2 �
r
c� 2
c

� 12p
c (c� 2)V 2

�

8<:
3
V 2 ; if c = 7
2
V 2 ; if c = 9; 13
1
V 2 ; if c � 15

and �����
r
c+ 4

c
� Z

U

����� =
�����c+ 4c � Z2

U2

����� �
�����
r
c+ 4

c
+
Z

U

�����
�1

<
j�3j
cU2

�
r

c

c+ 4
� 48p

c (c+ 4)U2
� M

U2
;
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where M = 1 if c � 49; M = 2 if 25 � c � 45; M = 3 if 15 � c � 21; M = 4 if
c = 13, M = 5 if c = 9 and M = 6 if c = 7.
Applying algorithm (13) to quadratic irrationalsr

c+ 4

c
=

p
c(c+ 4)

c
and

r
c

c� 2 =
p
c(c� 2)
c� 2

we �nd that if c > 1 is an odd positive integer, thanr
c+ 4

c
=

�
1;
c� 1
2
; 1; 2c+ 2; 1;

c� 1
2
; 2

�
;

(s0; t0) = (0; c) ; (s1; t1) = (c; 4) ;

(s2; t2) = (c� 2; 2c� 1) ; (s3; t3) = (c+ 1; 1) ;
(s4; t4) = (c+ 1; 2c� 1) ; (s5; t5) = (c� 2; 4) ;

(s6; t6) = (c; c) ; (s7; t7) = (c; 4) ;

and r
c

c� 2 =
�
1; c� 2; 2

�
; where (s0; t0) = (0; c� 2) ;

(s1; t1) = (c� 2; 2) ; (s2; t2) = (c� 2; c� 2) ; (s3; t3) = (c� 2; 2) ;

for all positive integers c � 3:
Now we will apply Theorem 3 and Lemma 1 in order to determine all values

of �1 with j�1j � 12; for which equation (11) has solution in relatively prime
integers and all values of �2 with j�2j � 48 for which equation (12) has solutions
in relatively prime integers.

Since the period length of the continued fraction expansion of
q

c+4
c is equal

to 6 if c > 1 is odd, according to Lemma 1, we have to consider only the fractions
(rpn+1 + upn)=(rqn+1 + uqn) for n = 0; 1; ::::; 5.

Since the period length of the continued fraction expansion of
q

c
c�2 is equal

to 2; according to Lemma 1, we have to consider only the fractions (rpn+1 +
upn)=(rqn+1 + uqn) for n = 0; 1:
By checking all possibilities, it is now easy to prove the following results.

Proposition 5 Let c � 7 be odd positive integer such that c 6� 2(mod 3) and �1
be an non-zero integer such that j�1j � 12 and such that the equation (24) has
a solution in relatively prime integers U and V .

i) If c � 15, then
�1 2 A1 (c) = f�2g :

ii) If c = 13, then

�1 2 A1 (13) = f�2; c� 2g = f�2; 11g :
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iii) If c = 9, then

�1 2 A1 (9) = f�2;�c; c� 2g = f�2;�9; 7g :

iv) If c = 7, then

�1 2 A1 (7) = f�2;�c; c� 2; 11c� 72g = f�2;�7; 5g :

Proposition 6 Let c � 7 be odd positive integer such c 6� 2mod 3 and �3 be
an non-zero integer such that j�3j � 48 and such that the equation (25) has a
solution in relatively prime integers V and Z.

i) If c � 49; then �3 2 A3 (c) = f�1;�4g :

ii) If c = 45, then �3 2 A3 (c) = f�1;�4; cg = f�1;�4; 45g :

iii) If 25 � c � 43, then �3 2 A3 (c) = f�1;�4;�c� 4; cg :

iv) If c = 21, then

�3 2 A3 (c) = f�1;�4; 2c� 1;�c� 4; cg = f�1;�4; 41;�25; 21g :

v) If c = 19, then

�3 2 A3 (c) = f�1;�4;�2c� 9; 2c� 1;�c� 4; cg
= f�1;�4;�47; 37;�23; 19g :

vi) If c = 15, then

�3 2 A3 (c) = f�1;�4;�2c� 9; 2c� 1;�c� 4; 3c� 4; cg
= f�1;�4;�39; 29;�19; 41; 15g :

vii) If c = 13, then

�3 2 A3 (c) = f�1;�4; 4c� 9;�2c� 9; 12c� 121; 14c� 169; 16c� 225;
2c� 1;�c� 4; 3c� 4; 11c� 100; 13c� 144; 15c� 196; cg

= f�1;�4; 43;�35; 35; 13;�17; 25g :

viii) If c = 9, then

�3 2 A3 (c) = f�1;�4; 4c� 9;�2c� 9; 4c; 6c� 25; 8c� 49; 10c� 81;
12c� 121; 14c� 169; 16c� 225; 2c� 1;�c� 4; 3c� 4; 5c� 16;

7c� 36; 9c� 64; 11c� 100;�3c� 16; 13c� 144; cg

= f�1;�4; 27;�27; 36; 29; 23; 9;�13;�43; 17g :
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ix) If c = 7, then

�3 2 A3 (c) = f�1;�4; 4c� 9;�2c� 9; 4c; 6c� 25; 8c� 49; 10c� 81;
12c� 121; 6c� 1;�4c� 16; 2c� 1;�c� 4; 3c� 4; 5c� 16; 7c� 36; 9c� 64;
11c� 100;�3c� 16; 5c� 16; 9c� 64; 11c� 100;�3c� 16; 5c� 16; cg

= f�1;�4; 19;�23; 28; 17; 7;�11;�37; 41;�44; 13g :

Corollary 2 Let c � 7 be odd positive integer such c 6� 2(mod 3).

i) Let (U; V ) be positive integer solution of the equation (19) such that gcd (U; V ) =
d and F1 � 12d2: Then

�F1 2
�
�1d

2 : �1 2 A1 (c)
	
;

where sets A1 (c) are given in Proposition 5.

ii) Let (V;Z) be positive integer solution of the equation (20) such that gcd (V;Z) =
g and 4F3 � 48g2: Then

�4F3 2
�
�3g

2 : �3 2 A3 (c)
	
;

where sets A3 (c) are given in Proposition 6.

Proof. Directly from Propositions 5 and 6.

Proposition 7 Let c � 7 be odd positive integer such c 6� 2(mod 3). Let
(U; V; Z) be positive integer solution of the system of Pellian equations (19)
and (20) where gcd (U; V ) = d; gcd (V;Z) = g and F1; F3 � 12: Then

i)
(�F1;�4F3) 2 B (c)�D (c) ;

where B (c) = B0 [B1 (c), D (c) = D0 [D1 (c) and

B0 = f�2;�8g ; D0 = f�4;�16;�36g ;
B1 (7) = f5;�7g ; B1 (9) = f7;�9g ; B1 (13) = f11g ; B1 (c) = ;; c � 15;

D1 (7) = f28;�44g ; D1 (9) = f36g ; D1 (c) = ;; c � 13:

ii) Additionally, if F1F3 � 12; then (�F1;�4F3) 2 S (c) where S (c) = S0 [
S1 (c) and

S0 = f(�2;�4) ; (�2;�16) ; (�8;�4)g ;
S1 (7) = f(5;�4) ; (�7;�4)g ; S1 (9) = f(7;�4) ; (�9;�4)g ;

S1 (13) = f(11;�4)g and S1 (c) = ; for c � 15:

Proof.
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i) From Corollary 2 we have �F1 2
�
�1d

2 : �1 2 A1 (c)
	
and �4F3 2�

�3g
2 : �3 2 A3 (c)

	
where setsA1 (c) andA3 (c) are given in Propositions

5 and 6, respectively.

a) For all c � 7 we have �F1 = �2d2. Additionally, we have �F1 =
(c� 2) d2 if c � 13 and �F1 = �cd2 if c � 9. Since F1 � 12; we
obtain:

i. F1 = 2d2 � 12 implies d = 1; 2; i.e. �F1 = �2;�8;
ii. F1 = (c� 2) d2 � 12 implies d �

q
12
c�2 < 2: Thus, �F1 = 5 for

c = 7, �F1 = 7 for c = 9 and �F1 = 11 for c = 13;
iii. F1 = cd2 � 12 implies d �

q
12
c < 2: Thus, �F1 = �7 for c = 7

and �F1 = �9 for c = 9.
Therefrom, we obtain sets B (c).

b) For all c � 7 we have �4F3 = �g2, �4g: Since F3 � 12; we obtain:
i. 4F3 = g2 � 48 implies g = 2; 4; 6; i.e. �4F3 = �4;�16;�36;
ii. 4F3 = 4g2 � 48 implies g = 1; 2; 3: Thus, �4F3 = �4;�16;�36:

Additionally, we have �4F3 = cg2 if c � 45, �4F3 = (�c� 4) g2 if
c � 43, �4F3 = (2c� 1) g2 if c � 21, �4F3 = (�2c� 9) g2 if c �
19;�4F3 = (3c� 4) g2 if c � 15; �4F3 = (4c� 9) g2; (12c� 121) g2;
(11c� 100) g2 if c � 13;�4F3 = 36g2; 29g2; 23g2;�43g2 if c = 9 and
�4F3 = 28g2; 17g2; 41g2;�44g2 if c = 7: Similarly, since F3 � 12; we
obtain:

iii. 4F3 = cg2 � 48 implies g = 2 if c = 7; 9; i.e. �4F3 = 28 if c = 7
and �4F3 = 36 if c = 9;

iv. 4F3 = (c+ 4) g2 � 48 implies g = 2 if c = 7; i.e. �4F3 = �44 if
c = 7;

v. 4F3 = j11c� 100j g2 � 48 implies g = 2 if c = 9; i.e. �4F3 = �4
if c = 9;

vi. 4F3 = 36g2 � 48 implies g = 1; i.e. �4F3 = 36 if c = 9;
vii. 4F3 = 28g2 � 48 implies g = 1; i.e. �4F3 = 28 if c = 7;
viii. 4F3 = 44g2 � 48 implies g = 1; i.e. �4F3 = �44 if c = 7.

All other cases imply a contradiction. Therefrom, we get sets D (c).

ii) Directly from i) since S (c) = f(s; t) 2 B (c)�D (c) : jsj � jtj � 48g :

If system (19), (20) and (21) has solution for some positive integers F1;
F2; F3; F1F2F3 � 12, then (�F1;�4F3) 2 S (c) ; where set S (c) is given
in Proposition 7 and triple (�F1;�F2;�4F3) satis�es one of the equations in
(23). First, for each pair (�F1;�4F3) 2 S (c) we check if there exist F2 2 N;
F1F2F3 � 12 such that any of the equations (23) holds. For all pairs of

16



the form (�F1;�4F3) = (s; t) condition F1F2F3 � 12 is satis�ed if F2 2
F (s; t) = fk 2 N : k jsj jtj � 48g : Therefore, for each pair (s; t) 2 S (c) and
for each k 2 F (s; t), we have to check if any of these four equations

(c+ 4) s+ (c� 2) t = �ck or (c+ 4) s� (c� 2) t = �ck (26)

holds. For example, if c � 7; then (�F1;�4F3) = (�2;�4) 2 S (c) : From (26)
we obtain

�6c = �ck or 2c� 16 = �ck:

Since k 2 F (�2;�4) = f1; 2; 3; 4; 5; 6g the only possibility is �F2 = �6. We
proceed similarly for every element from set S (c) ; c � 7: The only triple we
obtain on this way is (�F1;�F2;�4F3) = (�2;�6;�4) and the corresponding
system is

(c� 2)U2 � cV 2 = �2 (27)

(c� 2)Z2 � (c+ 4)V 2 = �6 (28)

cZ2 � (c+ 4)U2 = �4: (29)

Since this system has solution (U; V; Z) = (�1;�1;�1) ; we have � (c) = 12 for
all c � 1 (mod 2) ; c 6� 2(mod 3); c � 7:
Next step is �nding all elements with minimal index. Therefore we have to

solve system (27), (28) and (29). It will be done in Section 4.3.

4.2 Case c = 3

Let c = 3: In this case equations (19), (20) and (21) have a form

U2 � 3V 2 = �F1 (30)

Z2 � 7V 2 = �F2 (31)

3Z2 � 7U2 = �4F3 (32)

and equation (23) has a form

�7F1 � 3F2 = �4F3: (33)

Since � (3) = F1F2F3 = 1, we have to observe 8 systems of the form (30), (31)
and (32) with (�F1;�F2;�4F3) = (�1;�1;�4) : Suppose that (U; V; Z) is a
nonnegative integer solution of one of those 8 system. If �F1 = �1; from (30)
we obtain U2 = 2(mod 3) which gives a contradiction. Therefore �F1 = 1: If
�4F3 = 4 from (32) we obtain 2U2 = 1(mod 3) which gives a contradiction.
Therefore �4F3 = �4:
Hence, if system (30), (31) and (32) has solution for some positive integers

F1; F2; F3; F1F2F3 = 1, then (�F1;�4F3) = (1;�4) and triple (�F1;�F2;�4F3)
satis�es one of the equations in (33). If (�F1;�4F3) = (1;�4), then (33) implies
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�F2 = 1. Therefore, only triple we obtain is (�F1;�F2;�4F3) = (1; 1;�4) and
the corresponding system is

U2 � 3V 2 = 1 (34)

Z2 � 7V 2 = 1 (35)

3Z2 � 7U2 = �4: (36)

In [1] Anglin showed that system (34) and (35) has only the trivial solutions
(U; V; Z) = (�1; 0;�1) : Now using (22), we �nd that all integral elements with
minimal index are given by (x2; x3; x4) = � (�1; 1; 0) ;� (0; 1; 0) : This �nishes
the proof of Theorem 2 for c = 3:

4.3 Finding all elements with minimal index

Now, we have to solve system (27), (28) and (29) that is obtained in Section
4.1. That system is very suitable for application of method given in [7]. We will
prove the following result

Theorem 4 Let c � 7 be an odd integer. The only solutions to system (27),
(28) and (29) are (U; V; Z) = (�1;�1;�1) :

Therefrom we have following corollary which �nishes the proof of Theorem
2.

Corollary 3 Let c � 7 be an odd positive integer such that c; c � 2; c + 4 are
square-free integers relatively prime in pairs. Then all integral elements with
minimal index in the �eld (2) are given by (x2; x3; x4) = � (0; 1; 1) ; � (0; 1;�1) ;
� (1;�1;�1) ; � (1;�1; 1) :

Proof. Since all solutions of the system (27), (28) and (29) are given by
(U; V; Z) = (�1;�1;�1) and since in this case we have U = 2x2 + x3; V = x4;
Z = x3 we obtain

x4 = �1; 2x2 + x3 = �1; x3 = �1;

which implies (x2; x3; x4) = � (0; 1; 1) ; � (0; 1;�1) ; � (1;�1;�1) ; � (1;�1; 1) :

In order to prove Theorem 4, �rst we will �nd a lower bound for solutions of
this system using the "congruence method" introduced in [9]. The comparison
of this lower bound with an upper bound obtained from a theorem of Bennett
[4] on simultaneous approximations of algebraic numbers �nishes the proof for
c � 292023. For c � 292022 we use a theorem a Baker and Wüstholz [3] and a
version of the reduction procedure due to Baker and Davenport [2].

Lemma 2 Let (U; V; Z) be positive integer solution of the system of Pellian
equations (27) and (29). Then there exist nonnegative integers m and n such
that

U = um = vn,
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where the sequences (um), (vn) are given by

u0 = 1; u1 = 2c� 1; um+2 = (2c� 2)um+1 � um; m � 0; (37)

v0 = 1; v1 = c+ 1; vn+2 = (c+ 2) vn+1 � vn; n � 0: (38)

Proof. If (U; V ) is solution of equation (27) then there exist m � 0 such that
U = um where sequence (um) is given by (37) (see [7, Lemma 2]):
Let Z1 = cZ; then equation (29) is equivalent to equation

Z21 � c (c+ 4)U2 = �4c: (39)

It is obvious that (a1; b1) = (c+ 2; 1) is fundamental solutions of equation

A2 � c (c+ 4)B2 = 4:

By [22, Theorem 2], it follows that if (z0; v0) is the fundamental solution of a
class of equation (39), than inequalities

0 < jz0j �
p
(a1 � 2) � c = c

0 < v0 �
b1p

(a1 � 2)
p
c = 1

must hold. This implies that (z0; v0) = (c; 1) and (z00; v
0
0) = (�c; 1) are possible

fundamental solution of equation (39). Since

z0v
0
0 � z00v0(mod 2c);

these solutions belong to the same class (see [22, Theorem 4]). Therefore we
have only one fundamental solution (z0; v0) = (c; 1). Now, all solutions (z; v) of
equation (39) in positive integers are given by (Z1; U) = (zn; vn) where

zn + vn
p
c (c+ 4) =

�
c+

p
c (c+ 4)

� c+ 2 +pc (c+ 4)
2

!n
(40)

and n is nonnegative integer (see [22, Theorem 3]). From (40) we obtain that
if (Z;U) is solution of equation (27) then there exist n � 0 such that U = vn
where sequence (vn) is given by (38).
Therefore, in order to prove Theorem 4, it su¢ ces to show that vm = wn

implies m = n = 0.
Solving recurrences (37) and (38) we �nd

um =
1

2
p
c� 2

h
(
p
c+

p
c� 2)

�
c� 1 +

p
c(c� 2)

�m
�(
p
c�

p
c� 2)

�
c� 1�

p
c(c� 2)

�mi
; (41)

vn =
1

2
p
c+ 4

h
(
p
c+

p
c+ 4)

�c+ 2 +pc (c+ 4)
2

�n
�(
p
c�

p
c+ 4)

�c+ 2�pc (c+ 4)
2

�ni
: (42)
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4.3.1 Congruence relations

Now we will �nd a lower bound for nontrivial solutions using the congruence
method.

Lemma 3 Let the sequences (um) and (vn) be de�ned by (37) and (38), respec-
tively. Then for all m;n � 0 we have

um � (�1)m�1 (m(m+ 1)c� 1) (mod 4c2); (43)

vn �
n(n+ 1)

2
c+ 1 (mod c2) . (44)

Proof. We have obtained congruence (43) in [7, Lemma 3]. Congruence (44) is
easy to prove by induction.
Suppose that m and n are positive integers such that um = vn. Then, of

course, um � vn (mod c
2). By Lemma 3, we have (�1)m � 1 (mod c) and

therefore m is even.
Assume that n(n + 1) < 2

3c. Since m � n we also have m(m + 1) < 2
3c.

Furthermore, Lemma 3 implies

1�m(m+ 1)c � n(n+ 1)

2
c+ 1 (mod c2)

and

�m(m+ 1) � n(n+ 1)

2
(mod c): (45)

Consider the positive integer

A =
n(n+ 1)

2
+m(m+ 1):

We have 0 < A < c and, by (45), A � 0(mod c), a contradiction.
Hence n(n+1) � 2

3c and it implies n >
p
0:703c� 0:5. Therefore we proved

Proposition 8 If um = vn and m 6= 0, then n >
p
0:703c� 0:5:

4.3.2 An application of a theorem of Bennett

It is clear that the solutions of the system (27) and (29) induce good rational
approximations to the numbers

�1 =

r
c� 2
c

and �2 =

r
c+ 4

c
:

More precisely, we have

Lemma 4 All positive integer solutions (U; V; Z) of the system of Pellian equa-
tions (27) and (29) satisfy

j�1 �
V

U
j < 1p

c (c� 2)
� U�2; j�2 �

Z

U
j < 2p

c (c+ 4)
� U�2:
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Proof. We have�����
r
c� 2
c

� V
U

����� =
�����c� 2c � V

2

U2

����� �
�����
r
c� 2
c

+
V

U

�����
�1

<
2

cU2
� 1
2

r
c

c� 2 =
1p

c (c� 2)
� U�2

and �����
r
c+ 4

c
� Z

U

����� =
�����c+ 4c � Z2

U2

����� �
�����
r
c+ 4

c
+
Z

U

�����
�1

<
4

cU2
�
r

c

c+ 4
=

4p
c (c+ 4)

� U�2

The numbers �1 and �2 are square roots of rationals which are very close to
1. For simultaneous Diophantine approximations to such kind of numbers we
will use the following theorem of Bennett [4, Theorem 3.2].

Theorem 5 If ai, pi, q and N are integers for 0 � i � 2, with a0 < a1 < a2,
aj = 0 for some 0 � j � 2, q nonzero and N > M9, where

M = max
0�i�2

fjaijg � 3;

then we have

max
0�i�2

n���r1 + ai
N
� pi
q

���o > (130N)�1q��
where

� = 1 +
log(32:04N)

log
�
1:68N2

Q
0�i<j�2(ai � aj)�2

�
and

 =

(
(a2�a0)2(a2�a1)2

2a2�a0�a1 if a2 � a1 � a1 � a0;
(a2�a0)2(a1�a0)2

a1+a2�2a0 if a2 � a1 < a1 � a0:

We will apply Theorem 5 with a0 = �2, a1 = 0, a2 = 4, N = c, M = 4,
q = U , p0 = V , p1 = U , p2 = Z. If c � 262 145, then the condition N > M9 is
satis�ed and we obtain

(130 � c � 288
5
)�1U�� <

4p
c (c+ 4)

� U�2 : (46)

If c � 281220 then 2� � > 0 and (46) implies

logU <
10:082

2� � : (47)
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Furthermore,

1

2� � =
1

1� log(32:04�c 2885 )

log(1:68c2 1
256 )

<
log
�
0:00657c2

�
log(0:00000355c)

:

On the other hand, from (42) we �nd that

vn > 0:88
�c+ 2�pc (c+ 4)

2

�n
> (0:88c+ 0:88)n;

and Proposition 8 implies that if (m;n) 6= (0; 0), then

U > (0:88c+ 0:88)
p
0:703c�0:5 :

Therefore,
logU > (

p
0:703c� 0:5) log(0:88c+ 0:88): (48)

Combining (47) and (48) we obtain

p
0:703c� 0:5 <

10:082 log
�
0:00657c2

�
log(0:88c+ 0:88) log(0:00000355c)

(49)

and (49) yields a contradiction if c � 292023. Therefore we proved

Proposition 9 If c is an integer such that c � 292023, then the only solution
of the equation um = vn is (m;n) = (0; 0).

4.3.3 The Baker-Davenport method

In this section we will apply so called Baker-Davenport reduction method in
order to prove Theorem 4 for 7 � c � 292022:

Lemma 5 If um = vn and m 6= 0, then

0 < m log
�
c� 1 +

p
c(c� 2)

�
� n log

�c+ 2 +pc (c+ 4)
2

�
+ log

p
c+ 4(

p
c+

p
c� 2)p

c� 2(
p
c+

p
c+ 4)

< 0:23912

 
c+ 2 +

p
c (c+ 4)

2

!�2n
:

Proof. In standard way (for e.g. see [7, Lemma 5]).
Now we will apply the following theorem of Baker and Wüstholz [3]:

Theorem 6 For a linear form � 6= 0 in logarithms of l algebraic numbers
�1; : : : ; �l with rational integer coe¢ cients b1; : : : ; bl we have

log � � �18(l + 1)! ll+1(32d)l+2h0(�1) � � �h0(�l) log(2ld) logB ;

where B = maxfjb1j; : : : ; jbljg, and where d is the degree of the number �eld
generated by �1; : : : ; �l.
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Here
h0(�) =

1

d
max fh(�); j log �j; 1g ;

and h(�) denotes the standard logarithmic Weil height of �.
We will apply Theorem 6 to the form from Lemma 5. We have l = 3, d = 4,

B = n,

�1 = c� 1 +
p
c(c� 2); �2 =

c+ 2 +
p
c (c+ 4)

2
;

�3 =

p
c+ 4(

p
c+

p
c� 2)p

c� 2(
p
c+

p
c+ 4)

:

Under the assumption that 7 � c � 292022 we �nd that

h0(�1) =
1

2
log�1 <

1

2
log 2c; h0(�2) =

1

2
log�2 < 6: 2924:

Furthermore, �3 < 1: 2145, and the conjugates of �3 satisfy

j�03j =
p
c+ 4(

p
c�

p
c� 2)p

c� 2(
p
c+

p
c+ 4)

< 1;

j�003 j =
p
c+ 4(

p
c+

p
c� 2)p

c� 2(
p
c+ 4�

p
c)
< 292025:51

j�0003 j =
p
c+ 4(

p
c�

p
c� 2)p

c� 2(
p
c+ 4�

p
c)
< 1:

Therefore,

h0(�3) <
1

4
log
h
16 (c� 2)2 � 1: 2145 � 292025:51

i
< 10:181:

Finally,

log
h
0:239 12

 
c+ 2 +

p
c (c+ 4)

2

!�2n i
< �2n log(2c) :

Hence, Theorem 6 implies

2n log(2c) < 3:822 � 1015 � 1
2
� log(2c) � 6: 2924: � 10:181 log n

and
n

log n
< 6:12122 � 1016: (50)

which implies n < 2:59542� 1018:
Wemay reduce this large upper bound using a variant of the Baker-Davenport

reduction procedure [2]. The following lemma is a slight modi�cation of [9,
Lemma 5 a)]:
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Lemma 6 Assume that M is a positive integer. Let p=q be a convergent of the
continued fraction expansion of � such that q > 10M and let " = k�qk�M �k�qk,
where k � k denotes the distance from the nearest integer. If " > 0, then there is
no solution of the inequality

0 < m� n�+ � < AB�n

in integers m and n with

log(Aq=")

logB
� n �M :

We apply Lemma 6 with

� =
log�2
log�1

; � =
log�3
log�1

; A =
0:239 12

log�1
;

B =
�c+ 2 +pc (c+ 4)

2

�2
and M = 2:59542� 1018:

If the �rst convergent such that q > 10M does not satisfy the condition " > 0,
then we use the next convergent.
We performed the reduction from Lemma 6 for 7 � c � 292022. The use

of the second convergent was necessary in 3686 cases (� 3:63%), the third
convergent was used in 209 cases (� 0:07%), the forth in 37 cases, the �fth
convergent is used in only one case: c = 169901. In all cases we obtained n � 7.
More precisely, we obtained n � 7 for c � 7; n � 6 for c � 9; n � 5 for c � 14;
n � 4 for c � 57; n � 3 for c � 144; n � 2 for c � 1442. The next step of the
reduction in all cases gives n � 1, which completes the proof.
Therefore, we proved

Proposition 10 If c is an integer such that 7 � c � 292022, then the only
solution of the equation vm = wn is (m;n) = (0; 0).

Proof of Theorem 4. The statement follows directly from Propositions
9 and 10.
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