Establishing the minimal index in a parametric family of bicyclic biquadratic fields

Borka Jadrijević*

Abstract

Let $c \geq 3$ be positive integer such that $c, 4 c+1, c-1$ are square-free integers relatively prime in pairs. In this paper we find minimal index and determine all elements with minimal index in bicyclic biquadratic field $K=\mathbb{Q}(\sqrt{(4 c+1) c}, \sqrt{(c-1) c})$.

1 Introduction

Let K be an algebraic number field of degree n and \mathcal{O}_{K} its ring of integers. For any $\alpha \in \mathcal{O}_{K}$

$$
I(\alpha)=\left(\mathcal{O}_{K}^{+}: \mathbb{Z}[\alpha]^{+}\right)
$$

is the index of the element α, where \mathcal{O}_{K}^{+}and $\mathbb{Z}[\alpha]^{+}$respectively denote the additive groups of \mathcal{O}_{K} and the polynomial ring $\mathbb{Z}[\alpha]$. If $K=\mathbb{Q}(\alpha)$ and $\alpha \in \mathcal{O}_{K}$, than we say that α is a primitive integer in the field K. The minimal index $\mu(K)$ of K is the minimum of the indices of all primitive integers in the field K. The greatest common divisor of indices of all primitive integers of K is called the field index of K, and will be denoted by $m(K)$. Therefore the minimal index $\mu(K)$ is divisible by the field index $m(K)$.

Let $\left\{1, \omega_{2}, \ldots, \omega_{n}\right\}$ be an integral basis of K. Let

$$
L(\underline{X})=X_{1}+\omega_{2} X_{2}+\ldots+\omega_{n} X_{n},
$$

with conjugates $L_{i}(\underline{X})=X_{1}+\omega_{2}^{(i)} X_{2}+\ldots+\omega_{n}^{(i)} X_{n}, i=1, \ldots, n$. Then

$$
D_{K / \mathbb{Q}}(L(\underline{X}))=\prod_{1 \leq i<j \leq n}\left(L_{i}(\underline{X})-L_{j}(\underline{X})\right)^{2}
$$

[^0]is called discriminant of the linear form $L(\underline{X})$. We have
$$
D_{K / \mathbb{Q}}(L(\underline{X}))=\left(I\left(X_{2}, \ldots, X_{n}\right)\right)^{2} D_{K}
$$
where D_{K} denotes the discriminant of K and $I\left(X_{2}, \ldots, X_{n}\right)$ is a homogenous polynomial in $n-1$ variables of degree $n(n-1) / 2$ with rational integer coefficients which is called the index form corresponding to the integral basis $\left\{1, \omega_{2}, \ldots, \omega_{n}\right\}$. It is well known that if the primitive integer $\alpha \in \mathcal{O}_{K}$ is represented in an integral basis as $\alpha=x_{1}+x_{2} \omega_{2}+\ldots+x_{n} \omega_{n}$, then the index of α is just $I(\alpha)=\left|I\left(x_{2}, \ldots, x_{n}\right)\right|$.

If the number field K admits power integral basis $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$, i.e. if $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$, it is called monogenic. Therefore, the element $\alpha \in \mathcal{O}_{K}$ generates a power integral basis if and only if $I(\alpha)=1$. Consequently, number field K is monogenic if and only if $\mu(K)=1$.

Biquadratic fields were considered by several authors. K. S. Williams [22] gave an explicit formula for integral basis and discriminant of these fields. T. Nakahara [20] proved that infinitely many fields of this type are monogenic, and on the other hand, for any given N there are infinitely many non monogenic fields of this type with minimal index $\mu(K)>N$. M. N. Gras, and F. Tanoe [17] established necessary and sufficient conditions for biquadratic fields being monogenic. I. Gaál, A. Pethő and M. Pohst [16] gave an algorithm for determining minimal index and all generators of integral bases in the totally real case by solving systems of simultaneous Pellian equations.

In the present paper we find the minimal index and determine all integral elements with minimal index in the family of totally real bicyclic biquadratic fields

$$
\begin{gather*}
K_{c}=\mathbb{Q}(\sqrt{(4 c+1) c}, \sqrt{c(c-1)})= \tag{1}\\
\mathbb{Q}(\sqrt{(4 c+1)(c-1)}, \sqrt{c(c-1)})=\mathbb{Q}(\sqrt{(4 c+1)(c-1)}, \sqrt{(4 c+1) c}) .
\end{gather*}
$$

We distinguish two cases according to c modulo 4. In both cases, by applying the method of [16]: first we reduced our problem to consider a family of systems of simultaneous Pellian equations. In order to find minimal index we use theory of continued fractions to determine all minimal values of the right hand side of the equations such that the system has solutions. In particular, we will use a characterization in terms of continued fractions of α of all fractions a / b satisfying the inequality

$$
\left|\alpha-\frac{a}{b}\right|<\frac{M}{b^{2}},
$$

where $M \in \mathbb{N}, M \leq 5$. After that finding all integral elements with minimal index reduces to solving the system of Pellian equations

$$
\begin{align*}
& (c-1) X^{2}-c Y^{2}=-4 \tag{2}\\
& (4 c+1) X^{2}-4 c T^{2}=4 \tag{3}
\end{align*}
$$

This system is very suitable for application of the method given in [7]. The main result of the present paper is the following theorem

Theorem 1 Let $c \geq 3$ be a positive integer such that $c, 4 c+1, c-1$ are squarefree integers relatively prime in pairs. Then K_{c} is totally real bicyclic biquadratic field and
i) its field index is $m\left(K_{c}\right)=1$ for all c;
ii) the minimal index of K_{c} is: $\mu\left(K_{c}\right)=5$ if $c=3 ; \mu\left(K_{c}\right)=40$ if $c \equiv$ $3(\bmod 4), c \geq 7 ; \mu\left(K_{c}\right)=80$ if $c \equiv 2(\bmod 4)$;
iii) all integral elements with minimal index are given by

$$
x_{1}+x_{2} \sqrt{c(c-1)}+x_{3} \sqrt{c(4 c+1)}+x_{4} \frac{\sqrt{c(c-1)}+\sqrt{(4 c+1)(c-1)}}{2}
$$

where $x_{1} \in \mathbb{Z}$ and $\left(x_{2}, x_{3}, x_{4}\right)= \pm(-1,0,1), \pm(0,0,1)$ if $c=3 ;\left(x_{2}, x_{3}, x_{4}\right)=$ $\pm(1, \pm 1,2), \pm(3, \pm 1,-2)$ if $c \equiv 3(\bmod 4), c \geq 7$; if $c \equiv 2(\bmod 4)$, then all integral elements with minimal index are given by

$$
x_{1}+x_{2} \frac{1+\sqrt{(4 c+1)(c-1)}}{2}+x_{3} \sqrt{c(c-1)}+x_{4} \frac{\sqrt{c(c-1)}+\sqrt{(4 c+1) c}}{2}
$$

where $x_{1} \in \mathbb{Z}$ and $\left(x_{2}, x_{3}, x_{4}\right)= \pm(\pm 2,1,2), \pm(\pm 2,3,-2)$.
Note that $c, 4 c+1, c-1$ are integers relatively prime in pairs except when $c \equiv 1(\bmod 5)$. Furthermore, by [10], there are infinitely many positive integers c for which $c(4 c+1)(c-1)$ is square-free integer. Therefore, there are infinitely many positive integers c for which $c, 4 c+1, c-1$ are square-free integers relatively prime in pairs, which again implies that there are infinitely many totally real bicyclic biquadratic fields of the form (1).

2 Preliminaries

Let m, n denote distinct square-free integers. Let $l=\operatorname{gcd}(m, n)$ and let m_{1}, n_{1} be defined by $m=l m_{1}, n=l n_{1}$. Under these conditions the quartic field $K=\mathbb{Q}(\sqrt{m}, \sqrt{n})$ has three distinct the quadratic subfields, namely $\mathbb{Q}(\sqrt{m})$, $\mathbb{Q}(\sqrt{n}), \mathbb{Q}\left(\sqrt{m_{1} n_{1}}\right)$ and Galois group V_{4} (the Klein four group).
K.S. Williams [22] computed explicit formulae for integral basis and discriminant of the field $K=\mathbb{Q}(\sqrt{m}, \sqrt{n})$ in terms of m, n, m_{1}, n_{1}, l. He distinguished five cases according to the congruence behavior of m, n, m_{1}, n_{1} modulo 4 . In [14], Gaál, Pethő and Pohst added the corresponding index forms:
Case 1. $(m, n) \equiv\left(m_{1}, n_{1}\right) \equiv(1,1)(\bmod 4)$,
integral basis: $\left\{1,(1+\sqrt{m}) / 2,(1+\sqrt{n}) / 2,\left(1+\sqrt{m}+\sqrt{n}+\sqrt{m_{1} n_{1}}\right) / 4\right\}$
discriminant: $D_{K}=\left(l m_{1} n_{1}\right)^{2}$
index form:

$$
\begin{aligned}
I\left(x_{2}, x_{3}, x_{4}\right) & =\left(l\left(x_{2}+\frac{x_{4}}{2}\right)^{2}-\frac{n_{1}}{4} x_{4}^{2}\right)\left(l\left(x_{3}+\frac{x_{4}}{2}\right)^{2}-\frac{m_{1}}{4} x_{4}^{2}\right) \\
& \times\left(n_{1}\left(x_{3}+\frac{x_{4}}{2}\right)^{2}-m_{1}\left(x_{2}+\frac{x_{4}}{2}\right)^{2}\right)
\end{aligned}
$$

Case 2. $(m, n) \equiv(1,1)(\bmod 4),\left(m_{1}, n_{1}\right) \equiv(3,3)(\bmod 4)$
integral basis: $\left\{1,(1+\sqrt{m}) / 2,(1+\sqrt{n}) / 2,\left(1-\sqrt{m}+\sqrt{n}+\sqrt{m_{1} n_{1}}\right) / 4\right\}$ discriminant: $D_{K}=\left(l m_{1} n_{1}\right)^{2}$
index form:

$$
\begin{aligned}
I\left(x_{2}, x_{3}, x_{4}\right) & =\left(l\left(x_{2}-\frac{x_{4}}{2}\right)^{2}-\frac{n_{1}}{4} x_{4}^{2}\right)\left(l\left(x_{3}+\frac{x_{4}}{2}\right)^{2}-\frac{m_{1}}{4} x_{4}^{2}\right) \\
& \times\left(n_{1}\left(x_{3}+\frac{x_{4}}{2}\right)^{2}-m_{1}\left(x_{2}-\frac{x_{4}}{2}\right)^{2}\right)
\end{aligned}
$$

Case 3. $(m, n) \equiv(1,2)(\bmod 4)$
integral basis: $\left\{1,(1+\sqrt{m}) / 2, \sqrt{n},\left(\sqrt{n}+\sqrt{m_{1} n_{1}}\right) / 2\right\}$
discriminant: $D_{K}=\left(4 l m_{1} n_{1}\right)^{2}$
index form:

$$
\begin{aligned}
I\left(x_{2}, x_{3}, x_{4}\right) & =\left(l x_{2}^{2}-n_{1} x_{4}^{2}\right)\left(l\left(x_{3}+\frac{x_{4}}{2}\right)^{2}-\frac{m_{1}}{4} x_{4}^{2}\right) \\
& \times\left(4 n_{1}\left(x_{3}+\frac{x_{4}}{2}\right)^{2}-m_{1} x_{2}^{2}\right)
\end{aligned}
$$

Case 4. $(m, n) \equiv(2,3)(\bmod 4)$
integral basis: $\left\{1, \sqrt{m}, \sqrt{n},\left(\sqrt{m}+\sqrt{m_{1} n_{1}}\right) / 2\right\}$
discriminant: $D_{K}=\left(8 l m_{1} n_{1}\right)^{2}$
index form:

$$
\begin{aligned}
I\left(x_{2}, x_{3}, x_{4}\right) & =\left(\frac{l}{2}\left(2 x_{2}+x_{3}\right)^{2}-\frac{n_{1}}{2} x_{4}^{2}\right)\left(2 l x_{3}^{2}-\frac{m_{1}}{2} x_{4}^{2}\right) \\
& \times\left(2 n_{1} x_{3}^{2}-\frac{m_{1}}{2}\left(2 x_{2}+x_{4}\right)^{2}\right)
\end{aligned}
$$

Case 5. $(m, n) \equiv(3,3)(\bmod 4)$
integral basis: $\left\{1, \sqrt{m},(\sqrt{m}+\sqrt{n}) / 2,\left(1+\sqrt{m_{1} n_{1}}\right) / 2\right\}$
discriminant: $D_{K}=\left(4 l m_{1} n_{1}\right)^{2}$
index form:

$$
\begin{aligned}
I\left(x_{2}, x_{3}, x_{4}\right) & =\left(l\left(2 x_{2}+x_{3}\right)^{2}-n_{1} x_{4}^{2}\right)\left(l x_{3}^{2}-m_{1} x_{4}^{2}\right) \\
& \times\left(\frac{n_{1}}{4} x_{3}^{2}-m_{1}\left(x_{2}+\frac{x_{3}}{2}\right)^{2}\right)
\end{aligned}
$$

Finding the minimal index $\mu(K)$ is equivalent to determining the minimal $\mu \in \mathbb{N}$ for which the equation

$$
\begin{equation*}
I\left(x_{2}, x_{3}, x_{4}\right)= \pm \mu \quad \text { in } \quad x_{2}, x_{3}, x_{4} \in \mathbb{Z} \tag{4}
\end{equation*}
$$

is solvable. For $x_{2}, x_{3}, x_{4} \in \mathbb{Z}$ the quadratic factors of the index form admit integral values. Fix the order of the factors in above index forms and denote
the absolute value of the first, second and third factor by $F_{1}=F_{1}\left(x_{2}, x_{3}, x_{4}\right)$, $F_{2}=F_{3}\left(x_{2}, x_{3}, x_{4}\right), F_{3}=F_{3}\left(x_{2}, x_{3}, x_{4}\right)$, respectively. That means we want to find integers x_{2}, x_{3}, x_{4} such that the product $F_{1} F_{2} F_{3}$ is minimal. It can be easily shown that F_{1}, F_{2}, F_{3}, according to cases $1-5$ are related in the following way (see [16, Lemma 1])

Lemma 2 The following hold:

$$
\begin{aligned}
\text { Cases } 1,2,4: & \pm F_{1} m_{1} \pm F_{2} n_{1}= \pm F_{3} l \\
\text { Case } 3: & \pm F_{1} m_{1} \pm 4 F_{2} n_{1}= \pm F_{3} l \\
\text { Case } 5: & \pm F_{1} m_{1} \pm F_{2} n_{1}= \pm 4 F_{3} l
\end{aligned}
$$

By Lemma 2 among the three possible equations only two are independent. In the totally real case the index form is the product of tree factors F_{1}, F_{2}, F_{3}, of "Pellian type". In this case Gaál, Pethő and Pohst [16] gave following algorithm for finding the minimal index and all elements with minimal index. Consider system of equations obtained by equating the first quartic factor of the index form with $\pm F_{1}$ and second factor with $\pm F_{2}$. The system of these two equations can be written as

$$
\begin{align*}
& A x^{2}-B y^{2}=C \tag{5}\\
& D x^{2}-F z^{2}=G \quad \text { in } \quad x, y, z \in \mathbb{Z} \tag{6}
\end{align*}
$$

where the values of A, B, C, D, F, G and the new variables x, y, z are listed in the following table

Case	A	B	C	D	F	G	x	y	z
1	n_{1}	l	$\pm 4 F_{1}$	m_{1}	l	$\pm 4 F_{2}$	x_{4}	$2 x_{2}+x_{4}$	$2 x_{3}+x_{4}$
2	n_{1}	l	$\pm 4 F_{1}$	m_{1}	l	$\pm 4 F_{2}$	x_{4}	$2 x_{2}-x_{4}$	$2 x_{3}+x_{4}$
3	n_{1}	l	$\pm F_{1}$	m_{1}	l	$\pm 4 F_{2}$	x_{4}	x_{2}	$2 x_{3}+x_{4}$
4	n_{1}	l	$\pm 2 F_{1}$	$m_{1} / 2$	$2 l$	$\pm F_{2}$	x_{4}	$2 x_{2}+x_{4}$	x_{3}
5	n_{1}	l	$\pm F_{1}$	m_{1}	l	$\pm F_{2}$	x_{4}	$2 x_{2}+x_{4}$	x_{3}

Note that m_{1} is even in Case 4. In each particular case, first we find the field index $m(K)$ which we can easy calculate from [14, Theorem 4]. We proceed with $\mu=\nu \cdot m(K)(\nu=1,2, \ldots)$. For each such μ we try to find positive integers F_{1}, F_{2}, F_{3} with $\mu=F_{1} F_{2} F_{3}$ satisfying the corresponding relation of Lemma 2. If there exist such F_{1}, F_{2}, F_{3}, then we calculate all such triples. For each such triple we determine all solutions of the corresponding system (5) and (6). If none of these systems of equations have solutions, then we proceed to the next ν, otherwise μ is the minimal index and collecting all solutions of systems of equations corresponding to valid factors F_{1}, F_{2}, F_{3} of μ we get all solutions of (4), i.e. we obtain all integral elements with minimal index in K.

3 Finding minimal index

Let $c \geq 3$ be positive integer such that $c, 4 c+1, c-1$ are square-free integers relatively prime in pairs. Let $m=m_{1} l, n=n_{1} l$ where $m_{1}, n_{1}, l \in\{c, 4 c+1, c-1\}$
are distinct integers. Then field (1) is totally real bicyclic biquadratic field.
In order to prove Theorem 1 we will use a method of Gaál, Pethő and Pohst [16] given in previous section. Since they distinguished five cases according to the congruence behavior of m, n, m_{1}, n_{1} modulo 4 , we have to observe following cases:
i) If $c \equiv 0(\bmod 4)$ or $c \equiv 1(\bmod 4)$ then c or $c-1$ is not square free integer, respectively;
ii) If $c \equiv 2(\bmod 4), m_{1}=4 c+1, n_{1}=c$ and $l=c-1$, then $n_{1} \equiv 2(\bmod 4)$, $m_{1} \equiv 1(\bmod 4), l \equiv 1(\bmod 4)$ which implies $m \equiv 1(\bmod 4)$ and $n \equiv$ $2(\bmod 4)$. Therefore, we obtain the system

$$
\begin{gather*}
(c-1) V^{2}-c U^{2}= \pm F_{1} \tag{7}\\
(4 c+1) V^{2}-c Z^{2}= \pm F_{3} \tag{8}\\
(4 c+1) U^{2}-(c-1) Z^{2}= \pm 4 F_{2} \tag{9}
\end{gather*}
$$

where

$$
\begin{equation*}
U=x_{4}, V=x_{2}, Z=2 x_{3}+x_{4} \tag{10}
\end{equation*}
$$

and from Lemma 2 we obtain that

$$
\begin{equation*}
\pm(4 c+1) F_{1} \pm(c-1) F_{3}= \pm 4 c F_{2} \tag{11}
\end{equation*}
$$

must hold. In this case the integral basis of K_{c} is

$$
\left\{1, \frac{1+\sqrt{(4 c+1)(c-1)}}{2}, \sqrt{c(c-1)}, \frac{\sqrt{c(c-1)}+\sqrt{(4 c+1) c}}{2}\right\}
$$

and its discriminant is $D=(4 c(4 c+1)(c-1))^{2}$.
iii) Let $c \equiv 3(\bmod 4), n_{1}=4 c+1, m_{1}=c-1, l=c$. Then $n_{1} \equiv 1(\bmod 4)$, $m_{1} \equiv 2(\bmod 4), l \equiv 3(\bmod 4)$ which implies $m=m_{1} l \equiv 2(\bmod 4)$ and $n=n_{1} l \equiv 3(\bmod 4)$. In this case, we have the system

$$
\begin{gather*}
(4 c+1) U^{2}-c V^{2}= \pm 2 F_{1} \tag{12}\\
(c-1) U^{2}-4 c Z^{2}= \pm 2 F_{2} \tag{13}\\
4(4 c+1) Z^{2}-(c-1) V^{2}= \pm 2 F_{3} \tag{14}
\end{gather*}
$$

where

$$
\begin{equation*}
U=x_{4}, V=2 x_{2}+x_{4}, Z=x_{3} \tag{15}
\end{equation*}
$$

and from Lemma 2 we obtain that

$$
\begin{equation*}
\pm(c-1) F_{1} \pm(4 c+1) F_{2}= \pm c F_{3} \tag{16}
\end{equation*}
$$

must hold. The integral basis of K_{c} is

$$
\left\{1, \sqrt{c(c-1)}, \sqrt{c(4 c+1)}, \frac{\sqrt{c(c-1)}+\sqrt{(4 c+1)(c-1)}}{2}\right\}
$$

and its discriminant is $D=(8 c(4 c+1)(c-1))^{2}$.

Now we will calculate the field index $m\left(K_{c}\right)$ of K_{c}. First we form differences $d_{1}=m_{1}-l, d_{2}=n_{1}-l, d_{3}=m_{1}-n_{1}$. We have:
ii) $d_{1}=3 c+2, d_{2}=1, d_{3}=3 c+1$ if $c \equiv 2(\bmod 4)$,
iii) $d_{1}=-1, d_{2}=3 c+1, d_{3}=-3 c-2$ if $c \equiv 3(\bmod 4)$.

In both cases, we find neither 3 nor 4 divides all three differences d_{1}, d_{2}, d_{3}, therefrom, according [14, Theorem 4], we conclude $m\left(K_{c}\right)=1$. Therefore, we have proved statement i) of Theorem 1.

Note that if $c \leq 83$ then $c \in\{3,7,14,15,22,23,34,35,39,43,58,59,62,67$, $79,78\}$ since $c, 4 c+1, c-1$ are square free positive integers relatively prime in pairs. Therefore, according to this fact, we will suppose that $c \geq 14$ if $c \equiv 2(\bmod 4)$.

Now we will formulate our strategy of searching the minimal index $\mu\left(K_{c}\right)=$: $\mu(c)$ and all elements with minimal index. Finding of minimal index $\mu(c)$ is equivalent to finding system of above forms with minimal product $F_{1} F_{2} F_{3}$ which has solution. It is obvious that our fields are not monogenic since the necessary condition $m_{1} n_{1} \equiv(-1)^{\delta}(\bmod 4), \delta=0,1$, is not satisfied (see [17]).

Observe that if $\left(\pm F_{1}, \pm 4 F_{2}, \pm F_{3}\right)=(-4,20,4)$, then system (7), (8) and (9) has solutions $(U, V, Z)=(\pm 2, \pm 2, \pm 4)$ which implies that $\mu(c) \leq 80$ for all $c \equiv 2(\bmod 4)$.

Similarly, if $\left(\pm 2 F_{1}, \pm 2 F_{2}, \pm 2 F_{3}\right)=(4,-4,20)$, then system (12), (13) and (14) has solutions $(U, V, Z)=(\pm 2, \pm 4, \pm 1)$ which implies that $\mu(c) \leq 40$ for all $c \equiv 3(\bmod 4)$.

Also, if $c=3$ and $\left(\pm 2 F_{1}, \pm 2 F_{2}, \pm 2 F_{3}\right)=(10,2,-2)$, then system (12), (13) and (14) has solutions $(U, V, Z)=(\pm 1, \pm 1,0)$ which implies that $\mu(3) \leq 5$. In [16] it can be found that $\mu(3)=5$ and all elements with minimal index are given by $\left(x_{2}, x_{3}, x_{4}\right)= \pm(-1,0,1), \pm(0,0,1)$.

Therefore, it is natural to conjecture that for all $c \equiv 3(\bmod 4), c$ large enough, corresponding fields have the same minimal index, i.e. that minimal index doesn't depend of c if c is large enough. Similarly for $c \equiv 2(\bmod 4)$. Therefore, we will suppose that $F_{1} F_{2} F_{3} \leq 80$ if $c \equiv 2(\bmod 4), c \geq 14$ and $F_{1} F_{2} F_{3} \leq 40$ if $c \equiv 3(\bmod 4), c \geq 7$.

In both cases, first we use theory of continued fractions in order to determine all possible small values of the right hand side of the first two equations of our systems such that the system of these two equations has solutions. In particular,
we will use a characterization in terms of continued fractions of α of all fractions a / b satisfying the inequality

$$
\left|\alpha-\frac{a}{b}\right|<\frac{M}{b^{2}}
$$

where $M \in \mathbb{N}, M \leq 5$. For all pairs $\left(\pm F_{1}, \pm F_{3}\right)$ or $\left(\pm F_{1}, \pm F_{2}\right)$ obtained in this way, using corresponding relations (11) or (16), respectively, we will calculate all possible triples $\left(\pm F_{1}, \pm F_{2}, \pm F_{3}\right)$ for which our systems may have solutions. Then for each obtained triple ($\pm F_{1}, \pm F_{2}, \pm F_{3}$) we have to find are corresponding systems solvable or not. Of all solvable systems that are obtained, we choose system (or systems) with minimal product $F_{1} F_{2} F_{3}$. Then minimal index $\mu(c)$ is equal to that minimal product $F_{1} F_{2} F_{3}$ and solutions of that system (or these systems) leads to all integral elements with minimal index.

3.1 Case $c \equiv 3(\bmod 4)$

Let $c \equiv 3(\bmod 4), c \geq 7$. First suppose that (U, V, Z) is nonnegative integer solution of the system of equations (12), (13) and (14) with $F_{1} F_{2} F_{3} \leq 40$. Observe that if one of the integers U, V, Z is equal to zero, then (12), (13) and (14) imply that other two integers are not equal to zero.
i) If $U=0$, then (12) and (13) imply

$$
\begin{aligned}
& -c V^{2}= \pm 2 F_{1} \\
& -4 c Z^{2}= \pm 2 F_{2}
\end{aligned}
$$

Therefrom we have $F_{1} F_{2}=c^{2} Z^{2} V^{2} \leq 40$ and V is even. Since $c \geq 7$, $V^{2} \geq 4$ and $Z \neq 0$ we obtain a contradiction.
ii) If $Z=0$, then (12), (13) and (14) imply

$$
\begin{gathered}
(4 c+1) U^{2}-c V^{2}= \pm 2 F_{1} \\
(c-1) U^{2}= \pm 2 F_{2} \\
-(c-1) V^{2}= \pm 2 F_{3}
\end{gathered}
$$

Therefrom we have $F_{2} F_{3}=\frac{(c-1)^{2}}{4} U^{2} V^{2} \leq 40$. Since $U, V \neq 0$ we obtain a contradiction if $c \neq 7$, 11. If $c=7$, then $F_{2} F_{3}=9 U^{2} V^{2} \leq 40$ which implies $(U, V)=(1,1),(1,2),(2,1)$. If $c=11$, then $F_{2} F_{3}=25 U^{2} V^{2} \leq 40$ which implies $(U, V)=(1,1)$. Additionally, we have

$$
\begin{equation*}
F_{1} F_{2} F_{3}=\left|\frac{1}{2}(4 c+1) U^{2}-\frac{1}{2} c V^{2}\right| \cdot \frac{(c-1)^{2}}{4} \cdot V^{2} U^{2} \leq 40 \tag{17}
\end{equation*}
$$

Now, for $c=7$ and $(U, V)=(1,1),(1,2),(2,1)$ inequality (17) implies a contradiction. Similarly, we obtain a contradiction for $c=11$ and $(U, V)=$ $(1,1)$.
iii) If $V=0$, then (12) and (14) imply

$$
\begin{aligned}
(4 c+1) U^{2} & = \pm 2 F_{1} \\
4(4 c+1) Z^{2} & = \pm 2 F_{3}
\end{aligned}
$$

Therefrom we have $F_{1} F_{3}=(4 c+1)^{2} U^{2} Z^{2} \leq 40$ and U is even. Since $c \geq 7, U^{2} \geq 4$ and $Z \neq 0$ we obtain a contradiction.

Let (U, V, Z) be positive integer solution of the system of Pellian equations

$$
\begin{align*}
& (4 c+1) U^{2}-c V^{2}=\lambda_{1} \tag{18}\\
& (c-1) U^{2}-4 c Z^{2}=\lambda_{2} \tag{19}
\end{align*}
$$

where λ_{1} and λ_{2} are non-zero integers such that $\left|\lambda_{1}\right| \leq 3 M_{1} c$ and $\left|\lambda_{2}\right| \leq$ $3 M_{2}(c-1)$, where $M_{1}, M_{2} \in \mathbb{N}, M_{1} \leq 4, M_{2} \leq 5$. Then $\frac{V}{U}$ is a good rational approximation of $\sqrt{\frac{4 c+1}{c}}$ and $\frac{U}{Z}$ is a good rational approximation of $\sqrt{\frac{4 c}{c-1}}$. First of all, we have $\frac{V}{U} \geq 1$. Indeed, if $V<U$, then $(4 c+1)(V+1)^{2}-c V^{2} \leq$ $3 M_{1} c$ which is a contradiction. Similarly, $\frac{U}{Z} \geq 1$, since for $U<Z$ we obtain $4 c(U+1)^{2}-(c-1) U^{2} \leq 3 M_{2}(c-1)$ which implies a contradiction. Therefore, we find that

$$
V+\sqrt{\frac{4 c+1}{c}} U \geq U+U \sqrt{4+\frac{1}{c}}>U+2 U=3 U
$$

which implies

$$
\begin{aligned}
\left|\sqrt{\frac{4 c+1}{c}}-\frac{V}{U}\right| & =\left|\frac{4 c+1}{c}-\frac{V^{2}}{U^{2}}\right| \cdot\left|\sqrt{\frac{4 c+1}{c}}+\frac{V}{U}\right|^{-1} \\
& <\frac{\left|\lambda_{1}\right|}{c U^{2}} \cdot \frac{1}{3} \leq \frac{M_{1}}{U^{2}} .
\end{aligned}
$$

Similarly,

$$
U+\sqrt{\frac{4 c}{c-1}} Z \geq Z+Z \sqrt{4+\frac{4}{c-1}}>3 Z
$$

implies

$$
\begin{aligned}
\left|\sqrt{\frac{4 c}{c-1}}-\frac{U}{Z}\right| & =\left|\frac{4 c}{c-1}-\frac{U^{2}}{Z^{2}}\right| \cdot\left|\sqrt{\frac{4 c}{c-1}}+\frac{U}{Z}\right|^{-1} \\
& <\frac{\left|\lambda_{2}\right|}{(c-1) Z^{2}} \cdot \frac{1}{3} \leq \frac{M_{2}}{Z^{2}}
\end{aligned}
$$

Proposition 3 Let $c \equiv 3(\bmod 4), c \geq 7$. Let (U, V, Z) be positive integer solution of the system of Pellian equations (12) and (13) where $\operatorname{gcd}(U, V)=d$, $\operatorname{gcd}(U, Z)=g$ and $F_{1}, F_{2} \leq 40$. Then

$$
F_{1} \leq \frac{3}{2} M_{1} c d^{2} \quad \text { and } \quad F_{2} \leq \frac{3}{2} M_{2}(c-1) g^{2}
$$

where $M_{1}=4$ and $M_{2}=5$ for $c=7 ; M_{1}=M_{2}=3$ for $c=11 ; M_{1}=M_{2}=2$ for $c=15,19,23$ and $M_{1}=M_{2}=1$ for $c \geq 35$.

Proof. If $c \geq 35$, than we have

$$
F_{1} \leq 40<\frac{3}{2} \cdot 1 \cdot 35 \cdot 1^{2} \leq \frac{3}{2} M_{1} c d^{2}
$$

and

$$
F_{2} \leq 40<\frac{3}{2} \cdot 1 \cdot(35-1) \cdot 1^{2} \leq \frac{3}{2} M_{2}(c-1) g^{2}
$$

Similarly for the cases $c=7,11,15,19,23$.
The simple continued fraction expansion of a quadratic irrational $\alpha=\frac{a+\sqrt{d}}{b}$ is periodic. This expansion can be obtained using the following algorithm. Multiplying the numerator and the denominator by b, if necessary, we may assume that $b \mid\left(d-a^{2}\right)$. Let $s_{0}=a, t_{0}=b$ and

$$
\begin{equation*}
a_{n}=\left\lfloor\frac{s_{n}+\sqrt{d}}{t_{n}}\right\rfloor, \quad s_{n+1}=a_{n} t_{n}-s_{n}, \quad t_{n+1}=\frac{d-s_{n+1}^{2}}{t_{n}} \quad \text { for } n \geq 0 \tag{20}
\end{equation*}
$$

(see [21, Chapter 7.7]). If $\left(s_{j}, t_{j}\right)=\left(s_{k}, t_{k}\right)$ for $j<k$, then

$$
\alpha=\left[a_{0}, \ldots, a_{j-1}, \overline{a_{j}, \ldots, a_{k-1}}\right] .
$$

Applying this algorithm to quadratic irrationals

$$
\sqrt{\frac{4 c+1}{c}}=\frac{\sqrt{c(4 c+1)}}{c} \quad \text { and } \quad \sqrt{\frac{4 c}{c-1}}=\frac{\sqrt{4 c(c-1)}}{c-1}
$$

we find that

$$
\begin{gathered}
\sqrt{\frac{4 c+1}{c}}=[2, \overline{4 c, 4}], \text { where }\left(s_{0}, t_{0}\right)=(0, c) \\
\left(s_{1}, t_{1}\right)=(2 c, 1),\left(s_{2}, t_{2}\right)=(2 c, c),\left(s_{3}, t_{3}\right)=(2 c, 1)
\end{gathered}
$$

and

$$
\begin{gathered}
\sqrt{\frac{4 c}{c-1}}=[2, \overline{c-1,4}], \text { where }\left(s_{0}, t_{0}\right)=(0, c-1) \\
\left(s_{1}, t_{1}\right)=(2(c-1), 4),\left(s_{2}, t_{2}\right)=(2(c-1), c-1),\left(s_{3}, t_{3}\right)=(2(c-1), 4)
\end{gathered}
$$

Let p_{n} / q_{n} denote the nth convergent of α. The following result of Worley [23] and Dujella [5] extends classical results of Legendere and Fatou concerning Diophantine approximations of the form $\left|\alpha-\frac{a}{b}\right|<\frac{1}{2 b^{2}}$ and $\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{2}}$.

Theorem 4 (Worley [23], Dujella [5]) Let α be a real number and a and b coprime nonzero integers, satisfying the inequality

$$
\left|\alpha-\frac{a}{b}\right|<\frac{M}{b^{2}},
$$

where M is a positive real number. Then $(a, b)=\left(r p_{n+1} \pm u p_{n}, r q_{n+1} \pm u q_{n}\right)$, for some $n \geq-1$ and nonnegative integers r and u such that $r u<2 M$.

Explicit versions of Theorem 4 for $M=2$, was given by Worley [23, Corollary, p. 206]. Recently, Dujella and Ibrahimpašić [6, Propositions 2.1 and 2.2] extended Worley's work and gave explicit and sharp versions of Theorem 4 for $M=3,4, \ldots, 12$.

We would like to apply Theorem 4 in order to determine all values of λ_{1} with $\left|\lambda_{1}\right| \leq 3 M_{1} c, M_{1} \in \mathbb{N}, M_{1} \leq 4$ for which equation (18) has solution and all values of λ_{2} with $\left|\lambda_{2}\right| \leq 3 M_{2}(c-1), M_{2} \in \mathbb{N}, M_{2} \leq 5$ for which equation (19) has solutions. We need following lemma (see [8, Lemma 1])

Lemma 5 Let $\alpha \beta$ be a positive integer which is not a perfect square, and let p_{n} / q_{n} denotes the nth convergent of continued fraction expansion of $\sqrt{\frac{\alpha}{\beta}}$. Let the sequences $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be defined by (20) for the quadratic irrational $\frac{\sqrt{\alpha \beta}}{\beta}$. Then

$$
\begin{equation*}
\alpha\left(r q_{n+1}+u q_{n}\right)^{2}-\beta\left(r p_{n+1}+u p_{n}\right)^{2}=(-1)^{n}\left(u^{2} t_{n+1}+2 r u s_{n+2}-r^{2} t_{n+2}\right) . \tag{21}
\end{equation*}
$$

Since the period length of the continued fraction expansions of both $\sqrt{\frac{4 c+1}{c}}$ and $\sqrt{\frac{4 c}{c-1}}$ is equal to 2 , according to Lemma 5 , we have to consider only the fractions $\left(r p_{n+1}+u p_{n}\right) /\left(r q_{n+1}+u q_{n}\right)$ for $n=0$ and $n=1$. By checking all possibilities, it is now easy to prove the following results.

Proposition 6 Let $c \equiv 3(\bmod 4), c \geq 7$ and λ_{1} be an non-zero integer such that $\left|\lambda_{1}\right| \leq 3 M_{1} c$ and such that the equation (18) has a solution in relatively prime integers V and Z.
i) If $c \geq 35$ and $M_{1}=1$ then

$$
\lambda_{1} \in A_{1}(c)=\{1,-c\} .
$$

ii) If $c=15,19,23$ and $M_{1}=2$ then

$$
\lambda_{1} \in A_{1}(c)=\{1,-c, 3 c+1,1-5 c, 4 c+1\}
$$

iii) If $c=11$ and $M_{1}=3$ then

$$
\begin{aligned}
\lambda_{1} \in A_{1}(11) & =\{1,-c, 3 c+1,1-5 c, 4 c+1,4+7 c, 4-9 c\} \\
& =\{1,-11,34,-54,45,81,-95\}
\end{aligned}
$$

iv) If $c=7$ and $M_{1}=4$ then

$$
\begin{aligned}
\lambda_{1} \in A_{1}(7) & =\{1,-c, 3 c+1,4 c+1,1-5 c, 4+7 c, 4-9 c, 9-13 c\} \\
& =\{1,-7,22,-34,29,53,-59,-83,-82\}
\end{aligned}
$$

Proposition 7 Let $c \equiv 3(\bmod 4), c \geq 7$ and λ_{2} be an non-zero integer such that $\left|\lambda_{2}\right| \leq 3 M_{2}(c-1)$ and such that the equation (19) has a solution in relatively prime integers U and Z.
i) If $c \geq 35$ and $M_{2}=1$ then

$$
\lambda_{2} \in A_{2}(c)=\{-4, c-1\}
$$

ii) If $c=15,19,23$ and $M_{2}=2$ then

$$
\lambda_{2} \in A_{2}(c)=\{-4, c-1,-3 c-1,-4 c, 5 c-9\}
$$

iii) If $c=11$ and $M_{2}=3$ then

$$
\begin{aligned}
\lambda_{2} & \in A_{2}(11)=\{-4, c-1,-3 c-1,-4 c, 5 c-9,-7 c-9,9 c-25\} \\
& =\{-4,10,-34,-44,46,-86,74\}
\end{aligned}
$$

iv) If $c=7$ and $M_{2}=5$ then

$$
\begin{aligned}
\lambda_{2} & \in A_{2}(7)=\left\{\begin{array}{c}
-4, c-1,-3 c-1,-4 c, 5 c-9,-7 c-9,9 c-25 \\
12 c-16,13 c-49,17 c-81,21 c-121
\end{array}\right\} \\
& =\{-4,6,-22,-28,26,-58,38,68,42\}
\end{aligned}
$$

Corollary 8 Let $c \equiv 3(\bmod 4), c \geq 7$.
i) Let (U, V) be positive integer solution of the equation (12) such that $\operatorname{gcd}(U, V)=$ d and $F_{1} \leq \frac{3}{2} M_{1} c d^{2}$ where $M_{1}=4$ for $c=7, M_{1}=3$ for $c=11, M_{1}=2$ for $c=15,19,23$ and $M_{1}=1$ for $c \geq 35$. Then

$$
\pm 2 F_{1} \in\left\{\lambda_{1} d^{2}: \lambda_{1} \in A_{1}(c)\right\}
$$

where sets $A_{1}(c)$ are given in Proposition 6.
ii) Let (U, Z) be positive integer solution of the equation (13) such that $\operatorname{gcd}(U, Z)=$ g and $F_{2} \leq \frac{3}{2} M_{2}(c-1) g^{2}$ where $M_{2}=5$ for $c=7, M_{2}=3$ for $c=11$, $M_{2}=2$ for $c=15,19,23$ and $M_{2}=1$ for $c \geq 35$. Then

$$
\pm 2 F_{2} \in\left\{\lambda_{2} g^{2}: \lambda_{2} \in A_{2}(c)\right\}
$$

where sets $A_{2}(c)$ are given in Proposition 7.
Proof. Directly from Propositions 6 and 7.
Proposition 9 Let $c \equiv 3(\bmod 4), c \geq 7$. Let (U, V, Z) be positive integer solution of the system of Pellian equations (12) and (13) where $\operatorname{gcd}(U, V)=d$, $\operatorname{gcd}(U, Z)=g$ and $F_{1}, F_{2} \leq 40$. Then
i)

$$
\left(\pm F_{1}, \pm F_{2}\right) \in B(c) \times D(c)
$$

where $B(c)=B_{0} \cup B_{1}(c), D(c)=D_{0} \cup D_{1}(c)$ and

$$
B_{0}=\{2,8,18,32\}, \quad D_{0}=\{-2,-8,-18,-32\}
$$

$$
\begin{aligned}
& B_{1}(c)=\emptyset \quad \text { if } c \geq 35, \quad B_{1}(c)=\left\{\frac{3 c+1}{2}\right\}=\{35\} \quad \text { if } c=23, \\
& B_{1}(c)=\left\{\frac{3 c+1}{2},-2 c\right\}=\{29,-38\} \quad \text { if } c=19, \\
& B_{1}(c)=\left\{\frac{3 c+1}{2},-2 c, \frac{1-5 c}{2}\right\} \quad \text { if } c \leq 15, \\
& D_{1}(c)=\emptyset \quad \text { if } c \geq 83, \quad D_{1}(c)=\left\{\frac{c-1}{2}\right\} \quad \text { if } 35 \leq c \leq 79, \\
& D_{1}(c)=\left\{\frac{c-1}{2},-\frac{3 c+1}{2}\right\}=\{-35,11\} \quad \text { if } c=23, \\
& D_{1}(c)=\left\{\frac{c-1}{2},-\frac{3 c+1}{2}, 2(c-1),-2 c\right\} \\
&=\{-38,-29,9,36\} \quad \text { if } c=19, \\
& D_{1}(c)=\left\{\frac{c-1}{2},-\frac{3 c+1}{2}, 2(c-1),-2 c, \frac{5 c-9}{2}\right\}= \\
&=\{-30,-23,7,28,33\} \quad \text { if } c=15, \\
& D_{1}(c)=\left\{\frac{c-1}{2},-\frac{3 c+1}{2}, 2(c-1),-2 c, \frac{5 c-9}{2}, \frac{9 c-25}{2}\right\} \\
&=\{-22,-17,5,20,23,37\} \quad \text { if } c=11, \\
& D_{1}(c)=\left\{\begin{array}{l}
\frac{9}{2}(c-1 \\
\frac{9}{2},-\frac{3 c+1}{2}, 2(c-1),-\frac{7 c+9}{2}, \frac{9 c-25}{2}, \frac{13 c-49}{2}, 6 c-8
\end{array}\right\}= \\
&=\{-29,-14,-11,3,12,13,19,21,27,34\} \quad \text { if } c=7
\end{aligned}
$$

ii) Additionally, if $F_{1} F_{2} \leq 40$, then $\left(\pm F_{1}, \pm F_{2}\right) \in S(c)$ where $S(c)=S_{0} \cup$ $S_{1}(c)$ and

$$
\begin{gathered}
S_{0}=\{(2,-2),(2,-8),(2,-18),(8,-2),(18,-2)\} \\
S_{1}(c)=\emptyset \text { for } c \geq 83 \\
S_{1}(c)=\left\{\left(2, \frac{c-1}{2}\right)\right\} \text { for } 15 \leq c \leq 79 \\
S_{1}(c)=\{(2,5),(2,-17),(2,20),(8,5),(17,-2)\} \text { for } c=11 \\
S_{1}(c)=\left\{\begin{array}{c}
(2,3),(2,-11),(2,-14),(2,12),(2,13),(2,19), \\
(8,3),(11,-2),(11,3),(-14,-2),(-17,-2)
\end{array}\right\} \text { for } c=7
\end{gathered}
$$

Proof.
i) From Proposition 3 and Corollary 8 we have $\pm 2 F_{1} \in\left\{\lambda_{1} d^{2}: \lambda_{1} \in A_{1}(c)\right\}$ and $\pm 2 F_{2} \in\left\{\lambda_{2} g^{2}: \lambda_{2} \in A_{2}(c)\right\}$ where sets $A_{1}(c)$ and $A_{2}(c)$ are given in Propositions 6 .and 7, respectively. Therefore,
a) For all $c \geq 7$ we have $\pm 2 F_{1}=d^{2},-c d^{2}$. Additionally, we have $\pm 2 F_{1}=$ $(3 c+1) d^{2},(1-5 c) d^{2},(4 c+1) d^{2}$ if $c \leq 23, \pm 2 F_{1}=(4+7 c) d^{2}$, $(4-9 c) d^{2}$ if $c=11,7$ and $\pm 2 F_{1}=(1-12 c) d^{2},(9-13 c) d^{2}$, i.e. $\pm 2 F_{1}=-83 d^{2},-82 d^{2}$ if $c=7$. Since $F_{1} \leq 40$, we obtain:
i. $F_{1}=\frac{d^{2}}{2} \leq 40$ implies $d=2,4,6,8$, i.e. $\pm F_{1}=2,8,18,32$;
ii. $F_{1}=\frac{c d^{2}}{2} \leq 40$ implies $d \leq \frac{4 \sqrt{5}}{\sqrt{c}} \leq \frac{4 \sqrt{5}}{\sqrt{7}}<4$ and d is even, i.e. $d=2$. Thus, $\pm F_{1}=-2 c$ for $c \leq 19$ since $F_{1}=2 c>40$ if $c \geq 23$;
iii. $F_{1}=\frac{(3 c+1) d^{2}}{2} \leq 40$ implies $d \leq 4 \frac{\sqrt{5}}{\sqrt{3 c+1}} \leq 4 \frac{\sqrt{5}}{\sqrt{3 \cdot 7+1}}<2$, i.e. $d=1$. Thus, $\pm F_{1}=\frac{3 c+1}{2}$ for $c \leq 23$;
iv. $F_{1}=\frac{(5 c-1) d^{2}}{2} \leq 40$ implies $d \leq 4 \frac{\sqrt{5}}{\sqrt{5 c-1}} \leq 4 \frac{\sqrt{5}}{\sqrt{5 \cdot 7-1}}<2$, i.e. $d=1$. Thus, $\pm F_{1}=\frac{1-5 c}{2}$ for $c \leq 15$;
v. $F_{1}=\frac{(4 c+1) d^{2}}{2} \leq 40$ implies $d \leq 4 \frac{\sqrt{5}}{\sqrt{4 c+1}} \leq 4 \frac{\sqrt{5}}{\sqrt{3 \cdot 7+1}}<2$ and d is even, i.e. there is no solution;
vi. $F_{1}=\frac{(7 c+4) d^{2}}{2} \leq 40$ implies $d \leq 4 \frac{\sqrt{5}}{\sqrt{7 c+4}} \leq 4 \frac{\sqrt{5}}{\sqrt{7 \cdot 7+4}}<2$ and d is even, i.e. there is no solution;
vii. $F_{1}=\frac{(9 c-4) d^{2}}{2} \leq 40$ implies $d \leq 4 \frac{\sqrt{5}}{\sqrt{9 c-4}} \leq 4 \frac{\sqrt{5}}{\sqrt{9 \cdot 7-4}}<2$ and d is even, i.e. there is no solution;
viii. $F_{1}=\frac{83 d^{2}}{2} \leq 40$ implies $d<1$, i.e. there is no solution.
ix. $F_{1}=\frac{82 d^{2}}{2} \leq 40$ implies $d<1$, i.e. there is no solution.

Therefrom, we obtain sets $B(c)$.
b) For all $c \geq 7$ we have $\pm 2 F_{2}=-4 g^{2},(c-1) g^{2}$. Additionally, we have $\pm 2 F_{2}=-(3 c+1) g^{2},-4 c g^{2},(5 c-9) g^{2}$ if $c \leq 23, \pm 2 F_{2}=$ $(-7 c-9) g^{2},(9 c-25) g^{2}$ if $c \leq 11$ and $\pm 2 F_{1}=(12 c-16) g^{2},(13 c-49) g^{2}$, i.e. $\pm 2 F_{1}=68 g^{2}, 42 g^{2}$ if $c=7$. Since $F_{2} \leq 40$, we obtain
i. $F_{2}=2 g^{2} \leq 40$ implies $g=1,2,3$, 4, i.e. $\pm F_{2}=-2,-8,-18,-32$;
ii. $F_{2}=\frac{c-1}{2} g^{2} \leq 40$ implies $g \leq 4 \frac{\sqrt{5}}{\sqrt{c-1}} \leq \frac{4 \sqrt{5}}{\sqrt{7}}<4$, i.e. $g=1,2,3$. Thus, we have $\pm F_{2}=\frac{c-1}{2}$ if $c \leq 79, \pm F_{2}=2(c-1)$ if $c \leq 19$ and $\pm F_{2}=\frac{9}{2}(c-1)=27$ if $c=7$;
iii. $F_{2}=\frac{3 c+1}{2} g^{2} \leq 40$ implies $g \leq 4 \frac{\sqrt{5}}{\sqrt{3 c+1}} \leq 4 \frac{\sqrt{5}}{\sqrt{3 \cdot 7+1}}<2$, i.e. $g=1$. Thus, we have $\pm F_{2}=-\frac{3 c+1}{2}$ for $c \leq 23$;
iv. $F_{2}=2 c g^{2} \leq 40$ implies $g \leq \frac{2 \sqrt{5}}{\sqrt{c}} \leq \frac{2 \sqrt{5}}{\sqrt{7}}<2$, i.e. $g=1$. Thus, we have $\pm F_{2}=-2 c$ if $c \leq 19$;
v. $F_{2}=\frac{5 c-9}{2} g^{2} \leq 40$ implies $g \leq 4 \frac{\sqrt{5}}{\sqrt{5 c-9}} \leq 4 \frac{\sqrt{5}}{\sqrt{5 \cdot 7-9}}<2$, i.e. $g=1$. Thus, we have $\pm F_{2}=\frac{5 c-9}{2}$ if $c \leq 15$;
vi. $F_{2}=\frac{7 c+9}{2} g^{2} \leq 40$ implies $g \leq 4 \frac{\sqrt{5}}{\sqrt{7 c+9}} \leq 4 \frac{\sqrt{5}}{\sqrt{7 \cdot 7+9}}<2$, i.e. $g=1$. Thus, we have $\pm F_{2}=-\frac{7 c+9}{2}$ if $c=7$;
vii. $F_{2}=\frac{9 c-25}{2} g^{2} \leq 40$ implies $g \leq 4 \frac{\sqrt{5}}{\sqrt{9 c-25}} \leq 4 \frac{\sqrt{5}}{\sqrt{9 \cdot 7-25}}<2$, i.e. $g=1$. Thus, we have $\pm F_{2}=\frac{9 c-25}{2}$ if $c \leq 11$;
viii. $F_{2}=(6 c-8) g^{2}=34 g^{2} \leq 40$ implies $g=1$. Thus, we have $\pm F_{2}=34$ if $c=7$;
ix. $F_{2}=\frac{13 c-49}{2} g^{2}=21 g^{2} \leq 40$ implies $g=1$. Thus, we have $\pm F_{2}=21$ if $c=7 ;$

Therefrom, we get sets $D(c)$.
ii) Directly from i) since $S(c)=\{(s, t) \in B(c) \times D(c):|s| \cdot|t| \leq 40\}$.

If system (12), (13) and (14) has solution for some positive integers F_{1}, F_{2}, $F_{3}, F_{1} F_{2} F_{3} \leq 40$, then $\left(\pm F_{1}, \pm F_{2}\right) \in S(c)$, where set $S(c)$ is given in Proposition 9 and triple $\left(\pm F_{1}, \pm F_{2}, \pm F_{3}\right)$ satisfies one of the equations in (16). First, for each pair $\left(\pm F_{1}, \pm F_{2}\right) \in S(c)$ we check if there exist $F_{3} \in \mathbb{N}, F_{1} F_{2} F_{3} \leq 40$ such that any of the equations (16) holds. For all pairs of the form $\left(\pm F_{1}, \pm F_{2}\right)=(s, t)$ condition $F_{1} F_{2} F_{3} \leq 40$ is satisfied if $F_{3} \in F(s, t)=\left\{k \in \mathbb{N}: k \leq \frac{40}{|s||t|}\right\}$. Therefore, for each pair $(s, t) \in S(c)$ and for each $k \in F(s, t)$, we have to check if any of these four equations

$$
\begin{equation*}
s(c-1)+t(4 c+1)= \pm k c \quad \text { or } \quad s(c-1)-t(4 c+1)= \pm k c \tag{22}
\end{equation*}
$$

holds. For example, $\left(\pm F_{1}, \pm F_{2}\right)=(2,-2) \in S(c)$ for all $c \geq 7$. From (22) we obtain

$$
-6 c-4= \pm F_{3} c \quad \text { or } \quad 10 c= \pm F_{3} c
$$

Since $F_{3} \in F(2,-2)=\{k \in \mathbb{N}: k \leq 10\}$ the only possibility is $\pm F_{3}=10$. Furthermore, $\left(\pm F_{1}, \pm F_{2}\right)=(2,-8) \in S(c)$ for all $c \geq 7$. From (22) we obtain

$$
-30 c-10= \pm F_{3} c \quad \text { or } \quad 34 c+6= \pm F_{3} c
$$

which implies a contradiction if $F_{3} \in F(2,-8)=\{1,2\}$. We proceed similarly for all elements of $S(c)$. The only triple we obtain on this way is $\left(\pm F_{1}, \pm F_{2}, \pm F_{3}\right)=$ $(2,-2,10)$ and the corresponding system is

$$
\begin{gather*}
(4 c+1) U^{2}-c V^{2}=4 \tag{23}\\
(c-1) U^{2}-4 c Z^{2}=-4 \tag{24}\\
4(4 c+1) Z^{2}-(c-1) V^{2}=20 \tag{25}
\end{gather*}
$$

Since this system has solution $(U, V, Z)=(\pm 2, \pm 4, \pm 1)$, we have $\mu(c)=40$ for all $c \equiv 3(\bmod 4), c \geq 7$.

Next step is finding all elements with minimal index. Therefore we have to solve the above system.

If $c=3$ and $\left(\pm 2 F_{1}, \pm 2 F_{2}, \pm 2 F_{3}\right)=(10,2,-2)$, then system (12), (13) and (14) has solutions $(U, V, Z)=(\pm 1, \pm 1,0)$ which implies that $\mu(3) \leq 5$. Therefore, if we suppose that $F_{1} F_{2} F_{3} \leq 5$ and use the same procedure as for the case $c \geq 7$, we obtain that the only possibility is $\left(\pm F_{1}, \pm F_{2}, \pm F_{3}\right)=(5,1,-1)$ and the corresponding system is

$$
\begin{gather*}
13 U^{2}-3 V^{2}=10 \tag{26}\\
U^{2}-6 Z^{2}=1 \tag{27}\\
V^{2}-26 Z^{2}=1 \tag{28}
\end{gather*}
$$

This system has solutions $(U, V, Z)=(\pm 1, \pm 1,0)$ which implies that $\mu(3)=5$. In [1] Anglin showed that system (27) and (28) has only the trivial solutions $(U, V, Z)=(\pm 1, \pm 1,0)$. Now using (15), we find that all integral elements with minimal index are given by $\left(x_{2}, x_{3}, x_{4}\right)= \pm(-1,0,1), \pm(0,0,1)$.

3.2 Case $c \equiv 2(\bmod 4)$

For all $c \equiv 2(\bmod 4), c \geq 14$, in similar way, we obtain that the only solvable system of the form (7), (8) and (9) with $F_{1} F_{2} F_{3} \leq 80$ is

$$
\begin{gather*}
(c-1) V^{2}-c U^{2}=-4 \tag{29}\\
(4 c+1) V^{2}-c Z^{2}=4 \tag{30}\\
(4 c+1) U^{2}-(c-1) Z^{2}=20 \tag{31}
\end{gather*}
$$

Since this system has solution $(U, V, Z)=(\pm 2, \pm 2, \pm 4)$, we have $\mu(c)=80$ for all $c \equiv 2(\bmod 4), c \geq 14$. In order to find all elements with minimal index, we have to find all solutions to the system (29), (30) and (31).

Therefore, we have proved statement ii) of Theorem 1.

4 Finding all elements with minimal index

Now, we have to solve systems that are obtained in Section 3. These systems are very suitable for application of method given in [7]. We will prove following result

Theorem $10 \quad$ i) Let $c \equiv 2(\bmod 4), c \geq 14$ be an integer. The only solutions to system (29), (30) and (31) are $(U, V, Z)=(\pm 2, \pm 2, \pm 4)$.
ii) Let $c \equiv 3(\bmod 4), c \geq 7$ be an integer. The only solutions to system (23), (24) and (25) are $(U, V, Z)=(\pm 2, \pm 4, \pm 1)$.

Therefrom we have following corollary which finishes the proof of Theorem 1.

Corollary 11 Let $c \geq 7$ be positive integer such that $c, 4 c+1, c-1$ are squarefree integers relatively prime in pairs. Then all integral elements with minimal index in the field $K_{c}=\mathbb{Q}(\sqrt{(4 c+1) c}, \sqrt{c(c-1)})$ are given by:
i) $\left(x_{2}, x_{3}, x_{4}\right)= \pm(1, \pm 1,2), \pm(3, \pm 1,-2)$ if $c \equiv 3(\bmod 4)$;
ii) $\left(x_{2}, x_{3}, x_{4}\right)= \pm(\pm 2,1,2), \pm(\pm 2,3,-2)$ if $c \equiv 2(\bmod 4)$;

Proof.

i) Let $c \equiv 3(\bmod 4), c \geq 7$. Since all solutions of the system (23), (24) and (25) are given by $(U, V, Z)=(\pm 2, \pm 4, \pm 1)$ and since in this case we have $U=x_{4}, V=2 x_{2}+x_{4}, Z=x_{3}$, we obtain

$$
x_{4}= \pm 2,2 x_{2}+x_{4}= \pm 4, x_{3}= \pm 1
$$

which implies $\left(x_{2}, x_{3}, x_{4}\right)=(1, \pm 1,2),(3, \pm 1,-2),(-1, \pm 1,-2),(-3, \pm 1,2)$.
ii) Let $c \equiv 2(\bmod 4)$. Since all solutions of the system (29), (30) and (31) are given by $(U, V, Z)=(\pm 2, \pm 2, \pm 4)$ and since in this case we have $U=$ $x_{4}, V=x_{2}, Z=2 x_{3}+x_{4}$, we obtain

$$
x_{4}= \pm 2, x_{2}= \pm 2,2 x_{3}+x_{4}= \pm 4
$$

which implies $\left(x_{2}, x_{3}, x_{4}\right)=(\pm 2,1,2),(\pm 2,-1,-2),(\pm 2,3,-2),(\pm 2,-3,2)$.

Observe that if $c \equiv 2(\bmod 4)$ and (U, V, Z) is a solution to system (29), (30) and (31), then all integers U, V, Z are even. Let $Z=2 Z_{1}$. Then system (29) and (30) is equivalent to the system

$$
\begin{align*}
& (c-1) V^{2}-c U^{2}=-4 \tag{32}\\
& (4 c+1) V^{2}-4 c Z_{1}^{2}=4 \tag{33}
\end{align*}
$$

If $c \equiv 3(\bmod 4)$ and (U, V, Z) is a solution to system (23), (24) and (25), then integers U, V are even. Let $Z_{2}=2 Z, V=2 V_{2}$. Then system (23) and (24) is equivalent to the system

$$
\begin{gather*}
(c-1) U^{2}-c Z_{2}^{2}=-4 \tag{34}\\
(4 c+1) U^{2}-4 c V_{2}^{2}=4 \tag{35}
\end{gather*}
$$

Therefore, in order to prove Theorem 10 it is enough to analyze system (2) and (3), where $c \geq 7$ and prove the following theorem:

Theorem 12 Let $c \geq 2$ be an integer. Then the only solutions to system of Pellian equations (2) and (3) are ($X, Y, T)=(\pm 2, \pm 2, \pm 2)$.

In order to prove Theorem 12, first we will find a lower bound for solutions of this system using the "congruence method" introduced in [9]. The comparison of this lower bound with an upper bound obtained from a theorem of Bennett [4] on simultaneous approximations of algebraic numbers finishes the proof for $c \geq 89037$. For $c \leq 89036$ we use a theorem a Baker and Wüstholz [3] and a version of the reduction procedure due to Baker and Davenport [2].

Lemma 13 Let (X, Y, T) be positive integer solution of the system of Pellian equations (2) and (3). Then there exist nonnegative integers m and n such that

$$
X=v_{m}=w_{n}
$$

where the sequences $\left(v_{m}\right)$ and $\left(w_{n}\right)$ are given by

$$
\begin{equation*}
v_{0}=2, \quad v_{1}=8 c-2,, \quad v_{m+2}=2(2 c-1) v_{m+1}-v_{m}, \quad m \geq 0 \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{0}=2, \quad w_{1}=32 c+2, \quad w_{n+2}=2(8 c+1) w_{n+1}-w_{n}, \quad n \geq 0 \tag{37}
\end{equation*}
$$

Proof. Let $Y_{1}=c Y, T_{1}=2 c T$, then system (2) and (3) is equivalent to system

$$
\begin{align*}
Y_{1}^{2}-c(c-1) X^{2} & =4 c \tag{38}\\
T_{1}^{2}-c(4 c+1) X^{2} & =-4 c \tag{39}
\end{align*}
$$

Since $\sqrt{c(4 c+1)}=[2 c \overline{, 4,4 c}]$ and $\sqrt{c(c-1)}=[c-1,2,2(c-1)]$ we find that fundamental solutions of equations

$$
\begin{gather*}
A^{2}-c(c-1) B^{2}=1 \tag{40}\\
D^{2}-c(4 c+1) B^{2}=1 \tag{41}
\end{gather*}
$$

are given by $a_{1}+b_{1} \sqrt{c(c-1)}=2 c-1+2 \sqrt{c(c-1)}, a_{2}+b_{2} \sqrt{c(4 c+1)}=$ $8 c+1+4 \sqrt{c(4 c+1)}$, respectively. By [19, Theorem 108], it follows that if $u_{0}+v_{0} \sqrt{c(c-1)}$ is the fundamental solution of the class \mathcal{C} of equation (38), than inequalities

$$
\begin{aligned}
& 0<\left|u_{0}\right| \leq \sqrt{\frac{1}{2}\left(a_{1}+1\right) \cdot 4 c}=\sqrt{\frac{1}{2}(2 c-1+1) 4 c}=2 c, \\
& 0 \leq v_{0} \leq \frac{b_{1}}{\sqrt{2\left(a_{1}+1\right)}} \sqrt{4 c}=\frac{2}{\sqrt{2(2 c-1+1)}} \sqrt{4 c}=2
\end{aligned}
$$

must hold. This implies that
$u_{0}+v_{0} \sqrt{c(c-1)}=2 c+2 \sqrt{c(c-1)}$ and $u_{0}^{\prime}+v_{0}^{\prime} \sqrt{c(c-1)}=-2 c+2 \sqrt{c(c-1)}$
are possible fundamental solution of equation (38). Since

$$
u_{0} u_{0}^{\prime} \equiv c(c-1) v_{0} v_{0}^{\prime}(\bmod 4 c) \quad \text { and } \quad u_{0} v_{0}^{\prime} \equiv u_{0}^{\prime} v_{0}(\bmod 4 c)
$$

these solutions belong to the same class (see [19, Chapter VI, 58.]), so we have only one fundamental solution $u_{0}+v_{0} \sqrt{c(c-1)}=2 c+2 \sqrt{c(c-1)}$. Similarly, by [19, Theorem 108a], we find that if $s_{0}+w_{0} \sqrt{c(4 c+1)}$ is the fundamental solution of the class \mathcal{C} of equation (39), than inequalities

$$
\begin{aligned}
& 0 \leq\left|s_{0}\right| \leq \sqrt{\frac{1}{2}\left(a_{1}-1\right) \cdot 4 c}=\sqrt{\frac{1}{2}(8 c+1-1) 4 c}=4 c, \\
& 0<w_{0} \leq \frac{b_{2}}{\sqrt{2\left(a_{1}-1\right)}} \sqrt{4 c}=\frac{4}{\sqrt{2(8 c+1-1)}} \sqrt{4 c}=2 .
\end{aligned}
$$

must hold. This implies that
$s_{0}+w_{0} \sqrt{c(4 c+1)}=4 c+2 \sqrt{c(4 c+1)}$ and $s_{0}+w_{0} \sqrt{c(4 c+1)}=-4 c+2 \sqrt{c(4 c+1)}$
are possible fundamental solution of equation (38). Since

$$
s_{0} s_{0}^{\prime} \equiv c(4 c+1) w_{0} w_{0}^{\prime}(\bmod 4 c) \quad \text { and } \quad s_{0} w_{0}^{\prime} \equiv s_{0}^{\prime} w_{0}(\bmod 4 c)
$$

these solutions belong to the same class, therefore we have only one fundamental solution $s_{0}+w_{0} \sqrt{c(4 c+1)}=4 c+2 \sqrt{c(c-1)}$. Now, the theory of Pellian equations guarantees that all solutions of (2) and (3) are given by (36) and (37), respectively.

Therefore, in order to prove Theorem 12, it suffices to show that $v_{m}=w_{n}$ implies $m=n=0$.

Solving recurrences (36) and (37) we find

$$
\begin{align*}
v_{m} & =\frac{1}{\sqrt{c-1}}\left[(\sqrt{c}+\sqrt{c-1})(2 c-1+2 \sqrt{c(c-1)})^{m}\right. \\
& \left.-(\sqrt{c}-\sqrt{c-1})(2 c-1-2 \sqrt{c(c-1)})^{m}\right] \tag{42}\\
w_{n} & =\frac{1}{\sqrt{4 c+1}}\left[(2 \sqrt{c}+\sqrt{4 c+1})(8 c+1+4 \sqrt{c(4 c+1)})^{n}\right. \\
& \left.-(2 \sqrt{c}-\sqrt{4 c+1})(8 c+1-4 \sqrt{c(4 c+1)})^{n}\right] . \tag{43}
\end{align*}
$$

4.1 Congruence relations

Now, we will find a lower bound for nontrivial solutions using the "congruence method".

Lemma 14 Let the sequences $\left(v_{m}\right)$ and $\left(w_{n}\right)$ be defined by (36) and (37). Then for all $m, n \geq 0$ we have

$$
\begin{align*}
& v_{m} \equiv(-1)^{m-1}(4 m(m+1) c-2) \quad\left(\bmod 32 c^{2}\right), \tag{44}\\
& w_{n} \equiv 16 n(n+1) c+2\left(\bmod 512 c^{2}\right) \tag{45}
\end{align*}
$$

Proof. Both relations are obviously true for $m, n \in\{0,1\}$.
Assume that (44) is valid for $m-2$ and $m-1$. Then

$$
\begin{aligned}
v_{m} & =2(2 c-1) v_{m-1}-v_{m-2} \\
& \equiv 2(2 c-1)\left[(-1)^{m-2}(4(m-1) m c-2)\right]-\left[(-1)^{m-3}(4(m-2)(m-1) c-2)\right] \\
& \equiv(-1)^{m-1}\left[-16 c^{2} m(m-1)+4 c m(m+1)-2\right] \\
& =(-1)^{m-1}(4 m(m+1) c-2) \quad\left(\bmod 32 c^{2}\right) .
\end{aligned}
$$

Assume that (45) is valid for $n-2$ and $n-1$. Then

$$
\begin{aligned}
w_{n} & =2(8 c+1) w_{n-1}-w_{n-2} \\
& \equiv 2(8 c+1)[16 n(n-1) c+2]-[16(n-1)(n-2) c+2] \\
& \equiv 16 c n^{2}+16 c n+2 \\
& =[16 n(n+1) c+2]\left(\bmod 512 c^{2}\right)
\end{aligned}
$$

Suppose that m and n are positive integers such that $v_{m}=w_{n}$. Then, of course, $v_{m} \equiv w_{n}\left(\bmod 32 c^{2}\right)$. By Lemma 14 , we have $(-1)^{m} \equiv 1(\bmod 2 c)$ and therefore m is even.

Assume that $m(m+1)<\frac{8}{5} c$. Since $n \leq m$ we also have $n(n+1)<\frac{8}{5} c$. Furthermore, Lemma 14 implies

$$
-4 m(m+1) c+2 \equiv 16 n(n+1) c+2\left(\bmod 32 c^{2}\right)
$$

and

$$
\begin{equation*}
-\frac{m(m+1)}{2} \equiv 2 n(n+1) \quad(\bmod 4 c) \tag{46}
\end{equation*}
$$

Consider the positive integer

$$
A=2 n(n+1)+\frac{m(m+1)}{2} .
$$

We have $0<A<4 c$ and, by $(46), A \equiv 0(\bmod 2 c)$, a contradiction.
Hence $m(m+1) \geq \frac{8}{5} c$ and it implies $m>\sqrt{1.6 c}-0.5$. Therefore we proved
Proposition 15 If $v_{m}=w_{n}$ and $n \neq 0$, then $m>\sqrt{1.6 c}-0.5$.

4.2 An application of a theorem of Bennett

It is clear that the solutions of the system (38) and (39) induce good rational approximations to the numbers

$$
\theta_{1}=\sqrt{\frac{c-1}{c}} \quad \text { and } \quad \theta_{2}=\sqrt{\frac{4 c+1}{4 c}}
$$

More precisely, we have

Lemma 16 All positive integer solutions (X, Y, T) of the system of Pellian equations (38) and (39) satisfy

$$
\begin{aligned}
& \left|\theta_{1}-\frac{Y}{X}\right|<\frac{4}{\sqrt{c(c-1)}} \cdot X^{-2} \\
& \left|\theta_{2}-\frac{T}{X}\right|<\frac{1}{c} \cdot X^{-2}
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
\left|\sqrt{\frac{c-1}{c}} X+Y\right| \geq & \frac{1}{2} \\
& \left(\left|\sqrt{\frac{c-1}{c}} X+Y\right|+\left|\sqrt{\frac{c-1}{c}} X-Y\right|\right) \geq \frac{1}{2}\left|2 \sqrt{\frac{c-1}{c}} X\right| \\
& =X \sqrt{\frac{c-1}{c}}
\end{aligned}
$$

which implies

$$
\begin{aligned}
\left|\sqrt{\frac{c-1}{c}}-\frac{Y}{X}\right| & =\left|\frac{c-1}{c}-\frac{Y^{2}}{X^{2}}\right| \cdot\left|\sqrt{\frac{c-1}{c}}+\frac{Y}{X}\right|^{-1} \\
& <\frac{4}{c X^{2}} \cdot \sqrt{\frac{c}{c-1}}=\frac{4}{\sqrt{c(c-1)}} \cdot X^{-2}
\end{aligned}
$$

Similarly,

$$
\left|T+\sqrt{\frac{4 c+1}{4 c}} X\right| \geq X \sqrt{1+\frac{1}{4 c}} \geq X
$$

implies

$$
\left|\sqrt{\frac{4 c+1}{4 c}}-\frac{T}{X}\right|=\left|\frac{4 c+1}{4 c}-\frac{T^{2}}{X^{2}}\right| \cdot\left|\sqrt{\frac{4 c+1}{4 c}}+\frac{T}{X}\right|^{-1}<\frac{4}{4 c X^{2}} \leq \frac{1}{c} \cdot X^{-2}
$$

The numbers θ_{1} and θ_{2} are square roots of rationals which are very close to 1. For simultaneous Diophantine approximations to such kind of numbers there are very useful effective results of Masser and Rickert [18] and Bennett [4]. We will use the following theorem of Bennett [4, Theorem 3.2].

Theorem 17 If a_{i}, p_{i}, q and N are integers for $0 \leq i \leq 2$, with $a_{0}<a_{1}<a_{2}$, $a_{j}=0$ for some $0 \leq j \leq 2$, q nonzero and $N>M^{9}$, where

$$
M=\max _{0 \leq i \leq 2}\left\{\left|a_{i}\right|\right\} \geq 3
$$

then we have

$$
\max _{0 \leq i \leq 2}\left\{\left|\sqrt{1+\frac{a_{i}}{N}}-\frac{p_{i}}{q}\right|\right\}>(130 N \gamma)^{-1} q^{-\lambda}
$$

where

$$
\lambda=1+\frac{\log (32.04 N \gamma)}{\log \left(1.68 N^{2} \prod_{0 \leq i<j \leq 2}\left(a_{i}-a_{j}\right)^{-2}\right)}
$$

and

$$
\gamma= \begin{cases}\frac{\left(a_{2}-a_{0}\right)^{2}\left(a_{2}-a_{1}\right)^{2}}{2 a_{2}-a_{0}-a_{1}} & \text { if } a_{2}-a_{1} \geq a_{1}-a_{0} \\ \frac{\left(a_{2}-a_{0}\right)^{2}\left(a_{1}-a_{0}\right)^{2}}{a_{1}+a_{2}-2 a_{0}} & \text { if } a_{2}-a_{1}<a_{1}-a_{0}\end{cases}
$$

We will apply Theorem 17 with $a_{0}=-4, a_{1}=0, a_{2}=1, N=4 c, M=4$, $q=X, p_{0}=Y, p_{1}=X, p_{2}=T$. If $c \geq 65537$, then the condition $N>M^{9}$ is satisfied and we obtain

$$
\begin{equation*}
\left(130 \cdot 4 c \cdot \frac{400}{9}\right)^{-1} X^{-\lambda}<\frac{4}{\sqrt{c(c-1)}} \cdot X^{-2} \tag{47}
\end{equation*}
$$

If $c \geq 84762$ then $2-\lambda>0$ and (47) implies

$$
\begin{equation*}
\log X<\frac{11.782}{2-\lambda} \tag{48}
\end{equation*}
$$

Furthermore,

$$
\frac{1}{2-\lambda}=\frac{1}{1-\frac{\log (5696 c)}{\log \left(0.0672 c^{2}\right)}}<\frac{\log \left(0.0672 c^{2}\right)}{\log (0.000011797 c)}
$$

On the other hand, from (43) we find that

$$
w_{n}>(2 c-1+2 \sqrt{c(c-1)})^{m}>(4 c-3)^{m}
$$

and Proposition 15 implies that if $(m, n) \neq(0,0)$, then

$$
X>(4 c-3)^{\sqrt{1.6 c}-0.5}
$$

Therefore,

$$
\begin{equation*}
\log X>(\sqrt{1.6 c}-0.5) \log (4 c-3) \tag{49}
\end{equation*}
$$

Combining (48) and (49) we obtain

$$
\begin{equation*}
\sqrt{1.6 c}-0.5<\frac{11.782 \log \left(0.0672 c^{2}\right)}{\log (4 c-3) \log (0.000011797 c)} \tag{50}
\end{equation*}
$$

and (50) yields to a contradiction if $c \geq 89037$. Therefore we proved
Proposition 18 If c is an integer such that $c \geq 89037$, then the only solution of the equation $v_{m}=w_{n}$ is $(m, n)=(0,0)$.

4.3 The Baker-Davenport method

In this section we will apply so called Baker-Davenport reduction method in order to prove Theorem 12 for $2 \leq c \leq 89036$.

Lemma 19 If $v_{m}=w_{n}$ and $n \neq 0$, then

$$
\begin{gathered}
0<m \log (2 c-1+2 \sqrt{c(c-1)})-n \log (8 c+1+4 \sqrt{c(4 c+1)}) \\
+\log \frac{\sqrt{4 c+1}(\sqrt{c}+\sqrt{c-1})}{\sqrt{c-1}(2 \sqrt{c}+\sqrt{4 c+1})}<0.31374(8 c+1+4 \sqrt{c(4 c+1)})^{-2 n}
\end{gathered}
$$

Proof. In standard way (for e.g. see [7, Lemma 5])
Now we will apply the following theorem of Baker and Wüstholz [3]:
Theorem 20 For a linear form $\Lambda \neq 0$ in logarithms of lalgebraic numbers $\alpha_{1}, \ldots, \alpha_{l}$ with rational integer coefficients b_{1}, \ldots, b_{l} we have

$$
\log \Lambda \geq-18(l+1)!l^{l+1}(32 d)^{l+2} h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{l}\right) \log (2 l d) \log B
$$

where $B=\max \left\{\left|b_{1}\right|, \ldots,\left|b_{l}\right|\right\}$, and where d is the degree of the number field generated by $\alpha_{1}, \ldots, \alpha_{l}$.

Here

$$
h^{\prime}(\alpha)=\frac{1}{d} \max \{h(\alpha),|\log \alpha|, 1\}
$$

and $h(\alpha)$ denotes the standard logarithmic Weil height of α.
We will apply Theorem 20 to the form from Lemma 19. We have $l=3$, $d=4, B=m$,

$$
\begin{gathered}
\alpha_{1}=2 c-1+2 \sqrt{c(c-1)}, \quad \alpha_{2}=8 c+1+4 \sqrt{c(4 c+1)}, \\
\alpha_{3}=\frac{\sqrt{4 c+1}(\sqrt{c}+\sqrt{c-1})}{\sqrt{c-1}(2 \sqrt{c}+\sqrt{4 c+1})}
\end{gathered}
$$

Under the assumption that $2 \leq c \leq 89036$ we find that

$$
h^{\prime}\left(\alpha_{1}\right)=\frac{1}{2} \log \alpha_{1}<\frac{1}{2} \log 4 c, \quad h^{\prime}\left(\alpha_{2}\right)=\frac{1}{2} \log \alpha_{2}<7.0848 .
$$

Furthermore, $\alpha_{3}<1.2427$, and the conjugates of α_{3} satisfy

$$
\begin{gathered}
\left|\alpha_{3}^{\prime}\right|=\frac{\sqrt{4 c+1}(\sqrt{c}-\sqrt{c-1})}{\sqrt{c-1}(2 \sqrt{c}+\sqrt{4 c+1})}<1 \\
\left|\alpha_{3}^{\prime \prime}\right|=\frac{\sqrt{4 c+1}(-\sqrt{c}+\sqrt{c-1})}{\sqrt{c-1}(2 \sqrt{c}-\sqrt{4 c+1})}<7.2427 \\
\left|\alpha_{3}^{\prime \prime \prime}\right|=\frac{\sqrt{4 c+1}(\sqrt{c-1}+\sqrt{c})(\sqrt{4 c+1}+2 \sqrt{c})}{\sqrt{c-1}}<1424583.1 .
\end{gathered}
$$

Therefore,

$$
h^{\prime}\left(\alpha_{3}\right)<\frac{1}{4} \log \left[(c-1)^{2} \cdot 1.2427 \cdot 7.2427 \cdot 1424583.1\right]<9.7901
$$

Finally,

$$
\log \left[0.31374(8 c+1+4 \sqrt{c(4 c+1)})^{-2 n}\right]<-2 n \log (4 c)
$$

Hence, Theorem 20 implies

$$
2 n \log (4 c)<3.822 \cdot 10^{15} \cdot \frac{1}{2} \cdot \log (4 c) \cdot 7.0848 \cdot 9.7901 \log m
$$

and

$$
\begin{equation*}
\frac{n}{\log m}<6.6275 \cdot 10^{16} \tag{51}
\end{equation*}
$$

By Lemma 19, we have

$$
\begin{aligned}
m \log (2 c-1+2 \sqrt{c(c-1)}) & <n \log (8 c+1+4 \sqrt{c(4 c+1)})+2.7188 \times 10^{-4} \\
& <n \log [(8 c+1+4 \sqrt{c(4 c+1)}) \cdot 1.0004]
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{m}{n}<2.0003 \tag{52}
\end{equation*}
$$

Combining (51) and (52), we obtain

$$
\frac{m}{\log m}<\frac{2.0003 \cdot n}{\log n}<2.0003 \cdot 6.6275 \cdot 10^{16}<1.3258 \times 10^{17}
$$

which implies $m<5.7264 \times 10^{18}$.
We may reduce this large upper bound using a variant of the Baker-Davenport reduction procedure [2]. The following lemma is a slight modification of [9, Lemma 5 a)]:

Lemma 21 Assume that M is a positive integer. Let p / q be a convergent of the continued fraction expansion of κ such that $q>10 M$ and let $\varepsilon=\|\mu q\|-M \cdot\|\kappa q\|$, where $\|\cdot\|$ denotes the distance from the nearest integer. If $\varepsilon>0$, then there is no solution of the inequality

$$
0<m-n \kappa+\mu<A B^{-n}
$$

in integers m and n with

$$
\frac{\log (A q / \varepsilon)}{\log B} \leq n \leq M
$$

We apply Lemma 21 with

$$
\begin{gathered}
\kappa=\frac{\log \alpha_{2}}{\log \alpha_{1}}, \quad \mu=\frac{\log \alpha_{3}}{\log \alpha_{1}}, \quad A=\frac{0.31374}{\log \alpha_{1}}, \\
B=(8 c+1+4 \sqrt{c(4 c+1)})^{2} \quad \text { and } \quad M=5.7264 \times 10^{18} .
\end{gathered}
$$

If the first convergent such that $q>10 M$ does not satisfy the condition $\varepsilon>0$, then we use the next convergent.

We performed the reduction from Lemma 21 for $2 \leq c \leq 89036$. The use of the second convergent was necessary in 3249 cases ($\approx 3.65 \%$), the third convergent was used in 63 cases $(\approx 0.08 \%)$, the forth in 14 cases, the fifth in 2 cases and seventh convergent is used in only one case: $c=69953$. In all cases we obtained $n \leq 6$. More precisely, we obtained $n \leq 6$ for $c \geq 2 ; n \leq 5$ for $c \geq 4$; $n \leq 4$ for $c \geq 6 ; n \leq 3$ for $c \geq 24 ; n \leq 2$ for $c \geq 256 ; n \leq 1$ for $c \geq 74211$. The next step of the reduction in all cases gives $n \leq 1$, which completes the proof.

Therefore, we proved
Proposition 22 If c is an integer such that $2 \leq c \leq 89036$, then the only solution of the equation $v_{m}=w_{n}$ is $(m, n)=(0,0)$.

Proof of Theorem 12. The statement follows directly from Propositions 18 and 22.

Acknowledgements: The author would like to thank Professor Andrej Dujella and Professor Attila Pethő for helpful suggestions and comments.

References

[1] W.S. Anglin, Simultaneous Pell equations, Math. of Comput., 65 (1996), 355359.
[2] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[3] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
[4] M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173-199.
[5] A. Dujella, Continued fractions and RSA with small secret exponent, Tatra Mt. Math. Publ. 29 (2004), 101-112.
[6] A. Dujella and B. Ibrahimpašić, On Worley's theorem in Diophantine approximations, Ann. Math. et Inform., to appear. 35 (2008), 61-73.
[7] A. Dujella and B. Jadrijević, A parametric family of quartic Thue equations, Acta Arith. 101 (2001), 159-169.
[8] A. Dujella and B. Jadrijević, A family of quartic Thue inequalities, Acta Arith. 111 (2002), 61-76.
[9] A. Dujella and A. Pethő, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
[10] P. Erdös, Arithmetical properties of polynomials. J. London Math. Soc. 28 (1953), 416-425.
[11] I.Gaál, "Diophantine Equations and Power Integral Bases", New Computational Methods, Birkhauser Boston, 2002.
[12] I. Gaál, A. Pethő and M. Pohst, On the resolution of index form equations in biquadratic number fields, I, J. Number Theory. 38 (1991), 18-34.
[13] I. Gaál, A. Pethő and M. Pohst, On the resolution of index form equations in biquadratic number fields, II, J. Number Theory. 38 (1991), 35-51.
[14] I. Gaál, A. Pethő and M. Pohst, On the indices of biquadratic number fields having Galois group V_{4}, Arch Math. 57 (1993), 357-361.
[15] I. Gaál, A. Pethő and M. Pohst, On the resolution of index form equation quartic number fields, J. Symbolic Comput., 16 (1993), 563-584.
[16] I. Gaál, A. Pethő and M. Pohst, On the resolution of index form equations in biquadratic number fields, III The bicyclic biquadratic case, J. Number Theory. 53 (1995), 100-114.
[17] M.N. Gras, and F. Tanoe, Corps biquadratic monogenes, Manuscripta Math., 86, (1995), 63-79.
[18] D. W. Masser and J. H. Rickert, Simultaneous Pell equations, J. Number Theory 61 (1996), 52-66.
[19] T. Nagell, "Introduction to the Number Theory", Almqvist, Stockholm, Wiley, New York, 1951.
[20] T. Nakahara, On the indices and integral basis of non-cyclic but abelian of biquadratic fields, Archiv der Math., 41, (1983), 504-508.
[21] I. Niven, H. S. Zuckerman and H. L. Montgomery, "An Introduction to the Theory of Numbers", John Wiley, New York, 1991.
[22] K.S.Williams, Integers of biquadratics fields, Canad. Math. Bull. 13 (1970), 519526.
[23] R. T. Worley, Estimating $|\alpha-p / q|$, J. Austral. Math. Soc. 31 (1981), 202-206. Department of Mathematics, University of Split, Teslina 12, 21000 Split, Croatia

E-mail address: borka@pmfst.hr

[^0]: ${ }^{0} 2000$ Mathematics Subject Classification. Primary: 11D57, 11A55; Secondary: 11B37, 11J68, 11J86, 11Y50.

 Key words. index form equations, minimal index, totally real bicyclic biquadratic fields, simultaneous Pellian equations
 *The author was supported by Ministry of Science, Education and Sports, Republic of Croatia, grant 037-0372781-2821.

