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Abstract

We show that for all integers m and n there are no non-trivial
solutions of Thue equation

x4 � 2mnx3y + 2
�
m2 � n2 + 1

�
x2y2 + 2mnxy3 + y4 = 1;

satisfying the additional condition gcd(xy;mn) = 1.

1 Introduction

One of the most famous Diophantine equation is equation

F (x; y) = t; (1)

where F 2 Z [X;Y ] is a homogeneous irreducible polynomial of degree � 3
and t 6= 0 a �xed integer. Equation (1) is called a Thue equation in honour
of A. Thue, who proved in 1909 [20], that equation (1) has only �nitely many
integral solutions (x; y) : Thue�s proof was non-e¤ective. In 1968, Baker [1]
showed, using estimates for linear forms in logarithms of algebraic numbers,
that Thue equation can be solved e¤ectively. The result of Baker implies
that all solution of equation (1) can be found in �nitely many steps, at
least by direct enumeration. Baker�s work were improved and generalized
by many authors and general powerful methods have been developed for the
explicit solution of Thue equations (see [5, 17, 23]), following from Baker�s
work. In 1990, Thomas [19] investigated for the �rst time a parametrized
family of Thue equations. Since then, several families have been studied (see
[10] for references). In particular, quartic families have been considered in
[6, 7, 10, 11, 12, 13, 15, 16, 18, 21, 24, 25].
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In [12], we considered the two-parametric family of quartic Thue equa-
tions

x4 � 2mnx3y + 2
�
m2 � n2 + 1

�
x2y2 + 2mnxy3 + y4 = 1; (2)

where parameters m and n are integers. Using the method of Tzanakis,
given in [22], it was shown that solving equation (2) reduces to solving the
system of Pellian equations

V 2 �
�
m2 + 2

�
U2 = �2; (3)

Z2 �
�
n2 � 2

�
U2 = 2; (4)

for n 6= 0;�1. The main result obtained in [12] can be stated as follows: If
jmj and jnj are su¢ ciently large and have su¢ ciently large common divisor,
then the system has only the trivial solutions (V;Z; U) = (�m;�n;�1),
which implies that the original Thue equation also has only the trivial so-
lutions (x; y) = (�1; 0) ; (0;�1) : In [12], it was also shown that system (3)
and (4) for all m � 0 and n � 2 possesses at most 7 solutions in positive
integers (V;Z; U) :

The main goal of the present paper is to show that Thue equation (2)
can be solved for all integers m and n if we impose the additional condition
gcd(xy;mn) = 1 for the solutions (x; y). This condition arises from the
analyse of the connection between equation (2) and system (3) and (4).
This leads us to consider three special cases: m = n, m = 2n, n = 2m.
These cases are completely solved by applying a theorem of Bennett [4,
Theorem 3.2] on simultaneous approximations of algebraic numbers. In all
cases we obtain only trivial solutions, except for m = 1; n = 2: The case
m = 2n can be considered as a special case of the Thue equation

x4 � 4cx3y + (6c+ 2)x2y2 + 4cxy3 + y4 = 1; (5)

which was completely solved in [7].
The main result of present paper is the following theorem.

Theorem 1 There are no solutions of (2) satisfying the additional condi-
tions gcd(xy;mn) = 1 and xy 6= 0.

Let us note that, because of homogeneity and symmetry of equation
(2), it is enough to consider the cases when m and n are nonnegative and
�nd only all positive solutions. More precisely, (x; y) = (a; b) is a solution
of equation (2) then (x; y) = (�a;�b) ; (b;�a) ; (�b; a) are solutions too.
Thus, we will suppose, without loss of generality, that m � 0 and n � 0 are
integers and consider equation of the form (2) :
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2 The system of Pellian equations

We will apply the method of Tzanakis introduced in [22] and used in [7, 8,
12]. Tzanakis showed that solving quartic Thue equations of the form

f(x; y) = t (6)

f(x; y) = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy

3 + a4y
4 2 Z [x; y] ; a0 > 0;

whose corresponding quartic �eld K is totally real, Galois and non-cyclic,
reduces to solving a system of Pellian equations having one common un-
known.

If we apply this method to the quartic Thue equation (2) we �nd (see
[12, Section 4]) that if n � 2; then solving (2) reduces to solving the system
of Pellian equations (3) and (4) with one common unknown, where

U =
G1
2
= x2 + y2;

V =
G2
2
= mx2 + 2nxy �my2; (7)

Z =
G3
2
= �nx2 + 2mxy + ny2: (8)

All solutions of equation (3) for m > 0 in positive integers are given by

v + u
p
m2 + 2 =

�
m+

p
m2 + 2

��
m2 + 1 +m

p
m2 + 2

�k
;

where k 2 Z and k � 0 or by u = Uk and v = Vk; where the sequences (Uk)
and (Vk) are de�ned by the recurrences

U0 = 1; U1 = 2m
2 + 1; Uk+2 = 2

�
m2 + 1

�
Uk+1 � Uk; k � 0; (9)

V0 = m; V1 = m
�
2m2 + 3

�
; Vk+2 = 2

�
m2 + 1

�
Vk+1 � Vk; k � 0: (10)

All solutions of equation (4) in positive integers are given by

z + t
p
n2 � 2 =

�
n+

p
n2 � 2

��
n2 � 1 + n

p
n2 � 2

�l
where l 2 Z and l � 0 or by t = Tl and z = Zl; where the sequences (Tl)
and (Zl) are de�ned by the recurrences

T0 = 1; T1 = 2n
2 � 1; Tl+2 = 2

�
n2 � 1

�
Tl+1 � Tl; l � 0; (11)

Z0 = n; Z1 = n
�
2n2 � 3

�
; Zl+2 = 2

�
n2 � 1

�
Zl+1 � Zl; l � 0: (12)
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In this way we reformulated the system of Pellian equations (3) and (4)
to the Diophantine equation of the form

Uk = Tl

in integers k; l � 0: In order to prove that for some parameters m > 0 and
n � 2 we have only trivial solutions of (2), it su¢ ces to show that Uk = Tl
implies k = l = 0.

3 Some special cases

Equation (2) has only trivial solutions for n = 0; 1 (see [12, Proposition 1,
i)]). For m = 0; we have

x4 + 2(1� n2)x2y2 + y4 = 1: (13)

If the sequence (nk) is de�ned by

n0 = 1; n1 = 3; nk+2 = 6nk+1 � nk; k � 0; (14)

then, for n = nk and k � 1; all non-trivial solutions of equation (13) are
given by

(x; y) =
�
�1;�

p
2 (n2 � 1)

�
and

�
�
p
2 (n2 � 1);�1

�
:

For all other values of n we have only the trivial solutions (x; y) = (�1; 0) ;
(0;�1) by [12, Proposition 1, ii)] (see also [14] and [26]).

Now, consider three special cases: m = n, m = 2n, n = 2m.
Case 1. m = n:
If m = n = c � 1; then (2) has the form

x4 � 2c2x3y + 2x2y2 + 2c2xy3 + y4 = 1: (15)

For c � 2; then solving (2) reduces to solving the system of Pellian equations

c2V 21 �
�
c2 + 2

�
U2 = �2;

c2Z21 �
�
c2 � 2

�
U2 = 2;

where

U = x2 + y2;

V1 =
1

c
V = x2 + 2xy � y2;

Z1 =
1

c
Z = �x2 + 2xy + y2:
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Case 2. m = 2n:
If m = 2c; n = c � 1; then (2) has the form

x4 � 4c2x3y + 2
�
3c2 + 1

�
x2y2 + 4c2xy3 + y4 = 1: (16)

For c � 2; then solving (2) reduces to solving the system of Pellian equations

2c2V 22 �
�
2c2 + 1

�
U2 = �1

c2Z22 �
�
c2 � 2

�
U2 = 2

where

U = x2 + y2;

V2 =
1

2c
V = x2 + xy � y2;

Z2 =
1

c
Z = �x2 + 4xy + y2:

Case 3. n = 2m:
If n = 2c; m = c � 1; then (2) has the form

x4 � 4c2x3y + 2
�
1� 3c2

�
x2y2 + 4c2xy3 + y4 = 1: (17)

For c � 1; then solving (2) reduces to solving the system of Pellian equations

c2V 23 �
�
c2 + 2

�
U2 = �2;

2c2Z23 �
�
2c2 � 1

�
U2 = 1;

where

U = x2 + y2;

V3 =
1

c
V = x2 + 4xy � y2;

Z3 =
1

2c
Z = �x2 + xy + y2:

Equations (15), (16), (17) we solve, in the same manner, as equation
(5) in [7]. We �nd a lower bound for the solutions of the corresponding
system of Pellian equations using the �congruence method� introduced in
[9]. By comparison of this lower bound with an upper bound obtained from a
theorem of Bennett [4] on simultaneous approximations of algebraic numbers
we �nd only trivial solutions for c � c0, where c0 = 235 if m = n = c � 2;



6

c0 = 423 if m = 2c and n = c � 2 or m = 2c and n = c � 2: For c � c0
we use a theorem a Baker and Wüstholz [3] and a version of the reduction
procedure due to Baker and Davenport [2]. In all cases we obtain only trivial
solutions, except for m = 1; n = 2 where there are also non-trivial solutions
(x; y) = (4; 5), (�4;�5), (5;�4), (�5; 4) :

Therefore, we have

Proposition 1 Equation (2) has only the trivial solutions (x; y) = (�1; 0),
(0;�1) in the following cases:

i) n � 1;

ii) m = 0 and 2(n2 � 1) is not a perfect square;

iii) m = n � 2;

iv) m = 2n � 2;

v) n = 2m > 2;

For cases for which there are also non-trivial solutions of equation (2)
we have

Proposition 2 i) If m = 1 and n = 2 then all non-trivial solutions are
(x; y) = (4; 5), (�4;�5), (5;�4), (�5; 4) ;

ii) If m = 0 and 2(n2�1) is a perfect square then all non-trivial solutions
are (x; y) =

�
�1;�

p
2 (n2 � 1)

�
and

�
�
p
2 (n2 � 1);�1

�
:

4 Proof of the Theorem 1

All solutions of the Pellian equation (3) in positive integers for m > 0 are
given by (U; V ) = (Uk; Vk); where the sequences (Uk) and (Vk) are de�ned
by the recurrences (9) and (10) : All solutions of the Pellian equation (4) in
positive integers for n � 2 are given by (U;Z) = (Tl; Zl); where the sequences
(Tl) and (Zl) are de�ned by the recurrences (11) and (12) : Recurrences (10)
and (12) imply m j V and n j Z :

Then, from (7) and (8) ; we havem j 2nxy and n j 2mxy : If gcd (m;xy) =
1 and gcd (n; xy) = 1; then m j 2n and n j 2m ; which implies m = n or
m = 2n or n = 2m: In all these cases we obtain only trivial solutions, except
for m = 1; n = 2: If m = 1 and n = 2; then, for non-trivial solutions (x; y)
we have gcd (n; xy) = gcd (2;�20) = 2:
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It remains to consider the cases when m = 0 and n � 1: For n � 1
equation (2) has only the trivial solutions. If m = 0 then for some val-
ues of n there are also non-trivial solutions of equation (2)(see Proposi-
tion 1, ii) and Proposition 2, ii)). For those non-trivial solutions we have

gcd (m;xy) = gcd
�
0;�

p
2 (n2 � 1)

�
=
p
2 (n2 � 1) > 2: Therefore, we

have proved Theorem 1.
Acknowledgements: The author would like to thank Professor Andrej

Dujella for helpful suggestions.
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