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Relaxation process is the spontaneous transition of an isolated system from one to another ma-
croscopic state. It is assumed that the entropy increase associated with this process is a func-
tional of dynamical variables (fluxes). This fact makes entropy production a dynamical vari-
able. It is shown within Jaynes’ MaxEnt formalism that almost all possible microscopic fluxes
are accompanied by maximal entropy production. Using Einstein’s formula for probability of
fluctuation, we obtain that the probability of the change in entropy is proportional to the expo-
nential function of the entropy change divided by the Boltzmann constant. This result is ap-
plied to the system close to the equilibrium and the well-known relationships between thermo-
dynamic forces and fluxes are reproduced.
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INTRODUCTION

Macroscopic systems consist of an extremely large num-
ber of microscopic particles. This large number makes it,
in most cases, practically impossible to detect the micro-
scopic evolution of the system. Even if the microscopic
evolution of the system is known, it bears, from the ex-
perimental point of view, a great deal of useless infor-
mation. The best we can extract from the experimental
measurement are the mean values of the physical quanti-
ties. It is an experimental fact that these values are, up to
fluctuations that are usually several orders smaller than
the measured mean values, practically independent of
the microscopic state of the system.

Let {Ji} be the set of independent macroscopic
physical quantities. Then the thermodynamic state of the
system is defined by macroscopically small intervals {Ji,

Ji + dJi} and thermodynamic entropy. In the case of an
isolated system, thermodynamic entropy is equal to k lnW,
where W is the number of microscopic states that have
values of physical quantities in these intervals. The num-
ber of microscopic states as a function of macroscopic
physical quantities is an extremely sharp function close
to the measured values, i.e., almost all microscopic states
have values of physical quantities extremely close to the
measured values.

The equilibrium state of the isolated system is deter-
mined by maximum thermodynamic entropy. In this



case, macroscopic quantities are practically time inde-
pendent.

If macroscopic quantities are not equal to the equi-
librium values, they change in the course of time in such
a way as to bring the system into the state of maximum
thermodynamic entropy. In this paper, we ask if there is
some function that describes the evolution of the isola-
ted system (relaxation) towards the equilibrium state. In
the theory of non-equilibrium processes this function
would be the counterpart to thermodynamic entropy of
equilibrium processes.

RELAXATION PROCESSES

Relaxation Processes and MaxEnt Formalism

We consider an isolated system in the non-equilibrium
state. In order to keep track of all possible microscopic
events that are compatible with constraints imposed on
the non-equilibrium processes, Dewar1,2 recently intro-
duced an ensemble of »trajectories« within the interval
of time (0,t) in the phase space of the system. He called
these »trajectories« paths. A path is defined by the initial
microscopic state, i.e., there is one to one correspon-
dence between the initial state and paths in the case of an
isolated system. Relaxation processes are characterized
by fluxes and we define the set {fGi( r

→
,t)} where fGi( r

→
,t)

is the i-th time dependent flux associated with path G. It
is an experimental fact that almost all of these paths
have practically the same values of the fluxes {fi( r

→
,t)}

where fi( r
→
,t) is the mean value of the i-th time dependent

flux. In other words, the relaxation practically depends
on a set of a very small number of the initial mean
values of the fluxes.

In order to apply Jaynes’ information theory forma-

lism,3,4 one has to define the objects of interest. Once the

events of interest have been defined, Jaynes’ information

theory formalism can be applied. It consists of the maximi-

zation of Shannon’s information entropy S p pI i
i

i= ∑– ln

with respect to pi, where pi is the probability of the oc-

currence of the i-th event, provided the constraints are

taken into account. This algorithm is known as MaxEnt.

At first sight, it seems that objects of interest could
be paths. Equal probabilities of initial microscopic states
and one to one correspondence between initial states and
paths imply that all paths of the isolated system are
equally probable. It comes out from the foregoing prop-
erty between the ensemble of initial states and the en-
semble of paths that the state information entropy is
equal to the path information entropy in the case of re-
laxation processes. Similar conclusion has been derived
for stationary processes in Ref. 5.

Evidently, no conclusion regarding the macroscopic time
evolution of the system can be deduced from this choice
of objects of interest.

Since the probabilities of fluxes {fi( r
→

,t)} are well pro-
nounced quantities, the probability of any function of flu-
xes is a well pronounced function, too. This means that any
function or functional of fluxes is a good object of interest.

We generally consider relaxation processes in which
the isolated system spontaneously changes its state. We
note that the final state of the system need not be an
equilibrium state. We therefore focus on the entropy pro-
duction diS / dt.

Having in mind that entropy production is a function
of fluxes, we define the functional:

DS
S

t
dt

i
t

= ∫
d

d
0

. (1)

The physical meaning of DS is the entropy increase of
the system in the course of time. If the thermodynamic
entropies of initial and final states are S(0) and S(t),6 res-
pectively, then we can establish the relationship between
equilibrium and non-equilibrium statistical mechanics by
the following hypothesis:

S(t) – S(0) = DS. (2)

Here DS is the mean value of the functional in Eq. (1).

We choose functional DS as the object of interest.
Following Ref. 7, information entropy of continuous dis-
tributions is:

S w S
w S

m S
SI = 



∫– ( ) ln

( )

( )
( )D

D

D
Dd . (3)

Here, w(DS)d(DS) is the probability that the func-
tional DS assumes the values between DS and DS +
d(DS) while m(DS) is a measure function. In this case,
the latter function can be taken as a constant. The nor-
malization constraint is:

w S S( ) ( )D Dd =∫ 1. (4)

Another constraint is equation (2):

S(t) – S(0) = w S S S( ) ( )D D Dd∫ . (5)

The constrained maximization of information en-
tropy (3) with respect to w(DS) is performed according
to the standard procedure8 by introducing Lagrange’s
multipliers l and m and seeking for the maximum of the
Lagrangian function F:

F w S
w S

m S
S w S S= 





+ +∫ ∫– ( ) ln
( )

( )
( ) ( ( ) ( ) – )D

D

D
D D Dd dl 1

m( ( ) ( ) – ( ) ( ))w S Sd S S t S∫ +D D D 0 . (6)
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The outcome of the maximization of F is:

w(DS) = Z–1exp(mDS), (7)

where

Z = ∫ exp( ) )mD (DS Sd , (8)

is the partition function.
In order to pass from a continuous description to a

discrete one, we have to multiply the probability density

w(DS) with dJi

i

∏ , where dJi are macroscopically small

intervals of fluxes, i.e., they define the macroscopic non-

equilibrium state of the system:

p S w S J Z S Ji

i

i

i

( ) ( ) exp( )–D D D= =∏ ∏d d1 m . (9)

Assuming m > 0, it follows from Eq. (7) that the
most probable value of the functional DS is its maximum
value. In a short interval of time dt, the equation (1) can
be written as:

D d dS
S

t
t O t

i= +d

d
( )2 . (10)

It follows from the foregoing equation that the most
probable time evolution of the isolated system is accom-
panied by the maximum entropy production.

In order to determine the Langrangian multiplier m,
we invoke Onsager’s argument concerning non-equilib-
rium processes.9 The main idea is the assumption that
the entropy increase during the macroscopic irreversible
process is equivalent to the entropy increase during re-
gression of the fluctuation.

The probability of the fluctuation is given by Ein-
stein’s formula:10

p C e

S

k= ⋅
D

, (11)

where DS is negative. Here, we extend this expression to
the regression of fluctuation applying it to both kinds of
processes (fluctuation and its regression).

Following the above mentioned Onsager’s argument
we equate expressions (9) and (11):

C e Z S J

S

k i

i

⋅ = ∏
D

D– exp( )1 m d , (12)

which gives

m = 1/k . (13)

Relaxation Processes Close to Equilibrium

Assuming that the initial state of the isolated system is
close to its equilibrium state, the entropy increase is the
positive definite bilinear function of fluxes:

d

d
di

ij i j

Vij

S

t
R f f V= >∫∑ 0. (14)

According to the conclusion in the previous section,
the entropy production must achieve its maximum value.
In the case of the isolated system, the only constraint is
the conservation of energy. If the system is close to equi-
librium, the intensive thermodynamic quantities are lo-
cally well defined and the first law of thermodynamics
ensures the conservation of energy. The standard proce-
dure is to introduce thermodynamic forces as gradients
of the intensive variables.11,12 The entropy production is
then given by:

d

d
di

i i

Vi

S

t
X f V= ∫∑ , (15)

where Xi is the thermodynamic force conjugated to flux fi.

Since {fi} is the set of independent variables, the
following relation comes out of (14) and (15):

X f R f fi i

i

ij i j

ij

∑ ∑= . (16)

One can easily verify that entropy production has its
maximum value if the fluxes are the solution of the sys-
tem of equations:

X R fi ij j

j

= ∑ . (17)

This is a well-known relationship between fluxes and
thermodynamic forces in linear non-equilibrium thermo-
dynamics.9,11,12

We note that time is a parameter in relaxation pro-
cesses. In order to be more explicit, we refer to non-
equilibrium processes close to equilibrium. Thermody-
namic forces are, due to the first law of thermodynam-
ics, functions only of space gradients of intensive vari-
ables. At the same time, fluxes are functions of forces
only. In order to solve the time dependence of the prob-
lem, one has to know the mechanism of changing the
intensive variables due to the sinking or springing of
fluxes. A simple example is the schoolwork problem13

of the relaxation of two finite capacities of heat reser-
voirs at different initial temperatures, connected with a
narrow wire of known thermal resistance.

CONCLUSIONS

In this paper, we assume that entropy increase in the re-
laxation process is a functional of the fluxes. We find
within MaxEnt formalism that the largest possible entro-
py increase is the most probable entropy increase (Eq.
7). Using Einstein’s formula for the probability of fluc-
tuation, we obtain that the probability of the change of
entropy is proportional to the exponential function of the
entropy change divided by the Boltzmann constant.
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We note here that there is a discrepancy between our
result and the fluctuation theorem. In the case of station-
ary processes, Dewar1,2 and Evans14 found that the ratio
of probability of entropy increase and entropy decrease
for the same amount DSs is:

p

p

S

k

S

S

sD

–D

D= exp( ) . (18)

This result is known as the fluctuation theorem. How-
ever, it follows from equations (7) and (13) that in the
case of isolated systems the above ratio is:

p

p

S

k

S

S

D

–D

D= exp( )
2

. (19)

Discrepancy between the results in equations (18)
and (19) demands additional analysis. This will be the
subject of our further work.

Acknowledgments. – We are indebted to the referee whose
constructive critique of the earlier version of this paper has
helped us to bring the paper into the present form. The present
work was supported by the Croatian Ministry of Science, Edu-
cation and Sports (project No. 0177163 to D. J. and project
No. 0177165 to P. @.)

REFERENCES

1. R. C. Dewar, J. Phys. A: Math. Gen. 36 (2003) 631–641.
2. R. C. Dewar, J. Phys. A: Math. Gen. 38 (2005) L371–L381.
3. E. T. Jaynes, Phys. Rev. 106 (1957) 620–630.
4. E. T. Jaynes, Phys. Rev. 108 (1957) 171–190.
5. R. C. Dewar, D. Jureti}, and P. @upanovi}, Chem. Phys. Lett.

430 (2006) 177–182.
6. W. T. Grandy, Found. Phys. 34 (2004) 771–813.
7. E. T. Jaynes, Information theory and statistical mechanics,

in: K. W. Ford (Ed.), Statistical mechanics, W. A. Benja-
min, Inc. NY, 1962, pp. 181–218.

8. M. L. Krasnov, G. I. Makarenko, and A. I. Kiselev, Prob-

lems and exercises in the calculus of variations, Mir Pub-
lishers, Moscow, 1975, pp. 19–22.

9. L. Onsager, Phys. Rev. 38 (1931) 2265–2279.
10. A. Einstein, Ann. Phys. 33 (1910) 1275–1298.
11. S. R. de Groot and P. Mazur, Non-Equilibrium Thermody-

namics, North Holland, Amsterdam, 1969, p. 25.
12. I. Prigogine, Introduction to Thermodynamics of Irrever-

sible Processes, John Wiley & Sons, New York, 1967, p.
40.

13. I. E. Irodov, Problems in General Physics, Mir Publishers,
Moscow, 1981, p. 103.

14. D. J. Evans and D. A. Searles, Adv. Phys. 51 (2002) 1529–
1585.

SA@ETAK

Relaksacijski procesi, MaxEnt formalizam i Einsteinova formula za vjerojatnost fluktuacija

Pa{ko @upanovi}, Sre}ko Botri} i Davor Jureti}

Relaksacijski proces je spontani prijelaz izoliranog sistema iz jednog makroskopskog stanja u drugo. Pret-
postavlja se da je porast entropije u tom procesu funkcional dinami~kih varijabla (tokova). Stoga je produkcija
entropije dinami~ka varijabla. Primjenjuju}i Jaynesov formalizam maksimalne entropije pokazano je da se
prakti~ki svi mikroskopski tokovi ostvaruju uz maksimalnu produkciju entropije. Pomo}u Einsteinove formule
za vjerojatnost fluktuacije dobiva se da je vjerojatnost promjene entropije u relaksacijskom procesu razmjerna
eksponencijalnoj funkciji kvocijenta promjene entropije i Boltzmannove konstante. Ovaj je rezultat primijenjen
na sistem koji se nalazi u termodinami~kom stanju blizu ravnote`nog stanja, te su reproducirane poznate re-
lacije izme|u termodinami~kih sila i tokova.
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