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Abstract: Spontaneous transitions of an isolated system from one macroscopic state to
another (relaxation processes) are accompanied by a change of entropy. Following Jaynes’
MaxEnt formalism, it is shown that practically all the possible microscopic developments
of a system, within a fixed time interval, are accompanied by the maximum possible
entropy change. In other words relaxation processes are accompanied by maximum entropy
production.
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1. Introduction

E.T. Jaynes, claiming that our knowledge of the initial microscopic state of a system is not a
matter of physics but of information theory, introduced information entropy to describe the behavior
of macroscopic systems [1,2]. Keeping in mind that the macroscopic development of a system depends
on its constraints rather than on the initial microscopic state, Jaynes used such constraints as the pillars of
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his theory. He proposed that the probabilities of states, under constraints, make the information entropy
the maximum possible. This procedure is known as the MaxEnt formalism [3].

MaxEnt can be equally applied to equilibrium and nonequilibrium processes. It was applied by a
number of authors [4–6] to nonequilibrium processes in order to determine the physical principle relevant
for nonequilibrium thermodynamics. We single out Dewar’s [4] and Niven’s [5] approaches.

Dewar considered the ensemble of the trajectories (paths) in phase space. He maximized the
information entropy over paths with macroscopic quantities as constraints (MaxEnt) and found that path
probability is proportional to the exponential function of entropy production, when entropy production
is expressed as the sum of products of fluxes and conjugated forces. Thus, the most probable evolution
of a system is accompanied by the maximum possible entropy production. Some criticism of Dewar’s
work can be found in references [7–9].

Niven [5] applied MaxEnt to stationary processes in a different way than Dewar. Values of fluxes are
the main elements of his approach. He considered the mean values of fluxes as constraints. Assuming
local equilibrium, he found, under certain additional assumptions, that entropy production must achieve
maximal value.

Both Dewar and Niven assumed the existence of a stationary state, local equilibrium and entropy
production defined as the sum of the products of thermodynamic forces and conjugated fluxes.

We noted in paper II that in a stationary nonequilibrium state the subject must interfere with a system
in order to maintain such a state. In this paper, entitled paper III, we apply the MaxEnt formalism
to relaxation processes. Our approach is free of the above-mentioned assumptions. Assuming that
changes of entropy, within a fixed interval of time, are distributed so as to achieve maximum information
entropy, we find that the evolution of an isolated system is accompanied by the maximum possible
entropy production.

The paper is organized in the following manner. Section II is devoted to the Jaynes’ principle of
maximum information entropy. In Section III, we apply this principle to the change of entropy of an
isolated system. We find that the development of an isolated system (relaxation) is accompanied by the
maximum production of entropy. In the Conclusions section we summarize our results.

2. Information Entropy and MaxEnt Formalism

E.T. Jaynes [1,2], having in mind that initial microscopic states cannot be determined, proposed that
the statistics of any microscopic physical quantity, describing the time evolution of a system, can be
determined by making use of information entropy [10]:

SI = −
∑

i

wi ln wi (1)

Here, wi is the probability of the i−th value of the considered microscopic quantity. Taking into account
a definite number of constraints (conservation laws and/or the mean values of measured quantities ), the
probability distribution is obtained by the maximization of entropy SI . The constrained maximization of
entropy SI is well known as the MaxEnt formalism. This maximum-entropy inference gives probability
distribution as a measure of the amount of uncertainty. Jaynes [1,2] has pointed out that the very existence
of definite macroscopic properties (states) is essentially related to sharp distributions: the overwhelming
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majority of microscopic evolutions correspond to the same macroscopic (deterministic) evolution of
microscopic states.

We note that information entropy is a property of any distribution of probabilities and has, in principle,
nothing to do with thermodynamic entropy that is a property of state of macroscopic system (see page
351 in reference [10]).

3. Relaxation Processes, Information Entropy and the MEP Principle

The relaxation process is the spontaneous approach of an isolated system toward its equilibrium state.
The initial problem in applying MaxEnt is the choice of events of interest. In the case of an

isolated system, the initial microscopic state of the system defines the “phase space trajectories”
(paths). Assuming that the initial microscopic states do not share a common path there is a one-to-one
correspondence between initial states and paths.

Time evolution of the macroscopic state of a system is defined with the set {Qi} of mutually
independent variables. To be more specific, these variables are fluxes, the main characteristic of
non-equilibrium processes, or quantities related to fluxes.

We can define the entropy of an isolated system by means of microcanonical ensemble using either
Boltzmann’s , S = kB ln W , or Gibb’s, S = −kB

∑
i pi ln pi definition of the entropy. Here, kB, W and

pi are Boltzmann’s constant, statistical weight of the macroscopic state and probability of ith microscopic
state, respectively. The unsatisfactory feature of both definitions, in the case of isolated systems, comes
from the Louville’s theorem, which states that the number of microscopic states do not change in course
of the time. In particular, one initial microstate will give just one final microstate. i.e., there is no
increase of the number of microscopic states. Yet, according to the second law the number of states
should increase in the course of time.

In order to resolve this paradox, Zurek [11] introduced the notion of the algorithmic entropy
(randomness) as an objective property of the microscopic state. Algorithmic entropy is equal to the
number of digits s of the shortest program that generates output that contains sufficient information,
within required accuracy, about the microscopic state of the system. Momenta and positions of all
particles are examples of such output in the case of systems described within classical mechanics. When
s is interpreted as a binary representation of the integer, algorithmic entropy is K = log2 s. Zurek has
shown that the old problem of statistical mechanics, fundamental incompatibility of invariance of the
physical laws on the change of the sign of time (reversibility) and second law of thermodynamics could
be overcome by means of algorithmic entropy. However, since algorithmic entropy is tightly connected
with determination of the microscopic state of the system of classical particles, it does not include the
principle of the particle indistinguishability. Zurek was forced to modify the starting algorithm (see
Appendix A in [11]) in order to get Sackur-Tetrode relation, the correct expression for free gas entropy. It
is interesting to note that in order to find correct expression for entropy of ideal gases, Sackur and Tetrode
were forced to use the quantum-mechanical concepts - the principle of particle indistiguishabilty and
definition of the elementary volume h̄3 in phase space - in 1912, long before the formulation of quantum
mechanics in 1925. In standard textbooks [12,13], one exploits uncertainty relation to define h̄3 as the
elementary volume of the phase space. This process, known as coarse graining, enables one to cross
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from the continuous to the discrete microscopic states. This introduction of the discrete microscopic
states enables one to define ensembles and corresponding statistics.

Each measuring process is defined by the measuring device and system, whose state is determined
with the value of measured quantity. A measurement of any physical quantity is accompanied with
uncertainty. The resulting uncertainty is a superposition of the uncertainties introduced by the measuring
device and system. The uncertainty introduced due to the measuring instrument is within the resolution
of the measuring instrument. We too exploit the coarse grain approach, but in a different way from the
above described. We take the resolution of the measuring devices {δQi} as the quantization step of
the variable {Qi}. The macroscopic state is defined with values of independent physical quantities
in intervals {Qi, Qi + δQi}. We follow the Boltzmann definition of the entropy. The number of
microstates W that have values of independent physical quantities within the intervals {Qi, Qi + δQi}
are the statistical weight of state defined with {Qi}. The entropy of this state is S = kB ln W . We
assign this entropy to each microscopic state characterized with values of physical quantities in interval
{Qi, Qi + δQi}. In the following we will write {Qi} for {Qi, Qi + δQi}.

The initial state is defined by a subensemble with fixed values {Qi(t)}. During small fixed
macroscopic interval of time ∆t, the state {Qi} evolves into the state {Qi(t+∆t)}, where {Qi(t+∆t)}
are just discrete values of variables {Qi} . There is an essential difference between initial and final
states. The microscopic states of the initial macroscopic state are elements of the subensemble with the
variables {Qi} in the interval {Qi(t) < Qi < Qi(t) + δQi}. On the other hand, there is an additional
uncertainty of the variables {Qi} in the final state due to the different evolutions (paths) of the elements
of the initial subensemble. The uncertainty of physical variables in the final state can be larger than
the resolution of the measuring device. We assign this excess of uncertainty to the fluctuations of the
measuring quantities {Qi(t)}. To be more specific, the elements of the starting subensemble defined by
{Qi(t), Qi(t) + δQi} can end in different subensembles {Qi(t + ∆t) + jδQi, Qi + (j + 1)δQi}. Here,
j assumes integer values. This additional uncertainty j ̸= 0 is due to the different time evolution of the
elements of the initial subensemble and can be in principle detected by the measuring instrument. Note
that there is no fluctuation of entropy due to the uncertainty introduced by the measuring device.

The mean value of entropy is the result of averaging its value over subensembles defined with
{Qi(t)}. If the relaxation is close to equilibrium, the mean value of entropy change is equal to the
change of locally defined thermodynamic entropy. The latter is defined in same way as in equilibrium
thermodynamics [14,15].

We assume that changes of entropy satisfy the MaxEnt distribution. Then the measured (mean) value
of the change of entropy is the only constraint in addition to the normalization of probabilities:

∆S = S(t + ∆t) − S(t) (2)

Here S(t) is the entropy of the microscopic or macroscopic initial state, while S(t + ∆t) and ∆S are
mean entropies of the final state of a system and the mean change of entropy, respectively. Due to the
evolution of a system, entropy in final microscopic states can acquire different values, although entropy
of initial microscopic states has same value.
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Information entropy in Eq. (1) becomes

SI = −
(∆S)max∑
(∆S)min

w(∆S) ln [w(∆S)] (3)

Here w(∆S) is the probability of the entropy change ∆S, and (∆S)min and (∆S)max are the minimum
and the maximum possible entropy changes, respectively. These extreme values are imposed by the
dynamics of the system.

The constrained maximization of information entropy (3), with respect to w(∆S), is performed
according to standard procedure [16] by introducing Lagrange’s multipliers and looking for the
maximum of the Lagrangian function

F = −
∑

w(∆S) ln [w(∆S)] + λ
(∑

w(∆S) − 1
)

+ µ
∑

w(∆S) [∆S − S(t + ∆t) + S(t)] (4)

The outcome of the maximization of F is

w(∆S) = C−1 exp(µ∆S) (5)

This result can be put into relationship with Einstein’s formula for a probability of fluctuations [17,18].
He proposed that the probability of fluctuation from equilibrium, in the isolated system, is w(∆S) =

C−1 exp(∆S/kB). Here, ∆S < 0 is the decrease of the entropy from its maximum value. Comparing
Einstein’s formula with Eq. (5) we get µ = 1/kB.

We return back to the relaxation of the system. It comes from the foregoing expression that the
maximum possible change of entropy is the most probable one. For a very short interval of time ∆t,
many different developments of the system are possible with likely probabilities. But as the time interval
increases, the ratio exp(∆S/kB) becomes extremely sharp function at the value of maximum possible
entropy change. This result is in accordance with the fluctuation theorem [19,20]. In the case of large
time intervals we can say that, apart from relatively small fluctuations, the relaxation of the system is
accompanied by maximum possible change of entropy. In other words, the most probable time evolution
of the isolated system is accompanied by the maximum entropy production (MEP). Martyushev and
Seleznev [7] provide a plausible derivation of the MEP principle in the case of an isolated system. They
argue that an isolated system reaches a state of maximum entropy within relaxation time (or within the
order of relaxation time) according to the second law of thermodynamics. Therefore, the change of
entropy within this time interval is the maximum possible. The MaxEnt formalism applied to the change
of entropy of an isolated system supports the plausible derivation of the MEP principle by Martyushev
and Seleznev.

In short, relaxation processes in isolated systems are in accordance with the MEP principle. An
isolated system will develop in such a way so as to produce the maximum possible entropy. This is an
addition of the second law of thermodynamics. While the second law states only that an isolated system
will approach the state of largest entropy, the MEP principle states that the system will approach that
state with the maximum possible speed [4,5,7,19,21,22].

4. Conclusions

The basic assumption of this paper is that an entropy change in relaxation processes obeys the MaxEnt
formalism. Therefore, the largest possible increase in entropy is the most probable increase of entropy.
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This means that a system evolves with maximum entropy production. In this way, the MEP principle
becomes an addition to the second law of thermodynamics. While the second law requires that an isolated
system will find itself in the state of maximum entropy, the MEP principle asserts that the system reaches
this state as quickly as possible.
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