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The standard derivation of Kirchhoff’s voltage law is based on the assumption that the first law
of thermodynamics (sum of products of applied EMF’s and corresponding currents = heat dissi-
pation) is satisfied within each loop. In contrast, we start from the fact that first law of thermo-
dynamics applies globally to the electric circuit as a whole. It is then shown that Kirchhoff’s
voltage law may be derived as an extremum of the system entropy production constrained by
the first law applied globally, and that the extremum is a maximum. Thus the stationary distri-
bution of currents in a linear electric circuit is governed by the principle of maximum entropy
production.
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INTRODUCTION

Following Jaynes’ information theory formalism of
non-equilibrium statistical mechanics1,2 Dewar3 has put
forward a statistical mechanical predictive framework
for systems in non-equilibrium stationary states. In this
information theoretic approach even if the system is ar-
bitrary far from equilibrium the temperature, non-equi-
librium entropy density and entropy production are phy-
sically well defined quantities. It is shown in Ref. 3 that
maximizing the path information entropy according to
Jaynes’ procedure of maximizing information entropy is
equivalent to maximizing the mean entropy production.
In this article we investigate the existence of a differen-

tial extremum principle governing energy conversion in
the planar electric network consisting of linear resistors
and constant electromotive forces (EMF-s). We shall
show that observed stationary current distribution is ac-
companied by maximum entropy production.

NECESSARY AND SUFFICIENT CONDITIONS
FOR MAXIMUM ENTROPY PRODUCTION

Mesh Currents as Thermodynamic Variables of the

Planar Electric Network

Stationary currents in a planar electric network consist-
ing of linear resistors and constant EMF-s obey Ohm’s



law, Kirchhoff’s current law (KCL) and Kirchhoff’s vol-
tage law (KVL). In electric circuit analysis there is an el-
egant method based on the notion of mesh current that
enables one to calculate all unknown currents in a linear
planar network from the system of linear algebraic equa-
tions deduced solely from KVL.

The basic notions in this analysis are a node, loop
and simple loop (mesh). The node is the common point
of three or more branches. A loop is a closed path along
the elements in the circuit passing through no node or el-
ement more than once. A mesh is a loop that contains no
internal loop (see Figure 1). In other words the meshes
are the simplest possible loops analogous to the meshes
of a fish net.4 Further, one associates a current Jk(k = 1,
2, ..., n) with each mesh (mesh current) (Figure 2). Mesh
currents need not be the real physical currents (currents
flowing through branches). The current flowing through a
branch that is common to two neighboring meshes is the
algebraic sum of corresponding mesh currents (current
Ja in Figure 2), while the current flowing through the
branch belonging only to one mesh is equal to the mesh
current associated with that loop (currents Jb and Jc in
Figure 2). Thus the concept of mesh currents ensures
KCL (= charge conservation) to be implicitly taken into
account. The number of linear algebraic equations de-
duced solely from KVL is equal to the number of un-
known mesh currents Jk(k = 1, 2, ..., n).

In the following we consider in turn an electric net-
work with two meshes and an arbitrary complex net-
work with more than two meshes. When applied to an
electric network consisting of two meshes (Figure 2)
KVL leads to two linear equations for the two unknown
mesh currents J1 and J2:

E11 + E12 = J1R11 + J1R12 – J2R21

E22 + E21 = J2R22 + J2R21 – J1R12. (1)

It is evident that in the case of an electric network
with n meshes KVL demands that the set of n mesh cur-
rents J1, J2, ���, Jn satisfy the system of n algebraic linear
equations6
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Here Ekl and Rkl are equivalent EMF-s and equiva-
lent resistances, respectively. By definition an equivalent
EMF Ekl is the algebraic sum of EMF’s within a branch,
i.e. summing EMF’s within a branch we have to care
about their polarization. An equivalent resistance Rkl is
just sum of resistances of resistors, connected in series,
within a given branch of the network, i.e. it is equal to
the equivalent resistance of the resistors connected in se-
ries.

In (1) and (2) different indices k � l denote the ele-
ments (EMF-s and resistors) in the branch common to
the two neighboring meshes, while Ekk and Rkk are the
elements in the outer branch (the branch that belongs to
only one mesh). We also have

Ekl = –Elk for k � l, (3)

and

Rkl = Rlk. (4)

The First Law of Thermodynamics in Terms of

Mesh Currents

A linear planar electric network consists of two parts: an
active part consisting of all EMF-s and a passive part
comprising all linear resistors. When stationary currents
flow in such a network the passive part converts the en-
ergy of all EMFs into Joule heat that is given off to the
surroundings (a reservoir of constant temperature T).
Then the stationary state of the linear planar network as
the thermodynamic system at absolute temperature T is
completely determined by the set of n mesh currents Jk(k =
1, 2, ���, n). During the conversion of electric energy into
heat there is no change of the internal energy of the passive
part (resistors). Therefore, according to the first law of
thermodynamics the rate at which energy is being deliv-
ered to the passive part, dW/dt, should be equal to the
rate of energy conversion into heat, dQ/dt, i.e.
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Figure 1. B is a loop, A and C are meshes.

Figure 2. Mesh currents and currents flowing through branches.



When stationary current J flows through a conduc-
tor with resistance R the rate of heat production is given
by Joule’s experimental law5
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By making use of relations (3), (4) and (6) we get
for the network shown in Figure 2:
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The relations (7) are easily generalized for a linear
planar electric network with n meshes. Then by means
of Eq. (5) we get:
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Here the factor 1/2 appears due to double counting
in the case of the branches common to the neighboring
meshes.

We note that KVL assumes that the first law of ther-
modynamics holds for each loop separately. From the
thermodynamical point of view this assumption is not at
all obvious a priori.

Entropy Production in Terms of Mesh Currents

The conversion of electrical energy into Joule heat
in a resistor is an irreversible process. If current J flows
through a resistor with resistance R, then the rate of this
process is determined by the entropy production:
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where T is the absolute temperature of the resistor. Note
that Eq. (9) incorporates Joule’s law.

Since entropy production is an additive quantity it is
evident that for the network shown in Figure 2 the over-
all entropy production is given by
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where an assumption is made that all the resistors in the
network are at the same temperature T. With the same
assumption the straightforward generalization of (10) to
the network with n meshes yields
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Being defined in n-dimensional linear space the en-
tropy production (11) is a differentiable function of n in-
dependent mesh currents.

Maximum Entropy Production and Kirchhoff 's

Voltage Law

For the given equivalent EMF-s and equivalent resistances
in the network with n meshes, where n � 2, there exist
infinitely many sets of n stationary mesh currents deter-
mining possible stationary states satisfying the global
energy conservation law of Eq. (8). However only the
set of n stationary mesh currents obtained as the unique
solution of the system of n algebraic Eqs. (2) determines
the actual stationary state which occurs in nature. It will
be shown that a differential extremum principle obeyed
by entropy production (11) is a selection principle from
which one derives the system of Eqs. (2).

The actual stationary currents flowing in a linear
planar electric network are obtained by the procedure of
seeking for the extremum of entropy subject to Eq. (8).
This is a problem of conditional extremum for entropy
production (11) in which the law of global energy con-
servation (8) plays the role of constraint. In other words
the system entropy production (11) is constrained by
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Then according to the standard procedure the func-
tion F,6,7

F
S
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d
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has the extremum at the point of n-dimensional linear
space (J1, J2, ���, Jn), which is the conditional extremum
point of entropy production diS/dt. The Lagrange multi-
plier � and the conditional extremum point of entropy
production are obtained from the conditions

T
F

Jk




� 0 , (14)

T� = 0 . (15)

The conditions (14) yield the system of n linear al-
gebraic equations
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In the case n = 2 the system reads

R J R J J E E11 1 12 1 2 11 12
2 2

� � �( – )
–

–
( )

l

l

R J J R J E E21 2 1 22 2 21 22
2 2

( – )
–

–
( )� � �

l

l
. (17)

CURRENT DISTRIBUTION AND MAXIMUM ENTROPY PRODUCTION 183

Croat. Chem. Acta 78 (2) 181–184 (2005)



Multiplication of first and second Eq. in (17) by J1

and J2 respectively, and summing them yields
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Comparison of condition (15) in the case n = 2 with
Eq. (18) gives � = 2. Due to (4) the system (17), for � =
2, is identical to the system (1) that was derived solely
from KVL.

By straightforward calculation it can be shown6 that
for an arbitrary number of meshes � = 2. This means
that among all functions F(�) only F(� = 2) has a possi-
ble point of extremum uniquely determined by KVL
�compare Eq.(16) and Eq.(2)�.

Sufficient Condition for the Maximum of the En-

tropy Production

We have shown (Ref. 6 and this paper) that KVL (2) fol-
lows as the necessary condition for the extremum value
of entropy production to exist.

Due to the relations (11) and (12) the second differ-
ential of function F(� = 2) defined by expression (13)
could be written in the form:
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Taking into account symmetry property (4) one ob-
tains
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We can conclude that if stationary currents satisfy
the system of equations (2) the Lagrangian function (13)
with � = 2 reaches its maximum. This implies that en-
tropy production (11) reaches its strict conditional maxi-
mum when stationary currents flow in a linear planar
electric network with n meshes (n � 2). In other words
the distribution of stationary currents in a linear planar
electric network, obeying Joule’s law, KCL, KVL and
the law of energy conservation (12), is governed by the
principle of maximum entropy production.
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Je li razdioba stacionarnih struja u linearnim planarnim elektri~nim mre`ama
odre|ena principom maksimalne proizvodnje entropije?

Sre}ko Botri}, Pa{ko @upanovi} i Davor Jureti}

Uobi~ajeni izvod Kirchhoffovoga zakona za elektri~nu petlju temelji se na pretpostavci da prvi zakon termo-
dinamike (zbroj umno`aka narinutih elektromotornih sila i odgovaraju}ih struja = proizvedenoj toplini) vrijedi
za svaku petlju. U ovom radu Kirchhoffov zakon za elektri~nu petlju izvodi se pomo}u principa maksimalne
proizvodnje entropije, uz uvjet da prvi zakon termodinamike vrijedi za ~itavu linearnu mre`u. Na taj na~in
pokazuje se da se razdioba stacionarnih struja podvrgava principu maksimalne proizvodnje entropije.
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