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An application of the Onsager’s principle of the least dissipation of energy to the
problem of the heat conduction in an anisotropic crystal is revisited. In the case
of a steady spatial distribution of the temperature it is shown that this principle
is equivalent to the principle of maximum entropy production. This means that
components of the actual heat flux are distributed in such a way as to achieve the
state of the maximum entropy production.
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1. Introduction

It was Ehrenfest (Enzykl. Math. Wissensch, IV, 2(II) fasc.6, p82, note23, 1912)
who first asked the question does there exist some function which, like the entropy
in the equilibrium state of an isolated system, achieves its extreme value in the
stationary non-equilibrium state.

L. Onsager [1, 2] showed that phenomenological laws of non-equilibrium thermo-
dynamics, like the Fourier’s law of heat conduction, diffusion or chemical processes
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close to the equilibrium state, can be derived from the principle of the least dissi-
pation of energy.

Besides this phenomenological approach, there is a less known microscopical one
introduced by Kohler [3]. Kohler’s approach starts from the Boltzman’s transport
equation. Assuming small departure of the distribution of molecules in the phase
space from the equilibrium (Maxwell-Boltzmann) distribution, he found that the
stationary state is the state of the maximum entropy production. Ziman applied
his method to the system of free electrons and also found that the stationary state
is the one with the maximum entropy production [4].

Finally, there is the third approach to the problem of the non-equilibrium
processes, based on the Shannon’s definition of the information measure [5],
launched by Jaynes [6, 7]. The result of this approach is the maximum entropy
production principle, which claims that stationary processes are characterized by
the maximum entropy production. It was Dewar who put this principle on the firm
ground [8].

It seems from the aforementioned that the Onsager’s principle of the least dis-
sipation offers a different answer to the question posed by Ehrenfest. We revisit
the problem of the stationary heat conduction in an anisotropic crystal and show
that the principle of the least dissipation of energy [1] and the maximum entropy
production principle are equivalent in this case.

The paper is organized in the following way. The first section starts with the
phenomenological equations of the heat conduction in an anisotropic crystal. The
entropy production is introduced using the first law of the thermodynamics and
continuity equation. The second section deals with the principle of the least dis-
sipation of energy. Non-equilibrium states are defined in terms of the heat flux in
the third section. It is shown that the entropy production is a bilinear function of
fluxes if the non-equilibrium state is close to the equilibrium state. The equivalence
between the principle of the least dissipation of energy and the maximum entropy
production is the subject of the fifth section. Finally, in the last section we stress
that maximum entropy production principle governs the non-stationary processes,
at least in the linear regime.

2. Heat conduction in anisotropic crystal and entropy

production

Heat conduction in an anisotropic crystal is described by the following system
of linear equations [1]

X1 = R11j1 + R12j2 + R13j3 ,

X2 = R21j1 + R22j2 + R23j3 , (1)

X3 = R31j1 + R32j2 + R33j3 ,
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where

Xk = −(1/T )∂T/∂xk (2)

is the thermodynamic force in the kth direction and jk is the conjugated heat flux.
In the case of an isotropic crystal, heat flux is equal to the heat transferred through
a unit surface perpendicular to the temperature gradient per unit of time. Finally,
Rkl are the elements of the tensor of thermal resistivity.

In the process considered in this paper, heat is the only mechanism of the
exchange of energy between elementary volume dV and its surroundings. Therefore,
due to the first law of thermodynamics and local equilibrium assumption, we get

dQ

dV
= q = Ts, (3)

where q and s are the heat and entropy densities, respectively. Assuming no source
of heat within the elementary volume, the equation of continuity for heat gives

1

T

dq

dt
=

ds

dt
= −

1

T
div j. (4)

Standard methods of the vector calculus give

dS

dt
= −

∮

1

T
j · dS +

∫

V

j·∇

(

1

T

)

dV. (5)

The rate of the change of the entropy of the whole crystal is [1]

dS

dt
= −

∫

V

1

T
div j dV. (6)

The rate of the exchange of entropy of the crystal with its surroundings is

deS

dt
= −

∮

S

1

T
j · dS. (7)

The difference between the total change of entropy and the rate of exchange of the
entropy between system and surroundings gives the entropy production,

diS

dt
=

dS

dt
−

deS

dt
=

∫

j̇ · ∇

(

1

T

)

dV (8)

In terms of the thermodynamic forces (2), we get

diS

dt
=

∫

V

1

T

3
∑

k=1

jkXk dV (9)

FIZIKA A 14 (2005) 1, 89–96 91
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By means of Eqs. (6), (7) and (9), the rate of the change of the entropy of the
whole crystal becomes

dS

dt
= −

∮

S

1

T
j · dS +

∫

V

1

T

3
∑

k=1

jkXk dV. (10)

This equation shows that entropy can be considered as some sort of the fluid the
source of which is the heat flux.

3. Principle of the least dissipation of energy

Formulation of the principle of the least dissipation of energy is related to the
dissipation function originally introduced by Lord Rayleigh [11]

2φ(j, j)T =

3
∑

k,l=1

Rkljkjl, (11)

where

Rkl = Rlk. (12)

One can easily verify that

diS

dt
−

∫

V

Φ(j, j) dV = maximum (13)

generates the system of equations (1). The above condition is known as the principle
of the least dissipation of energy.

4. Non-equilibrium state of the system close to the

equilibrium state

In the previous section, the entropy production is defined by means of the ther-
modynamic forces and conjugated fluxes (see Eq. (9)). The non-equilibrium state of
the elementary volume is a function of temperature, its gradient and flux. Assum-
ing that the non-equilibrium state is close to the equilibrium state, the expansion
of the density of the entropy production dis/dt in terms of the fluxes gives

dis

dt
=

dis

dt

∣

∣

∣

∣

eq

+

3
∑

k=1

akjk +

3
∑

k,l=1

1

T
Rkljkjl +

3
∑

k,l,m=1

Rklmjkjljm + O(j4). (14)
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A free term vanishes since it corresponds to the entropy production in the equilib-
rium state. Furthermore, due to the symmetry of the crystal on the operation of
inversion, it holds that

dis

dt
(−j) =

dis

dt
(j) . (15)

Due to this symmetry property, all odd powers vanish and for the state not far
from equilibrium state, we get the entropy production as the bilinear function in
fluxes

dis

dt
=

3
∑

k,l=1

1

T
Rkljkjl. (16)

5. Principle of the maximum entropy production

The definition of the entropy production (9) and expression (16) give

∫

V

1

T

∑

k

Xkjk dV =

∫

V

3
∑

k,l=1

1

T
Rkljkjl dV. (17)

The system of equations (1) can be deduced from the principle of maximum entropy
production

diS

dt
=

∫

V

1

T

3
∑

k,l=1

1

T
Rkljkjl dV = maximum, (18)

assuming a steady spatial distribution of temperatures.

Indeed, defining the Ψh function

Ψh =

∫

V

1

T

3
∑

k=1

jkXk dV −

∫

V

1

T

3
∑

k,l=1

Rkljkjl dV = 0, (19)

the standard procedure of the variational calculus of the conditional extremum [12]

δ

[

diS

dt
+ λΨh

]

= 0, (20)

gives

λXk + 2 (1 − λ)
3

∑

l=1

Rkljl = 0. (21)
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Multiplying the above equation with jk, summing over index k and integrating over
the crystal, we get

λ

∫

V

3
∑

k=1

jkXk dV + 2 (1 − λ)

∫

V

3
∑

k,l=1

Rkljkjl dV = 0. (22)

Due to the condition (17), we find λ = 2. Evidently, in this case the system of
equations (21) becomes the system of phenomenological equations (1).

This shows that the thermal fluxes (jk) are distributed in such a way as to
achieve the state of the maximum entropy production.

6. Discussion

The non-equilibrium state of the anisotropic crystal is a function of temperature,
its gradient and flux. If the non-equilibrium state is not far from the equilibrium
state, the entropy production is a bilinear function of the fluxes. Combining the
bilinear dependence of the entropy production with its standard definition (9), we
find that the system of the phenomenological equations of the heat conduction in
the anisotropic crystal can be derived from the principle of the maximum entropy
production. In this way, we show the equivalence between the principle of the least
dissipation of energy and the principle of the maximum entropy production.

We note that the principle of maximum entropy production based on the
Jaynes formulation of the statistical mechanics holds only for stationary processes
[8, 9]. The result of our analysis is that this principle holds also for non-stationary
processes, at least in the linear regime. This discrepancy will be a subject of our
further work.

We have shown that stationary currents in a linear electric network distribute
themselves so as to achieve the state of the maximum entropy production [10].

Two of the present authors have shown recently [13] that chemical cycle kinetics
close to the equilibrium state can be described by an analogue electric circuit, i.e.,
these processes are governed by the principle of the maximum entropy production,
too.

It is our belief that the principle of maximum entropy production is valid in the
linear non-equilibrium thermodynamics, i.e., we are convinced that it is just the
principle Ehrenfest was looking for.
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JEDNAKOVALJANOST ONSAGEROVOG PRINCIPA NAJMANJEG
RASIPANJA SLOBODNE ENERGIJE I PRINCIPA NAJVEĆE BRZINE

RASTA ENTROPIJE.
VOD– ENJE TOPLINE U ANIZOTROPNOM KRISTALU

Obnavljamo pitanje primjene Onsagerovog principa najmanjeg rasipanja slobodne
energije na problem vod–enja topline u anizotropnom kristalu. U slučaju stalne pros-
torne raspodjele temperature, pokazuje se da je taj princip jednakovaljan principu
najveće brzine rasta entropije. Stoga se komponente toplinskog toka raspodijele
tako da se postigne stanje najveće brzine rasta entropije.
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