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Uvodni pojmovi i definicije

Pojave koje ovise o neprekidnim varijablama, kao što su širenje valova ili topline,

se modeliraju parcijalnim diferencijalnim jednadžbama (PDJ).

Ove jednadžbe imaju važnu ulogu u fizici, tehnici, biologiji, financijskoj

matematici i sl.

PDJ je jednadžba koja opisuje vezu izmedu nepoznate funkcije

u = u(x1, x2, . . . , xn) i njezinih parcijalnih derivacija. Opći oblik PDJ je dan sa

F

(
x, u,

∂u

∂xi
, . . . ,

∂ku

∂xi1∂xi2 . . . ∂xjk

)
= 0. (1)

Parcijalne derivacije označavamo sa

ux =
∂u

∂x
, uxy =

∂2u

∂x∂y
, itd. (2)

Red parcijalne difencijalne jednadžbe je najvǐsi red parcijalne derivacije koji se

pojavljuje u jednadžbi.

Parcijalne diferencijalne jednadz
¯
be obično promatramo na otvorenom povezanom

skupu Ω ⊆ Rn.
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Rješenja parcijalnih diferencijalnih jednadžbi dijelimo na:

1 klasična,

2 slaba i

3 distribucijska rješenja.

Definicija

Klasično rješenje parcijalne diferencijalne jednadžbe reda k > 0 na skupu Ω ⊆ Rn je

funkcija u ∈ Ck(Ω) koja zadovoljava jednadžbu u svakoj točki skupa Ω.

Klasično rješenje nazivamo i jako rješenje PDJ.

Primjeri

1 Provjerite da su u = (x+ y)3 i u = sin(x− y) klasična rješenja jednadžbe

uxx − uyy = 0 na skupu Ω = R2. (3)

2 Provjerite da je u = ln(x2 + y2) klasično rješenje jednadžbe

uxx + uyy = 0 na skupu Ω = R2 \ {(0, 0)}. (4)
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Definicija
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Osnovna podjela parcijalnih diferencijalnih jednadžbi

Parcijalne diferencialne jednadžbe dijelimo prema

1 redu jednadžbe,

2 linearne vs. nelinearne jednadžbe.

Kažemo da je jednadžba

F

(
x, u,

∂u

∂xi
, . . . ,

∂ku

∂xi1∂xi2 . . . ∂xjk

)
= 0. (5)

linearna ako je F linearna funkcija u varijablama u i svim njezinim parcijalnim

derivacijama. U tom slučaju koeficijenti koji množe u i njezine derivacije ovise

samo o nezavisnim varijablama x1, . . . , xn.

Jednadžba je nelinearna ako nije linearna.
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Primjeri

1

xux + yuy = u, linearna PDJ prvog reda (6)

2

ut + uxxx − 6uux = 0, nelinearna PDJ trećeg reda (7)

3

u2x + u2y = u, nelinearna PDJ prvog reda (8)

U matematičkoj fizici važnu ulogu imaju linearne jednadžbe drugog reda.
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Klasične jednadžbe matematičke fizike

Većina fizikalnih pojava se modelirana linearnim jednadžbama drugog reda.

1 Valna jednadžba

utt − c2∇2u = 0, u = u(x, y, z, t) (9)

opisuje širenje zvučnih i elektromagnetiskih valova u prostoru.

2 Jednadžba provodenja topline ili difuzijska jednadžba

ut − k∇2u = 0, u = u(x, y, z, t) (10)

opisuje promjenu temperature u toplinski vodljivom tijelu i difuzijske procese u

tvarima.

3 Laplaceova jednadžba

∇2u = 0, u = u(x, y, z) (11)

opisuje električni potencijal i stacionarnu distribuciju temperature u toplinski

vodiljivom tijelu.

4 Schroedingerova jednadžba

−
ℏ
2m

∇2ψ + V (x, y, z)ψ = iℏψt, ψ = ψ(x, y, z, t) (12)

opisuje evoluciju valne funkcije ψ u kvantnoj mehanici.
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2 Jednadžba provodenja topline ili difuzijska jednadžba
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Linearne jednadžbe i princip superpozicije

Opći oblik linearne jednadžbe drugog reda u varijablama x1, x2, . . . , xn:

n∑
i,j=1

Aij(x)uxixj +
n∑

i=1

Bi(x)uxi + F (x)u = G(x). (13)

uxixj = uxjxi ⇒ možemo pretpostaviti da je Aij = Aji (14)

Jednadžbi (13) pridružujemo diferencijalni operator

L =
n∑

i,j=1

Aij
∂2

∂xi∂xj
+

n∑
i=1

Bi
∂

∂xi
+ F. (15)

Jednadžba (13) u operatorskom obliku:

L[u] = G. (16)

Ako je G = 0, onda kažemo da je jednadžba homogena.

Ako je G ̸= 0, onda kažemo da je jednadžba nehomogena.
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Jednadžba (13) u operatorskom obliku:

L[u] = G. (16)
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Diferencijalni operator L je linearan ako vrijedi

L[α1u1 + α2u2] = α1L[u1] + α2L[u2], α1, α2 ∈ R. (17)

Linearni operatori zadovoljavaju princip superpozicije. Ako je

L[u1] = 0, L[u2] = 0, (18)

onda je funkcija u = α1u1 + α2u2 rješenje iste jednadžbe jer je

L[u] = α1L[u1] + α2L[u2] = 0. (19)
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Elementarne tehnike

1 Direktna integracija

2 Metoda supstitucije (uvodenje novih varijabli)

3 Redukcija broja varijabli korǐstenjem simetrija jednažbe

Primjeri

1 Odredite opće rješenje jednadžbe uyy = 2 za funkciju u = u(x, y).

2 Odredite opće rješenje jednadžbe ux − uy = 0.

3 Odredite opće rješenje jednadžbe uxy + 1
x
uy = y

x2 .

4 Odredite sferno simetrično rješenje Laplaceove jednadžbe

uxx + uyy + uzz = 0.

5 (a) Pokažite da je u(x, y) = xf(2x + y) opće rješenje jednadžbe xux − 2xuy = u.

(b) Odredite rješenje koje zadovoljava uvjet u(1, y) = y2.
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Početni i rubni uvjeti

Parcijalne diferencijalne jednadžbe općenito imaju beskonačno mnogo rješenja. Da

bismo odredili jedinstveno rješenje jednadžbi moramo dodati početne i/ili rubne

uvjete. Početni i rubni uvjeti proizlaze iz fizikalne prirode problema koji promatramo.

Primjer 1 Valna jednadžba

utt − c2uxx = 0, 0 < x < L, t > 0. (20)

u(x, t) amplituda titranja žice u točki x u trenutku t.

Početni uvjeti:

u(x, 0) = f(x), x ∈ [0, L], (21)

ut(x, 0) = g(x), x ∈ [0, L]. (22)

Dirichletov rubni uvjet:

u(0, t) = u(L, t) = 0, t ≥ 0. (23)

Neumannov rubni uvjet:

ux(0, t) = ux(L, t) = 0, t ≥ 0. (24)
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Primjer 2 Laplaceova jednadžba

uxx + uyy = 0, (x, y) ∈ Ω, (25)

Ω ⊆ R2 područje omedeno zatvorenom po dijelovima glatkom krivuljom ∂Ω.

Dirichletov rubni uvjet:

u(x, y) = g(x, y), (x, y) ∈ ∂Ω (26)

Neumannov rubni uvjet:

∂u

∂n⃗
(x, y) = g(x, y), (x, y) ∈ ∂Ω, (27)

∂u

∂n⃗
= ∇u · n⃗ normalna derivacija na krivulju ∂Ω (28)
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uxx + uyy = 0, (x, y) ∈ Ω, (25)
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Stabilnost rješenja

Kažemo da je diferencijalna jednadžba sa zadanim počenim ili rubnim uvjetima je

dobro postavljen problem ako zadovoljava sljedeće uvjete (J. Hadamard, 1902.):

egzistencija: problem ima rješenje,

jedinstvenost: rješenje problema je jedinstveno uz zadane početne ili rubne uvjete,

stabilnost: rješenje jednadžbe na neprekidni način ovisi o parametrima jednadžbe

i rubnim ili početnim uvjetima.

Parcijalna diferencijalna jednadžba je stabilna ako male perturbacije početnih i rubnih

uvjeta ili parametara u jednadžbi uzrokuju male promjene u rješenju.
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egzistencija: problem ima rješenje,
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Primjer

1 Formulirajte uvjet stabilnosti za Laplaceovu jednadžbu

uxx + uyy = 0, (x, y) ∈ Ω, (29)

obzirom na Dirichletov rubni uvjet.

2 Formulirajte uvjet stabilnosti za valnu jednadžbu

utt − c2uxx = 0, x ∈ R, (30)

u vremenskom intervalu [0, T ] s obzirom na zadane početne uvjete.
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Sljedeći primjeri ilustriraju probleme koji nisu dobro postavljeni.

Hadamardov primjer

Pokažite da rješenje Laplaceove jednadžbe

uxx + uyy = 0, (x, y) ∈ R2 (31)

s rubnim uvjetima na pravcu y = 0,

u(x, 0) = f(x), uy(x, 0) = g(x), (32)

nije stabilno.

Obrnuta jednadžba provodenja

Pokažite da rješenje jednadžbe

ut + uxx = 0, −∞ < x <∞, t > 0, (33)

s početnim uvjetom u(x, 0) = 1 nije stabilno.
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Nestabilnost rješenja u Hadamardovom primjeru
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Fourierov red

Teorija Fourierovih redova se razvila kao pokušaj rješavanja jednadžbe provodenja

topline metodom separacije varijabli.

Problem: Možemo li zadanu funkciju f : [−L,L] → R prikazati kao linearnu

kombinaciju funkcija sin(ωx) i cos(ωx) različitih perioda?

Takav prikaz je moguć pomoću trigonometrijskog reda

f(x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

) ]
, −L ≤ x ≤ L. (34)

Fourierov red je linearna kombinacija oscilatornih funkcija frekvencija i perioda

Tn =
2L

n
, fn =

1

Tn
=

n

2L
. (35)

Zastupljenost pojedinih frekvencija odredena je kofecijentima an i bn.

PDJ



Fourierov red

Teorija Fourierovih redova se razvila kao pokušaj rješavanja jednadžbe provodenja

topline metodom separacije varijabli.
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Trigonometrijske funkcije sin(xn), n = 1, 2, 3, . . .

Slika: f(x) = sin(x)

Slika: f(x) = sin(2x)

Slika: f(x) = sin(3x)
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Pretopostavimo da je moguće napisati funkciju f kao

f(x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

) ]
, −L ≤ x ≤ L. (36)

Problem: Kako možemo odrediti koeficijente an i bn?

Na prostoru neprekidnih funkcija f : [−L,L] → R možemo definirati skalarni umnožak

⟨f, g⟩ =
∫ L

−L
f(x)g(x)dx. (37)

Skup funkcija {
1, sin

(nπx
L

)
, cos

(nπx
L

)
| n ∈ N

}
(38)

je ortogonalan obzirom na ovaj skalarni umnožak.
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Fourierove koeficijente možemo odrediti iz relacija ortogonalnosti:

∫ L

−L
1 · cos

(nπx
L

)
dx =

∫ L

−L
1 · sin

(nπx
L

)
dx = 0, n ≥ 1, (39)∫ L

−L
sin

(mπx
L

)
sin

(nπx
L

)
dx = Lδnm, (40)∫ L

−L
cos

(mπx
L

)
cos

(nπx
L

)
dx = Lδnm, (41)∫ L

−L
sin

(mπx
L

)
cos

(nπx
L

)
dx = 0, n,m ≥ 1. (42)

Kroneckerov simbol

δnm =

1, n = m,

0, n ̸= m.
(43)

Odredite izraze za Fourierove koeficijente koristeći relacije ortogonalnosti.
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Fourierove koeficijente možemo odrediti iz relacija ortogonalnosti:

∫ L

−L
1 · cos

(nπx
L

)
dx =

∫ L

−L
1 · sin

(nπx
L

)
dx = 0, n ≥ 1, (39)∫ L

−L
sin

(mπx
L

)
sin

(nπx
L

)
dx = Lδnm, (40)∫ L

−L
cos

(mπx
L

)
cos

(nπx
L

)
dx = Lδnm, (41)∫ L

−L
sin

(mπx
L

)
cos

(nπx
L

)
dx = 0, n,m ≥ 1. (42)

Kroneckerov simbol

δnm =

1, n = m,

0, n ̸= m.
(43)

Odredite izraze za Fourierove koeficijente koristeći relacije ortogonalnosti.
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Definicija

Trigonometrijski red

a0

2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

) ]
(44)

gdje su

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, n = 0, 1, 2, . . . (45)

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx, n = 1, 2, 3, . . . (46)

naziva se Fourierov red funkcije f na intervalu [−L,L]. Koeficijenti an i bn nazivaju

se Fourierovi koeficijenti funkcije f .

PDJ



Što možemo reći o konvergenciji Fourierovog reda?

1 Fourierovi koeficijenti su potpuno odredeni integralom funkcije f pa se Fourierov

red ne mijenja ako funkciju promijenimo u prebrojivo mnogo točaka. Stoga

Fourierov red ne mora konvergirati ka f(x) u svakoj točki x ∈ [−L,L].

2 Fourierov red može konvergirati po točkama, uniformno ili u L2–normi, ovisno o

svojstvima funkcije f .

Problem

Želimo odrediti uvjete na funkciju f tako da vrijedi

f(x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

) ]
, −L ≤ x ≤ L. (47)
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Elementarni primjeri

Pri računanju Fourierovih koeficijenata korisno je zapamtiti sljedeća pravila:

1 ako je h : [−L,L] → R neparna funkcija, onda je∫ L

−L
h(x)dx = 0, (48)

2 ako je h : [−L,L] → R parna funkcija, onda je∫ L

−L
h(x)dx = 2

∫ L

0
h(x)dx. (49)

Primjeri

1 Odredite Fourierov red funkcije f(x) = x na intervalu [−L,L].

2 Razvijte u Fourierov red funkciju f(x) = x2 − 1 na intervalu [−1, 1].
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Slika: Fourierov red funkcije f(x) = x, N = 5.
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Slika: Fourierov red funkcije f(x) = x, N = 15.
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Slika: Fourierov red funkcije f(x) = x2 − 1, N = 2.
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Slika: Fourierov red funkcije f(x) = x2 − 1, N = 6.
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Konvergencija Fourierovog reda

Definicija

Kažemo da je funkcija f po dijelovima neprekidna na [a, b] ako

1 je definirana i neprekidna osim eventualno u konačno mnogo točaka

a ≤ x1 < x2 < . . . < xn ≤ b,

2 u točkama prekida xk ̸= a, b postoje jednostrani limesi

f(x−k ) = lim
x→x−

k

f(x), f(x+k ) = lim
x→x+

k

f(x), (50)

3 u rubnim točkama postoje limesi limx→a+ f(x) i limx→b− f(x).

Funkcija ima prekid prve vrste u točki xk i promjenu vrijednosti

βk = f(x+k )− f(x−k ). (51)
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Definicija

Kažemo da je funkcija f po dijelovima C1 na intervalu [a, b] ako su f i f ′ po

dijelovima neprekidne na [a, b].

Primjer

Odredite jesu li funkcije f i g zadane sa

f(x) =


−1, −1 ≤ x < 0,

2, x = 0,

x2, 0 < x ≤ 1,

(52)

g(x) = |x| (53)

po dijelovima C1 na [−1, 1].
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Dirichletov teorem

Neka je f po dijelovima C1 funkcija na [−L,L] i neka je f̃ Fourierov red funkcije f .

Tada je

1 f̃(x0) = f(x0) ako je f neprekidna u točki x0 ∈ (−L,L),

2 f̃(x0) =
1
2

[
f(x+0 ) + f(x−0 )

]
ako f ima prekid u točki x0 ∈ (−L,L),

3 f̃(±L) = 1
2

[
f(−L+) + f(L−)

]
.

Primjedbe:

1 Neprekidnost funkcije nije dovoljnan uvjet za konvergenciju Fourierovog reda.

2 Ako je f neprekidna na [−L,L], onda njezina derivacija mora biti po dijelovima

neprekidna da bi Fouerirov red konvergirao ka f(x) u svakoj točki x ∈ (−L,L).
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Primjer

Ilustrirajte Dirichletov teorem na funkcijama

f(x) =

0, −1 ≤ x < 0,

1, 0 ≤ x ≤ 1,
(54)

g(x) = |x|, x ∈ [−π, π]. (55)
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Slika: Razvoj step–funkcije u Fourierov red.
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Slika: Razvoj funkcije f(x) = |x| u Fourierov red.

PDJ



Uniformna konvergencija

Cauchy–Schwartzova nejednakost

Ako su zi, wi kompleksni brojevi, 1 ≤ i ≤ n, onda je∣∣∣∣∣
n∑

i=1

ziw̄i

∣∣∣∣∣ ≤
√√√√ n∑

i=1

|zi|2

√√√√ n∑
i=1

|wi|2. (56)

Besselova nejednakost

Neka je f : [−L,L] → R po dijelovima neprekidna funkcija i neka su

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, n ≥ 0, (57)

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx, n ≥ 1. (58)

Tada vrijedi

1

2
a20 +

∞∑
n=1

(a2n + b2n) ≤
1

L

∫ L

−L

(
f(x)

)2
dx. (59)

PDJ



Uniformna konvergencija

Cauchy–Schwartzova nejednakost

Ako su zi, wi kompleksni brojevi, 1 ≤ i ≤ n, onda je∣∣∣∣∣
n∑

i=1

ziw̄i

∣∣∣∣∣ ≤
√√√√ n∑

i=1

|zi|2

√√√√ n∑
i=1

|wi|2. (56)

Besselova nejednakost

Neka je f : [−L,L] → R po dijelovima neprekidna funkcija i neka su

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, n ≥ 0, (57)

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx, n ≥ 1. (58)

Tada vrijedi

1

2
a20 +

∞∑
n=1

(a2n + b2n) ≤
1

L

∫ L

−L

(
f(x)

)2
dx. (59)

PDJ



Iz Besselove nejednakosti slijedi

Riemann-Lebesgueova lema

Ako je f : [−L,L] → R po dijelovima neprekidna funkcija, onda vrijedi

lim
n→∞

an =
1

L
lim

n→∞

∫ L

−L
f(x) cos

(nπx
L

)
= 0, (60)

lim
n→∞

bn =
1

L
lim

n→∞

∫ L

−L
f(x) sin

(nπx
L

)
= 0. (61)

Može se pokazati da vrijedi jači rezultat.

Parsevalova jednakost

Ako je f : [−L,L] → R po dijelovima neprekidna funkcija, onda je

1

2
a20 +

∞∑
n=1

(a2n + b2n) =
1

L

∫ L

−L

(
f(x)

)2
dx. (62)
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Teorem o uniformnoj konvergenciji

Neka je f neprekidna i po dijelovima C1 funkcija na intervalu [−L,L] takva da je

f(−L) = f(L). Onda Fourierov red konvergira uniformno ka f na [−L,L].

Ako Fourierovi koeficijenti nisu eksplicitno poznati, može se pokazati da vrijede

sljedeće ocjene za |an| i |bn|.

Teorem

Neka je f ∈ C2[−L,L] takva da je f(−L) = f(L) i f ′(−L) = f ′(L). Neka je

M = maxx∈[−L,L] |f ′′(x)|. Tada Fourierovi koeficijenti imaju gornje mede

|an| =
∣∣∣∣ 1L

∫ L

−L
f(x) cos

(nπx
L

)
dx

∣∣∣∣ ≤ 2L2M

π2n2
, (63)

|bn| =
∣∣∣∣ 1L

∫ L

−L
f(x) sin

(nπx
L

)
dx

∣∣∣∣ ≤ 2L2M

π2n2
, n ≥ 1. (64)
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Koristeći ovaj teorem možemo procijeniti broj Fouerierovih koeficijenata potreban za

aproksimaciju funkcije unutar zadane točnosti.

Neka je

SN (x) =
a0

2
+

N∑
n=1

[
an cos

(nπ
L
x
)
+ bn sin

(nπ
L
x
)]

(65)

N–ta parcijalna suma Fourierovog reda funkcije f . Ako želimo da je

sup
x∈[−L,L]

|f(x)− SN (x)| < ε, (66)

onda nam je potrebeno barem

N >
4L2M

π2ϵ
(67)

Fourierovih koeficijenata.
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