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m Pojave koje ovise o neprekidnim varijablama, kao $to su 3irenje valova ili topline,
se modeliraju parcijalnim diferencijalnim jednadZbama (PDJ).

m Ove jednadZbe imaju vaZnu ulogu u fizici, tehnici, biologiji, financijskoj
matematici i sl.

m PDJ je jednadZba koja opisuje vezu izmedu nepoznate funkcije

u = u(z1,22,...,Tn) i njezinih parcijalnih derivacija. Opéi oblik PDJ je dan sa
ou Fu
F s Yy [ - 4 = O 1
<x v ox; 0x, 0x4, ..Bw]—k) ()
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Uvodni pojmovi i definicije

m Pojave koje ovise o neprekidnim varijablama, kao $to su 3irenje valova ili topline,

se modeliraju parcijalnim diferencijalnim jednadzbama (PDJ).

m Ove jednadZbe imaju vaZznu ulogu u fizici, tehnici, biologiji, financijskoj

matematici i sl.

m PDJ je jednadzba koja opisuje vezu izmedu nepoznate funkcije

u = u(x1,T2,...,2Tn) i njezinih parcijalnih derivacija. Op¢i oblik PDJ je dan sa
o ok
F(Iui—“):o (1)
Ox; 0x;, 0x4y ... 0T,

Parcijalne derivacije oznatavamo sa

ou 02%u

—, oy = ———, itd. 2
ox ey 0xdy I )

Uy =
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Uvodni pojmovi i definicije

m Pojave koje ovise o neprekidnim varijablama, kao $to su 3irenje valova ili topline,

se modeliraju parcijalnim diferencijalnim jednadzbama (PDJ).

m Ove jednadZbe imaju vaZznu ulogu u fizici, tehnici, biologiji, financijskoj

matematici i sl.

m PDJ je jednadzba koja opisuje vezu izmedu nepoznate funkcije

u = u(x1,T2,...,2Tn) i njezinih parcijalnih derivacija. Op¢i oblik PDJ je dan sa
o ok
F(mi—):o (1)
Ox; 0x;, 0x4y ... 0T,

Parcijalne derivacije oznatavamo sa

ou 02%u

—, oy = ———, itd. 2
ox ey 0xdy I )

Uy =

m Red parcijalne difencijalne jednadZbe je najvisi red parcijalne derivacije koji se
pojavljuje u jednadZbi.

m Parcijalne diferencijalne jednadzbe obi¢no promatramo na otvorenom povezanom
skupu Q C R™.
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Rjesenja parcijalnih diferencijalnih jednadzbi dijelimo na:
klasi¢na,
slaba i

distribucijska rjesenja.
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Rjesenja parcijalnih diferencijalnih jednadzbi dijelimo na:
klasi¢na,
slaba i

distribucijska rjesenja.

Definicija
Klasi€no rjedenje parcijalne diferencijalne jednadzbe reda £ > 0 na skupu 2 C R™ je
funkcija u € C*(Q) koja zadovoljava jednadzbu u svakoj to¢ki skupa Q.

Klasi¢no rjeSenje nazivamo i jako rjeSenje PDJ.
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Rjesenja parcijalnih diferencijalnih jednadzbi dijelimo na:
klasi¢na,
slaba i

distribucijska rjesenja.
Definicija

Klasi€no rjedenje parcijalne diferencijalne jednadzbe reda £ > 0 na skupu 2 C R™ je
funkcija u € C*(Q) koja zadovoljava jednadzbu u svakoj to¢ki skupa Q.

Klasi¢no rjeSenje nazivamo i jako rjeSenje PDJ.
Primjeri

| Provjerite da su u = (z + y)2 i u = sin(z — y) klasi¢na rjeSenja jednadzbe
Uzz — Uyy =0 naskupuy Q= R2. 3)
Provjerite da je u = In(22 + y?) klasi¢no rjedenje jednadzbe
Upz + uyy =0 naskupu Q =R2\ {(0,0)}. (4)
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Osnovna podjela parcijalnih diferencijalnih jednadzbi

Parcijalne diferencialne jednadzbe dijelimo prema
redu jednadzbe,

linearne vs. nelinearne jednadzbe.

m KaZemo da je jednadZba

9 ok
F(ui—):o (5)
Ox; O0x;, 04, ... Oxj,

linearna ako je F' linearna funkcija u varijablama w i svim njezinim parcijalnim
derivacijama. U tom sluéaju koeficijenti koji mnoZe u i njezine derivacije ovise

samo o nezavisnim varijablama x1,...,zn.
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Osnovna podjela parcijalnih diferencijalnih jednadzbi

Parcijalne diferencialne jednadzbe dijelimo prema
redu jednadzbe,

linearne vs. nelinearne jednadzbe.

m KaZemo da je jednadZba

O ok
F(ui—):o 5)
8;127', 8;131'1 8.1’1'2 - aﬂf/‘jk

linearna ako je F' linearna funkcija u varijablama w i svim njezinim parcijalnim
derivacijama. U tom sluéaju koeficijenti koji mnoZe u i njezine derivacije ovise

samo o nezavisnim varijablama x1,...,zn.

m JednadZzba je nelinearna ako nije linearna.
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Primjeri

Tugz + Yyuy = u, linearna PDJ prvog reda (6)

H
Ut + Uggxr — 6uuy = 0, nelinearna PDJ tredeg reda (7)
u + ui =u, nelinearna PDJ prvog reda (8)
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Primjeri

Tuz + yuy = u, linearna PDJ prvog reda
H
Ut + Uggz — 6uug = 0, nelinearna PDJ treéeg reda

2 2 _ -
uz +uy =wu, nelinearna PDJ prvog reda

U matematitkoj fizici vaZnu ulogu imaju linearne jednadzbe drugog reda.

PDJ
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Veéina fizikalnih pojava se modelirana linearnim jednad?bama drugog reda.
B Valna jednadzba

Upp — V2 = 0,

u=u(z,y,z,1)

«Or «Fr o« > > a

opisuje Sirenje zvu&nih i elektromagnetiskih valova u prostoru.

(9)

it
a



Vedina fizikalnih pojava se modelirana linearnim jednadZbama drugog reda.
Valna jednadzba

Uty — c2V2u =0, u= 'U,(il?, Y, Z,t) (9)
opisuje Sirenje zvu&nih i elektromagnetiskih valova u prostoru.
Jednadzba provodenja topline ili difuzijska jednadzba

U — EV2y = 0,
tvarima.

u= u(x,y7 zﬂt)
opisuje promjenu temperature u toplinski vodljivom tijelu i difuzijske procese u

(10)
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Klasi¢ne jednadzbe matematicke fizike

Vedina fizikalnih pojava se modelirana linearnim jednadZbama drugog reda.

Valna jednadzba
ut — AV2u =0, w=u(z,y,z1t) 9)
opisuje Sirenje zvu¢nih i elektromagnetiskih valova u prostoru.

Jednadzba provodenja topline ili difuzijska jednadzba
u — kV2u =0, u=u(z,y,z2,1t) (10)

opisuje promjenu temperature u toplinski vodljivom tijelu i difuzijske procese u
tvarima.
Laplaceova jednadZba
Viu=0, u=u(z,y,z) (11)
opisuje elektriéni potencijal i stacionarnu distribuciju temperature u toplinski

vodiljivom tijelu.
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Klasi¢ne jednadzbe matematicke fizike

Vedina fizikalnih pojava se modelirana linearnim jednadZbama drugog reda.

Valna jednadzba

ut — AV2u =0, w=u(z,y,z1t) 9)
opisuje Sirenje zvu¢nih i elektromagnetiskih valova u prostoru.
Jednadzba provodenja topline ili difuzijska jednadzba

u — kV2u =0, u=u(z,y,z2,1t) (10)
opisuje promjenu temperature u toplinski vodljivom tijelu i difuzijske procese u
tvarima.
Laplaceova jednadZba

Viu=0, u=u(z,y,z) (11)

opisuje elektriéni potencijal i stacionarnu distribuciju temperature u toplinski
vodiljivom tijelu.

Schroedingerova jednadZba

VR V(@ 2 = iy, Y= (@9, 21) (12)

opisuje evoluciju valne funkcije ¥ u kvantnoj mehanici.

PDJ



-




Opéi oblik linearne jednadZbe drugog reda u varijablama z1, 2, ..., xy:
i,j=1

Z Aj(x)uzz; + Z Bi(z)uz, + F(z)u = G(xz).

i=1
Ug;x; = Uzjz;

=

(13)
moZemo pretpostaviti da je A;; = Aj;

«Or «Fr <« > > a
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Opéi oblik linearne jednadZbe drugog reda u varijablama z1, z2,
n n
4,j=1

U -
> Ai(@)uae; + Y Bi(@)ug, + F(z)u = G(z) (13)
i=1
Up,z; = Uz;o; = MOZemo pretpostaviti da je A;; = Aj;
Jednadzbi (13) pridruZujemo diferencijalni operator

(14)
02 = 0

L= Aj; B; F.

;1 g 63:18% * ; ‘o *

i

(15)
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Opéi oblik linearne jednadZbe drugog reda u varijablama z1, z2,
n n
4,j=1

Z Aij (@) e,y + Z Bi(z)uz; + F(z)u = G(z)

<y &n !
(13)
i=1
Up,z; = Uz;o; = MOZemo pretpostaviti da je A;; = Aj; (14)
Jednadzbi (13) pridruZujemo diferencijalni operator
52 - 7]
L= A; B; F.
Z Uamzamj +Z: " Oy +
1,7=1 =1
Jednadzba (13) u operatorskom obliku

(15)
Llul =G

. (16)
m Ako je G = 0, onda kaZzemo da je jednadzba homogena.
m Ako je G # 0, onda kaZemo da je jednadzba nehomogena.
«A40r «4F»r «=)» <« > Q™
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Diferencijalni operator L je linearan ako vrijedi

Lloiur + aguz] = a1 Lfui] + aaLfus], a1,a2 € R.

Linearni operatori zadovoljavaju princip superpozicije. Ako je
L[u1] =0, Llu2] =0,
onda je funkcija u = aju1 + asusg rjedenje iste jednadzbe jer je

L[u] = a1 L[u1] + a2L[ug] = 0.

PDJ
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Direktna integracija

Metoda supstitucije (uvodenje novih varijabli)

Redukcija broja varijabli koriStenjem simetrija jednaZzbe
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Redukcija broja varijabli koriStenjem simetrija jednaZzbe
Primjeri

Direktna integracija
Metoda supstitucije (uvodenje novih varijabli)

Odredite opée rjeenje jednadzbe uyy = 2 za funkciju © = u(z, y).

«Or «Fr <« > > a
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Redukcija broja varijabli koriStenjem simetrija jednaZzbe
Primjeri

Direktna integracija
Metoda supstitucije (uvodenje novih varijabli)

Odredite opce rjeSenje jednadZzbe u; — uy = 0.

«O> <> < > > A

Odredite opée rjeenje jednadzbe uyy = 2 za funkciju © = u(z, y).
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Redukcija broja varijabli koriStenjem simetrija jednaZzbe
Primjeri

Direktna integracija
Metoda supstitucije (uvodenje novih varijabli)

Odredite opée rjeenje jednadzbe uyy = 2 za funkciju © = u(z, y).
Odredite opce rjeSenje jednadZzbe u; — uy = 0.

Odredite opce rjedenje jednadzbe ugy + %uy = fg

«40O> «Fr «=)>» «=)» = Q>



Direktna integracija

Metoda supstitucije (uvodenje novih varijabli)
Redukcija broja varijabli koriStenjem simetrija jednaZzbe
Primjeri
Odredite opée rjeenje jednadzbe uyy = 2 za funkciju © = u(z, y).
Odredite opce rjeSenje jednadZzbe u; — uy = 0.
Odredite opce rjedenje jednadzbe ugy + %uy = fg

| Odredite sferno simetri¢no rjeSenje Laplaceove jednadzbe

Uz + Uyy + Uzz = 0.

«40O> «Fr «=)>» «=)» = Q>



Elementarne tehnike

| Direktna integracija
Metoda supstitucije (uvodenje novih varijabli)

Redukcija broja varijabli koritenjem simetrija jednaZbe

Primjeri
Odredite opce rjeZenje jednadzbe uyy = 2 za funkciju u = u(z, y).
Odredite opce rjeSenje jednadzbe u; — uy = 0.
Yy

Odredite opce rje¥enje jednadzbe uyy + %uy =5

@ Odredite sferno simetri¢no rje¥enje Laplaceove jednadZbe

Uzpe + Uyy + Uzz = 0.

5] PokaZite da je u(x,y) = = f(2x + y) ople rjefenje jednadzbe zu, — 2zu, = u.
@ Odredite rjefenje koje zadovoljava uvjet u(1,y) = y2.

PDJ



Parcijalne diferencijalne jednadZbe opéenito imaju beskona&no mnogo rjesenja. Da
bismo odredili jedinstveno rjeSenje jednadZbi moramo dodati po&etne i/ili rubne

uvjete. Po&etni i rubni uvjeti proizlaze iz fizikalne prirode problema koji promatramo.

«Or «Fr <« > > a
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Parcijalne diferencijalne jednadZbe opéenito imaju beskona&no mnogo rjesenja. Da
bismo odredili jedinstveno rjeSenje jednadZbi moramo dodati po&etne i/ili rubne

uvjete. Po&etni i rubni uvjeti proizlaze iz fizikalne prirode problema koji promatramo.
Primjer 1 Valna jednadZba

2
Ut — C Ugg = 0,

0O<z<L,t>0.
(z,t) amplituda titranja Zice u to¢ki = u trenutku ¢.

(20)
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Parcijalne diferencijalne jednadZbe opéenito imaju beskona&no mnogo rjesenja. Da
bismo odredili jedinstveno rjeSenje jednadZbi moramo dodati po&etne i/ili rubne

uvjete. Po&etni i rubni uvjeti proizlaze iz fizikalne prirode problema koji promatramo.
Primjer 1 Valna jednadzba

Ut — Cugy =0, 0<x <L, t>0. (20)
(z,t) amplituda titranja Zice u to¢ki = u trenutku ¢.

Po&etni uvjeti:

u(z,0) = f(z),

z € [0, L],
ut(z,0) = g(z),

(21)
xz €10, L].

(22)

it

a
it
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Parcijalne diferencijalne jednadZbe opéenito imaju beskona&no mnogo rjesenja. Da
bismo odredili jedinstveno rjeSenje jednadZbi moramo dodati po&etne i/ili rubne

uvjete. Po&etni i rubni uvjeti proizlaze iz fizikalne prirode problema koji promatramo.
Primjer 1 Valna jednadzba

2
Ut — C Ugg = 0,

0O<z<L,t>0.
(z,t) amplituda titranja Zice u to¢ki = u trenutku ¢.

(20)
Po&etni uvjeti:

u(z,0) = f(z),

z€[0,L], (21)
ut(z,0) = g(z), =z €l0,L]. (22)
Dirichletov rubni uvjet:
u(0,t) = u(L,t) =0, t>0.



Pocetni i rubni uvjeti

Parcijalne diferencijalne jednadZbe opcéenito imaju beskonaéno mnogo rjesenja. Da

bismo odredili jedinstveno rje3enje jednadzbi moramo dodati potetne i/ili rubne

uvjete. Po&etni i rubni uvjeti proizlaze iz fizikalne prirode problema koji promatramo.

Primjer 1 Valna jednadzba

Uit — gy =0, 0<az <L, t>0.
u(z,t) amplituda titranja Zice u toZki x u trenutku ¢.
Pocetni uvjeti:
u(z,0) = f(z), =z€][0,L],
ut(z,0) = g(z), = €]0,L]

Dirichletov rubni uvjet:
u(0,t) = u(L,t) =0, t>0.

Neumannov rubni uvjet:
uz(0,t) = ugp (L, t) =0, t>0.

PDJ
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Primjer 2 Laplaceova jednadzba

Uz + Uyy = 0, (x,y) S Q7 (25)

Q C R2 podrutje omedeno zatvorenom po dijelovima glatkom krivuljom 99.
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Primjer 2 Laplaceova jednadzba

Uz + Uyy = 0, (x,y) S Q7 (25)

Q C R2 podrutje omedeno zatvorenom po dijelovima glatkom krivuljom 99.

Dirichletov rubni uvjet:

u(z,y) = g(z,y), (z,y)€ 0Q (26)
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Primjer 2 Laplaceova jednadzba

Uz + Uyy = 0, (x,y) S Q7 (25)

Q C R2 podrutje omedeno zatvorenom po dijelovima glatkom krivuljom 99.

Dirichletov rubni uvjet:

u(z,y) = g(z,y), (z,y) € Q (26)
Neumannov rubni uvjet:
ou
@Y =9(xy), (z.y) €09, (27)
7
ou N - _—
97 = Vu -7 normalna derivacija na krivulju 99 (28)
7
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KaZemo da je diferencijalna jednadZba sa zadanim po&enim ili rubnim uvjetima je

dobro postavljen problem ako zadovoljava sljedeée uvjete (J. Hadamard, 1902.):

«Or 4«Fr o« > > a
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dobro postavljen problem ako zadovoljava sljedeée uvjete (J. Hadamard, 1902.):
m egzistencija: problem ima rjedenje,

«Or «Fr <« > > a

KaZemo da je diferencijalna jednadZba sa zadanim po&enim ili rubnim uvjetima je
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m egzistencija: problem ima rjedenje,

KaZemo da je diferencijalna jednadZba sa zadanim po&enim ili rubnim uvjetima je
dobro postavljen problem ako zadovoljava sljedeée uvjete (J. Hadamard, 1902.):

m jedinstvenost: rjeSenje problema je jedinstveno uz zadane poletne ili rubne uvjete,

«O> <> < > > A
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m egzistencija: problem ima rjedenje,

KaZemo da je diferencijalna jednadZba sa zadanim po&enim ili rubnim uvjetima je
dobro postavljen problem ako zadovoljava sljedeée uvjete (J. Hadamard, 1902.):

m jedinstvenost: rjeSenje problema je jedinstveno uz zadane poletne ili rubne uvjete,
i rubnim ili poéetnim uvjetima.

m stabilnost: rje¥enje jednadZbe na neprekidni na&in ovisi o parametrima jednadzbe

«O> <> < > > A
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Stabilnost rjeSenja

KaZemo da je diferencijalna jednadZba sa zadanim po&enim ili rubnim uvjetima je
dobro postavljen problem ako zadovoljava sljedeée uvjete (J. Hadamard, 1902.):

m egzistencija: problem ima rjeSenje,
m jedinstvenost: rjeSenje problema je jedinstveno uz zadane pocetne ili rubne uvjete,

m stabilnost: rjeSenje jednadZbe na neprekidni na&in ovisi o parametrima jednadZbe

i rubnim ili poetnim uvjetima.

Parcijalna diferencijalna jednadZba je stabilna ako male perturbacije poetnih i rubnih
uvjeta ili parametara u jednadZbi uzrokuju male promjene u rje¥enju.

PDJ



Primjer

B Formulirajte uvjet stabilnosti za Laplaceovu jednadZbu
Uzz +uyy =0, (z,y) €Q,

obzirom na Dirichletov rubni uvjet.

PDJ
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Primjer

B Formulirajte uvjet stabilnosti za Laplaceovu jednadZbu
Uzz +uyy =0, (z,y) €Q,

obzirom na Dirichletov rubni uvjet.

Formulirajte uvjet stabilnosti za valnu jednadzbu

2
Ut — CUze =0, = €R,

u vremenskom intervalu [0, 7] s obzirom na zadane po&etne uvjete.

PDJ
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Sljedeéi primjeri ilustriraju probleme koji nisu dobro postavljeni.

Hadamardov primjer

PokaZite da rjeSenje Laplaceove jednadZbe
Use +uyy =0, (z,y) ER® (31)
s rubnim uvjetima na pravcu y = 0,

u(z,0) = f(z), uy(z,0)=g(x), (32)

nije stabilno.

PDJ



Sljedeéi primjeri ilustriraju probleme koji nisu dobro postavljeni.

Hadamardov primjer

PokaZite da rjeSenje Laplaceove jednadZbe
Uze +Uuyy =0, (z,9) € R? (31)
s rubnim uvjetima na pravcu y = 0,
u(z,0) = f(z), uy(z,0)=g(x), (32)

nije stabilno.

Obrnuta jednadZba provodenja

PokaZite da rjeSenje jednadzbe
Ut + Uge =0, —oo < x<o0,t>0, (33)

s poZetnim uvjetom u(z,0) = 1 nije stabilno.

PDJ



Nestabilnost rjeSenja u Hadamardovom primjeru

PDJ



Teorija Fourierovih redova se razvila kao pokusaj rje$avanja jednadZbe provodenja
topline metodom separacije varijabli.

Problem: MoZemo li zadanu funkciju f: [—L, L] — R prikazati kao linearnu
kombinaciju funkcija sin(wz) i cos(wz) razliEitih perioda?

«40O> «Fr «=)>» «=)» = Q>



Fourierov red

Teorija Fourierovih redova se razvila kao poku3aj rjeSavanja jednadzbe provodenja
topline metodom separacije varijabli.

Problem: MoZemo li zadanu funkciju f: [—L, L] — R prikazati kao linearnu

kombinaciju funkcija sin(wz) i cos(wz) razlititih perioda?

Takav prikaz je mogué pomocu trigonometrijskog reda

flx) = a?O —0—2 [an cos (?) + by, sin (%)], —L<zxz<L. (34)

Fourierov red je linearna kombinacija oscilatornih funkcija frekvencija i perioda

2L 1 n
Tn:iv fn

=—=—. 35
n Th 2L (35)

Zastupljenost pojedinih frekvencija odredena je kofecijentima an i by,.

PDJ



Trigonometrijske funkcije sin(zn), n =1,2,3,...

Slika: f(z) = sin(2z)

HANYANYANS
SIAVARVERY)

Slika: f(z) = sin(3x)

PDJ



Pretopostavimo da je moguce napisati funkciju f kao
oo
ao nwx
:? E: [ancos( )—&—bnsm< 7 )], —L<z<L. (

Problem: Kako moZemo odrediti koeficijente a,, i bn?

PDJ



Pretopostavimo da je moguce napisati funkciju f kao
oo
:i Z[ancos( )—&—bnsm<n2x>], —L<z<L. (36)

2

Problem: Kako moZemo odrediti koeficijente a,, i bn?

Na prostoru neprekidnih funkcija f: [—L, L] — R moZemo definirati skalarni umnoZak
L
- [ t@a@a. (37)

Skup funkcija

{1 sin (——), cos ( zx) MLGN} (38)

je ortogonalan obzirom na ovaj skalarnl umnoZak.
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Fourierove koeficijente moZemo odrediti iz relacija ortogonalnosti:

/L nwT
1-cos (—
_I L

[

Kroneckerov simbol

)da: = /_LL 1-sin (L;r/gc)dx

(TUTSC) _ L(S,,”y“

cos (mm>dx = Lbnm,

PDJ

(39)

(40)

(41)

(42)

(43)



Fourierove koeficijente moZemo odrediti iz relacija ortogonalnosti:

L L
/ l~cos<@>da::/ 1-sin<@>dm:07 n>1,
L L L L
nrx
( ) 7L67Lm7

[ ()
)Cos ("”)dx = L6pm,
)

[ e
[

Kroneckerov simbol

cos (nﬂ'x) de =0, n,m2>1.

h‘g 5‘5 ™~
8 8]

0, n # m.

Odredite izraze za Fourierove koeficijente koristeéi relacije ortogonalnosti.
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Definicija

Trigonometrijski red

oo}
ao Z g ) . (N7
nCOS 4 by sin ( — (44)
2 2 foon () e (32)]
gdje su
1 L nwT
— d =0,1,2,... 4
an LLLf(x)cos(L)w, n=0,1,2, (45)
i
bn:l/ f@)sin (B22)dw, n=1,2,3,... (46)
LJ_p L

naziva se Fourierov red funkcije f na intervalu [—L, L]. Koeficijenti ay, i by, nazivaju

se Fourierovi koeficijenti funkcije f.

PDJ



Sto mozemo reéi o konvergenciji Fourierovog reda?

B Fourierovi koeficijenti su potpuno odredeni integralom funkcije f pa se Fourierov
red ne mijenja ako funkciju promijenimo u prebrojivo mnogo to¢aka. Stoga
Fourierov red ne mora konvergirati ka f(z) u svakoj totki = € [—L, L].
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Sto mozemo reéi o konvergenciji Fourierovog reda?

B Fourierovi koeficijenti su potpuno odredeni integralom funkcije f pa se Fourierov
red ne mijenja ako funkciju promijenimo u prebrojivo mnogo to¢aka. Stoga
Fourierov red ne mora konvergirati ka f(z) u svakoj totki = € [—L, L].

Fourierov red moZe konvergirati po to¢kama, uniformno ili u L%—normi, ovisno o
svojstvima funkcije f.
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Sto mozemo reéi o konvergenciji Fourierovog reda?

B Fourierovi koeficijenti su potpuno odredeni integralom funkcije f pa se Fourierov
red ne mijenja ako funkciju promijenimo u prebrojivo mnogo to¢aka. Stoga
Fourierov red ne mora konvergirati ka f(z) u svakoj totki = € [—L, L].

Fourierov red moZe konvergirati po to¢kama, uniformno ili u L%—normi, ovisno o

svojstvima funkcije f.

Problem

Zelimo odrediti uvjete na funkciju f tako da vrijedi

)= 20 5 [ancos ("T5) 4 bsin (B2) ], —L<e<r @)

n=1

[l
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Pri ra&unanju Fourierovih koeficijenata korisno je zapamtiti sljedeéa pravila:
ako je h: [—L, L] — R neparna funkcija, onda je

/_ LL h(z)dz = 0,

ako je h: [—L, L] — R parna funkcija, onda je

(48)
/_l: h(z)dr = Q/OL h(z)dz.

(49)
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Pri ra&unanju Fourierovih koeficijenata korisno je zapamtiti sljedeéa pravila:
ako je h: [—L, L] — R neparna funkcija, onda je

/_I; h(z)dz =0,

ako je h: [—L, L] — R parna funkcija, onda je
Primjeri

(48)
/_l: h(z)dr = Q/OL h(z)dz.

(49)

Odredite Fourierov red funkcije f(z) = z na intervalu [—L, L].

Razvijte u Fourierov red funkciju f(z) = 22 — 1 na intervalu [—1,1].
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Slika: Fourierov red funkcije f(z) = =, N = 5.
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Slika: Fourierov red funkcije f(z) =z, N = 15
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Slika: Fourierov red funkcije f(z) = 22 — 1, N = 2.
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Slika: Fourierov red funkcije f(z) = 2 — 1, N = 6.
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KaZemo da je funkcija f po dijelovima neprekidna na [a,b] ako
je definirana i neprekidna osim eventualno u kona&no mnogo toaka
a<z <z2<...<Tp <b,

u to¢kama prekida z; # a,b postoje jednostrani limesi
f(a:;) = lim_ f(z), f(xZ) = lim+ f(z),
u rubnim totkama postoje limesi lim__, .+ f(z) i lim,_ ,— f().

(50)

Funkcija ima prekid prve vrste u to&ki x i promjenu vrijednosti

Br = f(x}}) — flxy)

(51)
«40O> «Fr «=)>» «=)» = Q>
D




Kazemo da je funkcija f po dijelovima C na intervalu [a, b] ako su f i f’ po
dijelovima neprekidne na [a, b].

«A40> «Fr» «E»r» « > Q>
D



Kazemo da je funkcija f po dijelovima C na intervalu [a, b] ako su f i f’ po
dijelovima neprekidne na [a, b].
Odredite jesu li funkcije f i g zadane sa
—1,
fz) =

-1<x<0,
2, z =0,
z2, 0<x<1,
g9(z) = |z|
po dijelovima C! na [—1,1].

(52)

(53)
«40>» «Fr «E» < > Q>
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Dirichletov teorem
Neka je f po dijelovima C?! funkcija na [—L, L] i neka je f Fourierov red funkcije f.
Tada je

f(z0) = f(zo0) ako je f neprekidna u togki zo € (—L, L),

flzo) = %[f(zg) + f(zg )] ako f ima prekid u togki zg € (—L, L),

FED) = L[F(-L) + F(L)].
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Dirichletov teorem
Neka je f po dijelovima C?! funkcija na [—L, L] i neka je f Fourierov red funkcije f.
Tada je

f(z0) = f(zo0) ako je f neprekidna u togki zo € (—L, L),

flzo) = %[f(zg) + f(zg )] ako f ima prekid u togki zg € (—L, L),

FED) = L[F(-L) + F(L)].

Primjedbe:
B Neprekidnost funkcije nije dovoljnan uvjet za konvergenciju Fourierovog reda.

Ako je f neprekidna na [—L, L], onda njezina derivacija mora biti po dijelovima
neprekidna da bi Fouerirov red konvergirao ka f(x) u svakoj totki z € (—L, L).
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llustrirajte Dirichletov teorem na funkcijama
0 _
f@)y=q"
1

)

0<z<
g(x) = |zl

z € [—m, 7.
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Slika: Razvoj step—funkcije u Fourierov red.
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Slika: Razvoj funkcije f(z) = |z| u Fourierov red




Ako su z;, w; kompleksni brojevi, 1 < ¢ < n, onda je

n
E 2 W;
i=1

n n
SADBIEER DI (56)
i=1 i=1
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Ako su z;, w; kompleksni brojevi, 1 < ¢ < n, onda je

< $ > Izz‘lz\j D lwif2. (56)
i=1 i

=1

n
E 2 W;
i=1

Neka je f: [-L, L] — R po dijelovima neprekidna funkcija i neka su

/ f(z) cos ) dr, n>0, (57)

= —/ f(z) sm ) de, n>1. (58)
Tada vrijedi

_ao—i-Z(a +b2) < —/ (f())*da. (59)

R e R N L



|1z Besselove nejednakosti slijedi

Ako je f: [—L, L] — R po dijelovima neprekidna funkcija, onda vrijedi
1
nhrnoo an = — nll)n;o f (z) cos

n—o00

lim b, = — lim

=) =0,
n_)oo/ f(z)sin (nmc) =0.

«40O> «Fr «=)>» «=)» = Q>

(60)

(61)



|1z Besselove nejednakosti slijedi

Riemann-Lebesgueova lema

Ako je f: [—L,L] — R po dijelovima neprekidna funkcija, onda vrijedi

nl;mw an = angmw/ f(x) cos ) =0, (60)
Jim by = — nl;moo/ f(z) sm ) =0. (61)

MoZe se pokazati da vrijedi jaci rezultat.

Parsevalova jednakost

Ako je f: [—L, L] — R po dijelovima neprekidna funkcija, onda je

00 L
+ > (ap +b3) = %[L (f())>da. (62)

n=1

M\H

PDJ



Neka je f neprekidna i po dijelovima C! funkcija na intervalu [—L, L] takva da je
f(=L) = f(L). Onda Fourierov red konvergira uniformno ka f na [—L, L].
«40>» «Fr «E» < Q>
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Teorem o uniformnoj konvergenciji

Neka je f neprekidna i po dijelovima C! funkcija na intervalu [—L, L] takva da je
f(=L) = f(L). Onda Fourierov red konvergira uniformno ka f na [—L, L].

Ako Fourierovi koeficijenti nisu eksplicitno poznati, moZe se pokazati da vrijede

sljedece ocjene za |an| i |bn].

Teorem
Neka je f € C2[—L, L] takva da je f(—L) = f(L) i f'(—=L) = f'(L). Neka je
M = maxg¢c(_r, 1] |f”(x)|- Tada Fourierovi koeficijenti imaju gornje mede

1 L nwe 202 M
lan| = ‘Z LL f(z) cos (T)dJJ‘ < 22’
1 L . nmwx 2L2M
[br| = ‘Z/7L f(x)sin (T)dx‘ < 22 " > 1.

PDJ
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Koristeéi ovaj teorem mozemo procijeniti broj Fouerierovih koeficijenata potreban za
aproksimaciju funkcije unutar zadane to&nosti.

Neka je
N
a nmw . /nm
Sn(z) = EOJrnZ::l [an cos (Tx) + by sin (Tmﬂ (65)
N-—ta parcijalna suma Fourierovog reda funkcije f. Ako Zelimo da je

sup |f(z) — Sn(z)| <e, (66)
z€[—L,L]

onda nam je potrebeno barem
4L2M

N > 3

(67)

e

Fourierovih koeficijenata.
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