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Introduction and basic definitions

m Physical phenomena which continously depend on spatial and time variables, such
as wave motion and heat dissipation, are modelled by partial differential equations
(PDE’s)

m PDE's play an important role in physics, technology, biology, finance, etc.

m A partial differential equation describes a relation between an unkonwn function

u = u(x1,22,...,2Tn) and its partial derivatives. A general form for a PDE is can

o oF
F(x,u,—u7...,—u):l). (1)
8$i 89&1-18951-2 e 890“

be written as
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Introduction and basic definitions

m Physical phenomena which continously depend on spatial and time variables, such
as wave motion and heat dissipation, are modelled by partial differential equations
(PDE’s)

m PDE's play an important role in physics, technology, biology, finance, etc.

m A partial differential equation describes a relation between an unkonwn function

u = u(x1,22,...,2Tn) and its partial derivatives. A general form for a PDE is can
be written as o OFu
F(x,u,a—xi7...,m>zﬂ. (1)
We introduce the notation
2
Uy = %, Ugy = ;Tgy, etc. 2)
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Introduction and basic definitions

m Physical phenomena which continously depend on spatial and time variables, such
as wave motion and heat dissipation, are modelled by partial differential equations
(PDE’s)

m PDE's play an important role in physics, technology, biology, finance, etc.

m A partial differential equation describes a relation between an unkonwn function

u = u(x1,22,...,2Tn) and its partial derivatives. A general form for a PDE is can

o oF
F(x,u,—u7...,—u):l). (1)
8$i 89&1-18951-2 e 890“

be written as

We introduce the notation
_ Ou 0%u

= —, Ty = ———, tc. 2
ox Yoy 0xdy et )

Ug

m The order of a partial differential equation is the order of the highest derivative

appearing in the equation.

m PDE's are usually defined on an open connected set 2 C R™.
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Solutions of partial differential equations can be classfied as
classical,
weak and

distributional solutions.
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Solutions of partial differential equations can be classfied as
classical,
weak and

distributional solutions.
Definition
A classical solution of a partial differential equation of order £ > 0 on the set 2 C R™

is a function u € C*(Q) which satisfies the equation at every pont of the .

A classical solution is also called a strong solution of the PDE.
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Solutions of partial differential equations can be classfied as
classical,
weak and

distributional solutions.

Definition
A classical solution of a partial differential equation of order £ > 0 on the set 2 C R™
is a function u € C*(Q) which satisfies the equation at every pont of the .

A classical solution is also called a strong solution of the PDE.

Examples

| Verify that u = (z 4+ y)2 i u = sin(z — y) are classical solutions of the equation
Ugy — Uyy =0 na skupu Q= R2. 3)
A Verify that u = In(x2 + y2) is a classical solution of the equation

Uge + Uyy =0 naskupu Q= R2\ {(0,0)}. (4)
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Basic classification of partial differential equations

We can classify PDE’s according to
the order of the equation,

linear vs. nonlinear equations.

m We say that the equation

k
F(x,u,%,...,a—u> =0.
ox; 0x;, 0x4y ... 0T,

is linear linearna if F if a linear function in the variables u and all its partial

derivatives.

©)

In this case the coffeficients multplying the function u and its derivatives depend

only on the independent variables z1,...,xn.

PDE



Basic classification of partial differential equations

We can classify PDE’s according to
the order of the equation,

linear vs. nonlinear equations.

m We say that the equation

k
F(x,u,%,...,a—u> =0.
ox; 0x;, 0x4y ... 0T,

is linear linearna if F if a linear function in the variables u and all its partial

derivatives.

©)

In this case the coffeficients multplying the function u and its derivatives depend

only on the independent variables z1,...,xn.

m A PDE is nonlinear if it is not linear.

PDE



Examples

zugz + yuy = u, first order nonlinear PDE (6)

2]
Ut + Ugpgz — 6uuy = 0, nonlinear third order PDE (7)
uZ + ui =u, nonlinear first order PDE (8)
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Examples

zugz + yuy = u, first order nonlinear PDE (6)

2]
Ut + Ugpgz — 6uuy = 0, nonlinear third order PDE (7)
uZ + ui =u, nonlinear first order PDE (8)

In mathematical physics and important role is played by partial differential equations

of second order.
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The wave equation

Most physical phenomena are modelled by second order partial differential equations
Uttt — 62V2u = O,

u= u(w7 y’ z’ t)

«Or «Fr < > > a

9

describes propagation of acoustic and electromagnetic waves in space.
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The wave equation

Most physical phenomena are modelled by second order partial differential equations

Uttt — 62V2u = O,
The heat equation

u = u(w7 y7 Z’ t)
describes propagation of acoustic and electromagnetic waves in space.

(9)
ug — kV2u =0,

(10)

«Or <« < > > A

u = u(w7 y7 z’ t)
describes time evolution of temperature in heat conducting materials.
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Classical equations of mathematical physics

Most physical phenomena are modelled by second order partial differential equations.
The wave equation
ut — AV2u =0, u=u(z,y,zt) 9)
describes propagation of acoustic and electromagnetic waves in space.
The heat equation
ur —kViu=0, w= u(z,y, z,t) (10)

describes time evolution of temperature in heat conducting materials.
The Laplace equation
Viu=0, u=u(z,y,z) (11)

describes electric potential and also stationary distribution of temperature in a

heat conducting material.
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Classical equations of mathematical physics

Most physical phenomena are modelled by second order partial differential equations.

The wave equation
ut — AV2u =0, u=u(z,y,zt) 9)

describes propagation of acoustic and electromagnetic waves in space.

The heat equation
ur —kViu=0, w= u(z,y, z,t) (10)

describes time evolution of temperature in heat conducting materials.
The Laplace equation
Viu=0, u=u(zy,z) (11)
describes electric potential and also stationary distribution of temperature in a
heat conducting material.
The Schrédiger equation
h

m

V23 + V(w,y, )9 = ilpy, ¢ =(z,y,2,t) (12)

describes evolution of the wave function v in quantum mechanics.
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A general PDE of second order in the variables x1,x2, ...,z is given by
4,j=1

Z Aj(x)uzz; + Z Bi(z)uz, + F(z)u = G(xz).

i=1

Ug;x; = Uzjz;

=

(13)
we can assume that A;; = Aj;

«Or «Fr <« > > a

(14)
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A general PDE of second order in the variables x1, z2,
n n
4,j=1

..., Zn is given by
> Ai(@)uae; + Y Bi(@)ug, + F(z)u = G(z)
=1

Ug;x; = Uzjz;

=

(13)
we can assume that A;; = Aj; (14)
To equation (13) we associate the differential operator
52 - 7]
L= A; B; F.
;1 g 63:18% +iz::1 i) +

i

(15)
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A general PDE of second order in the variables x1, z2,
n n
4,j=1

Z Aij () uze; + Z Bi(z)uz; + F(z)u = G(x)

, Zn is given by
i=1

(13)
Ug;o; = Uz;z; = We can assume that A;; = Aj; (14)
To equation (13) we associate the differential operator
0? - 0
L= A; B; F.
Z Uamzamj +Z: ‘o +
1,7=1 =1
Equation (13) in operator form

i

(15)
L[u] =

m If G =0, then we say that the equation is homogeneous.

(16)
m If G # 0, then we say that the equation is inhomogeneous.
«O> «Fr 4 > > A
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A differential operator L is linear if

Lloiur + aguz] = a1 Lfui] + aaLfus], a1,a2 € R. (17)

Linear operators satisfy the principle of superposition. If
L[u1] =0, Llu2] =0, (18)
then the fuction u = aju1 + asusg is a solution of the same equation because

L[u] = a1 L[u1] + a2L[ug] = 0. (19)

PDE



Direct integration

The method of substitution — introduction of new variables

Reduction of the number of variables using symmetry properties of the equation

«Or 4«Fr o« > > a
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Direct integration

The method of substitution — introduction of new variables
Examples

Reduction of the number of variables using symmetry properties of the equation
u = u(z,y).

Determine the general solution of the equation wu,, = 2 for the function

«O> <> < > > A
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Direct integration

Examples

The method of substitution — introduction of new variables

Reduction of the number of variables using symmetry properties of the equation
u = u(z,y).

Determine the general solution of the equation wu,, = 2 for the function

Find the general solution of the equation uz — uy = 0.
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Direct integration

The method of substitution — introduction of new variables

Reduction of the number of variables using symmetry properties of the equation
Examples

Determine the general solution of the equation wu,, = 2 for the function
u = u(z,y).

Find the general solution of the equation uz — uy = 0.

Determine the general solution of the equation ugzy + %uy = fz

«40O> «Fr «=)>» «=)» = Q>



Elementary techniques

| Direct integration
The method of substitution — introduction of new variables

Reduction of the number of variables using symmetry properties of the equation

Examples
Determine the general solution of the equation uy, = 2 for the function
u = u(z,y).
Find the general solution of the equation u; —uy = 0.
Determine the general solution of the equation uzy + %uy = x%

Determine spherically symmetric solution of the Laplace equation

Uz + Uyy +uzz = 0.

PDE



Elementary techniques

| Direct integration
The method of substitution — introduction of new variables

Reduction of the number of variables using symmetry properties of the equation

Examples

Determine the general solution of the equation uy, = 2 for the function

u = u(z,y).

]

Find the general solution of the equation u; —uy = 0.

=

Determine the general solution of the equation uzy + %uy = x%

B

Determine spherically symmetric solution of the Laplace equation

Uz + Uyy +uzz = 0.

H = Show that u(z,y) = zf(2z + y) is the general solution of the equation

TUy — 2TUy = U.

m Determine the solution satisfying the condition u (1, y) = y2.

PDE



Partial differential equations generally have infinitely many solutions. In order to

determine a unique solution we have to impose intial and/or boundary conditions
These conditions naturally arise from the physical problem under consideration.
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Partial differential equations generally have infinitely many solutions. In order to

determine a unique solution we have to impose intial and/or boundary conditions.
These conditions naturally arise from the physical problem under consideration.
Example 1 The wave equation

2
Ut — C Ugg = 0,

O0<z<L,t>0.
(z,t) wave amplitude at the point z at the moment ¢.

(20)
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Partial differential equations generally have infinitely many solutions. In order to

determine a unique solution we have to impose intial and/or boundary conditions.
These conditions naturally arise from the physical problem under consideration.
Example 1 The wave equation

2
Ut — C Ugg = 0,

O0<z<L,t>0.
(z,t) wave amplitude at the point z at the moment ¢.

(20)
Initial conditions:

’LL(:Z:,O) = f(x)a

z €0,L],
ut(z,0) = g(z),

(21)
z€[0,L). (22)
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Initial and boundary conditions

Partial differential equations generally have infinitely many solutions. In order to
determine a unique solution we have to impose intial and/or boundary conditions.
These conditions naturally arise from the physical problem under consideration.

Example 1 The wave equation
gt — gy =0, 0<ax <L, t>0. (20)
u(z,t) wave amplitude at the point x at the moment ¢.

Initial conditions:

u(z,0) = f(z), =z €]0,L], (21)
ut(z,0) = g(z), = €l0,L]. (22)

Dirichlet boundary condition:

u(0,t) = u(L,t) =0, t>0. (23)

PDE



Initial and boundary conditions

Partial differential equations generally have infinitely many solutions. In order to
determine a unique solution we have to impose intial and/or boundary conditions.
These conditions naturally arise from the physical problem under consideration.

Example 1 The wave equation

gt — gy =0, 0<ax <L, t>0. (20)
u(z,t) wave amplitude at the point x at the moment ¢.
Initial conditions:

u(z,0) = f(z), =z €]0,L], (21)
ut(z,0) = g(z), = €l0,L]. (22)

Dirichlet boundary condition:
u(0,t) = u(L,t) =0, t>0. (23)
Neumann boundary condition:
uz(0,t) =ux(L,t) =0, ¢t>0. (24)

PDE



Example 2 The Laplace equation

Uz + Uyy = 0, (x,y) S Q7 (25)

Q C R2 domain bounded by a closed piecewise smooth curve 9.

PDE



Example 2 The Laplace equation

Uge + Uyy = 0, (:I,’,y) € Q,

Q C R2 domain bounded by a closed piecewise smooth curve 9.

Dirichlet boundary condition:

u(a:,y) = g(x, y)7 (ﬂﬁvy) € 0N

PDE

(25)

(26)



Example 2 The Laplace equation

Uge + Uyy = 0, (:I,’,y) S Q7
Q C R2 domain bounded by a closed piecewise smooth curve 9.
Dirichlet boundary condition:

u(a:,y) = g(x, y)7 (ﬂﬁvy) € 0N

Neumann boundary condition:
ou

@Y =9(xy), (z.y) €09,
7

ou L
7 = Vu -7 normal derivative to the curve 0f2
7

PDE

(25)

(26)

(27)

(28)
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We say that a partial differential equation with given intial and boundary conditions is
a well posed problem if it satisfies the following conditions (J. Hadamard, 1902.):

«Or 4«Fr o« > > a
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a well posed problem if it satisfies the following conditions (J. Hadamard, 1902.):
m existence: the problem has a solution,
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We say that a partial differential equation with given intial and boundary conditions is
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m existence: the problem has a solution,
conditions,

We say that a partial differential equation with given intial and boundary conditions is
a well posed problem if it satisfies the following conditions (J. Hadamard, 1902.):

m uniqueness: the solution of the problem is unique for given initial and boundary

«O> <> < > > A
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We say that a partial differential equation with given intial and boundary conditions is

a well posed problem if it satisfies the following conditions (J. Hadamard, 1902.):
m existence: the problem has a solution,

m uniqueness: the solution of the problem is unique for given initial and boundary
conditions,

m stability: the solution continously depends on the equation parameters and given
intial and boundary conditions.

«40O> «Fr «=)>» «=)» = Q>




Stability of solutions

We say that a partial differential equation with given intial and boundary conditions is
a well posed problem if it satisfies the following conditions (J. Hadamard, 1902.):

m existence: the problem has a solution,

m uniqueness: the solution of the problem is unique for given initial and boundary

conditions,

m stability: the solution continously depends on the equation parameters and given

intial and boundary conditions.

A partial differential equation is stable if small perturbations of initial and boundary

conditions or equation parameters cause small changes of the solution.

PDE



Example

A Formulate the condition of stability for the Laplace equation
Uza +uyy =0, (z,y) €Q,

with respect to the Dirichlet boundary condition.

PDE
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Example

A Formulate the condition of stability for the Laplace equation
Uza +uyy =0, (z,y) €Q,

with respect to the Dirichlet boundary condition.

Formulate the condition of stability of the wave equation

2
Ut — CUzge =0, = €R,

in the time interval [0, T] with respect to the initial conditions.

PDE

(29)

(30)



The following examples illustrate problem that are not well posed.

Hadamard's example

Show that the solution of the Laplace equation
Uze +Uuyy =0, (z,9) € R? (31)
with boundary condions on the line y = 0,
u(z,0) = f(z), uy(z,0)=g(x), (32)

is not stable.

PDE



The following examples illustrate problem that are not well posed.

Hadamard's example

Show that the solution of the Laplace equation
Uze +Uuyy =0, (z,9) € R? (31)
with boundary condions on the line y = 0,
u(z,0) = f(z), uy(z,0)=g(x), (32)

is not stable.

Backwards heat equation

Show that the solution of the equation
Ut + Ugy =0, —oco<xz<oo,t>0, (33)

with initial condition u(z,0) = 1 is not stable.

PDE



Hadamard’s example

Instabitliy of solution in




The theory of Fourier series arouse as a method for solving the heat equation by the
method of separation of variables.

Problem: Can a given function f: [—L, L] — R be written as a linear combination of
the functions sin(wz) i cos(wz) with different periods?
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Fourier Series

The theory of Fourier series arouse as a method for solving the heat equation by the

method of separation of variables.

Problem: Can a given function f: [—L, L] — R be written as a linear combination of

the functions sin(wz) i cos(wz) with different periods?

Under certain conditions on f, it is possible to write f as a trigonometric series
ao = nwT
= — an, COS b sm( )], —L<xz<L. 34
f@ =3 g [ " ( ) +on L - (34)

The Fourier series is a linear combination of oscillatory functions with periods and
frequencies given by

Tnziy n— 5 = 7 35
n f Th 2L (35)

The coefficients ay, i by, determine the "amount” of each frequency present in the

fuction.

PDE



Trigonometric functions sin(zn), n =1,2,3, ...

Figure: f(z) = sin(2z)

ANYANYA
SIAVARVERY)

Figure: f(z) = sin(3z)

PDE



For the moment, let us suppose that it is possible to write

:*0 i[ancos( )-"—bn&n(nzx)], —L<z<L. (36)

Problem: How can we determine the coefficients a,, i by, 7?7

PDE



For the moment, let us suppose that it is possible to write

2

oo
nmwx
:i ;[ancos( )—&—bnsm< 7 )], —L<z<L. (36)
Problem: How can we determine the coefficients a,, i by, 7?7

On the space of continous functions C([—L, L]) we can define the inner product

L
- [ r@g@z. (37)
L

The set

{1 sin (——), cos ( zx) MLGN} (38)

is orthogonal with respect to the inner product (37).

PDE



The Fourier coefficients can be determined by using the orthogonality relations:

/_LL1.cos(”%“")da::/_LLl.sin<sz>dx:0, n>1, (39)

[
/ cos<

("m) = Lbnm, (40)

o)
) cos (mm>dx = Lbnm, (41)
)

h‘g 5‘5 ™~
8 8]

cos (nﬂ—x)dx =0, n,m>1. (42)

Kronecker delta symbol

S = B (43)

PDE



The Fourier coefficients can be determined by using the orthogonality relations:

/_LL1.cos(”%“")da::/_LLl.sin<sz>dx:0, n>1, (39)
/ 51H<
/ COS(

[

Kronecker delta symbol

) ("m) = Lénm, (40)
) cos (mm>dx = Lbnm, (41)
)

n7rx
COos dx

Il
o

n,m > 1. (42)

h‘g 5‘5 ™~
8 8]

1, n=m,

0, n # m.

(43)

6nm =

Assuming that one can interchange summation and integration, determine the
expressions for the Fourier coefficients a,, and by,.

PDE



Definition

The trigonometric series
2o i [ cos ( ) +b (nmc) ] (44)
=0 a g
n e nITL

where

1 L
anzf/ f(x)cos(nmc)dx, n=0,1,2,... (45)
L) . L

1 L
b = 7/ f(x)sin (@)dx, n=12,3,... (46)
LJ_p L

is called the Fourier series of the fuction f on the interval [—L, L]. The coefficients an,
and by, are called the Fourier coefficients of the function f.

PDE



What can we say about the convergence of the Fourier series?

H The Fourier coefficients are completely determined by the integral of f, hence the
Fourier series of f remains unchanged if the function is the values of f are
changed at countably many points. This implies that the Fourier series need not
converge to f(x) at evey point z € [—L, L].

PDE



What can we say about the convergence of the Fourier series?

H The Fourier coefficients are completely determined by the integral of f, hence the
Fourier series of f remains unchanged if the function is the values of f are
changed at countably many points. This implies that the Fourier series need not
converge to f(x) at evey point z € [—L, L].

The convergence of the Fourier series can be pointwise, uniform or in L?-norm,
depending on the properties of the function f.

PDE



What can we say about the convergence of the Fourier series?

H The Fourier coefficients are completely determined by the integral of f, hence the
Fourier series of f remains unchanged if the function is the values of f are
changed at countably many points. This implies that the Fourier series need not
converge to f(x) at evey point z € [—L, L].

The convergence of the Fourier series can be pointwise, uniform or in L2—norm,

depending on the properties of the function f.

Problem
We want to determine conditions on the function f such that

1= 24 35 e (%) e ()], pesn o

n=1

PDE



When computing the Fourier coefficients it is useful to remember the following rules:
if h: [-L,L] — R is an odd function, then

/_ LL h(z)dz = 0,

(48)
if h: [-L,L] — R is an even function, then
L L
/ h(z)dr = 2/ h(z)dz
-L 0

(49)
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When computing the Fourier coefficients it is useful to remember the following rules:
if h: [-L,L] — R is an odd function, then

/_I; h(z)dz =0,

if h: [-L,L] — R is an even function, then

Examples

(48)
/_l: h(z)dr = Q/OL h(z)dz.

(49)
Determine the Fourier series of f(z) = z in the interval [—L, L].
Find the Fourier series of f(z) = 2 — 1 in the interval [—1,1].
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Figure: The Fourier series of f(z) =z, N = 5.
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Figure: The Fourie series of f(z) =z, N =15
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Figure: The Fourier series of f(z) = 22 — 1, N = 2.
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Figure: The Fourier series of f(z) = 22 — 1, N = 6.
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Definicia
A function f is piecewise continuous on the interval [a, b] if
it is defined and continuous on [a, b] except possibly at finitely many points
a<z <z2<...<Tp <b,
at the points z;, # a, b, one—sided limits exist

f(a:;) = lim_ f(z), f(xZ) = lim+ f(z),

(50)

at the boundary points there exist limits lim__, .+ f(z) i lim,_,,— f(x).

Such functions have a jump discontinuity at z; and a the change of value

Br = f(x}}) — flxy)

(51)
«40O> «Fr «=)>» «=)» = Q>
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A function f is piecewise C'! on the interval [a, ] if f and f’ are piecewise continuous
on [a,b].
«O» «F»r < > > a
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A function f is piecewise C'! on the interval [a, ] if f and f’ are piecewise continuous
on [a,b].
Determine if the functions f and g defined by
—1,
f(@) =

-1<x<0,
2,

z =0,
z2,

0<z<l,
g9(z) = |z|
are piecewise C! on [—1,1].

(52)

(53)
«40>» «Fr «E» < > Q>
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Dirichlet theorem

Suppose f is a piecewise C'! function on [—L, L] and let f be the Fourier series of f.
Then

f(z0) = f(zo) if f is continuous at the point zg € (—L, L),
flzo) = %[f(zg) + f(zg )] if f has a discontinuity at zo € (—L, L),
F&ED) = 3 [F(-LF) + F(L7)].

PDE



Dirichlet theorem
Suppose f is a piecewise C'! function on [—L, L] and let f be the Fourier series of f.
Then

f(z0) = f(zo) if f is continuous at the point zg € (—L, L),

flzo) = %[f(zg) + f(zg )] if f has a discontinuity at zo € (—L, L),

FED) = L[F(-L) + F(L)].

Remarks:
A Continuity of the function is not a sufficient condition for convergence of its
Fourier series.
If f is continuous on [—L, L], then its derivative must be piecewise continuous on

[—L, L] in order to have converence of f(z) to f(z) at every point z € (—L, L).

PDE



Let us illustrate the Dirichlet theorem with the functions
0, —
fl@) = {
1

1<z<O0,
, 0<z<1
g(x) = |zl

k]

x € [—m, 7.

«40>» «Fr «E» < > Q>
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Figure: The Fourier series of the step function.

PDE

DA



301

25

201

15

10p

2

1

3

Figure: The Fourier series of f(z) = |z|.

PDE




If z;,w; are complex numbers, 1 < i < n, then

n n n

Sz < > a2, | D w2 (56)

i=1 i=1 i=1

a
O
v
a
g
v
a
]
v
N
]
v
U]

12N G4



If z;,w; are complex numbers, 1 < i < n, then

>z < JZ |zi|2\J > fwil2. (56)
i=1

i=1 i=1

Suppose f: [—L, L] — R is a picewise continuous function and let

L= /L £(x) cos T) dz, n>0, (57)
/ #(x) s1n ) dz, n>1. (58)

Then N .
S+ PICRIOE | faue (59)

R R o |



A consequence of Bessel inequality is

If f: [-L,L] — R is a piecewise continuous function, then
lim a, = — lim
n—oo n—)oo

/ f(x) cos( =) =0, (60)
nlgréo bn = — nli)moo/ f(z) sm ) =0.

(61)
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A consequence of Bessel inequality is

Riemann-Lebesgue lemma

If f: [-L,L] — R is a piecewise continuous function, then
. 1. L nrx
nllﬁm()@ an =T nl;mw ., f(x) cos <T) =0, (60)
. 1 . Z . /nmx
Jim by = — nl;mw[L () sin (T> =0. (61)

One can show that a stronger result holds.

Parseval equality

If f: [—L,L] — R is a piecewise continuous function, then
1 - 1 [k
s+ @+t [ Il (62)
2 n=1 L —L

PDE



Suppose f is a continuous and piecewise C'' function on the inverval [—L, L] and
f(=L) = f(L). Then the Fourier series converges uniformly to f on [—L, L].

«A40r «4F»r «=)» <« > Q™
U RDE



Uniform convergence of Fourier series

Suppose f is a continuous and piecewise C'! function on the inverval [~L, L] and
f(=L) = f(L). Then the Fourier series converges uniformly to f on [—L, L].

If the Fourier coefficients are not known explicitly, one can derive the following bounds

for |an| and |bn|.

Teorem
Suppose f € C%[—L, L] such that f(—L) = f(L) and f'(—L) = f'(L). Let
M = max,¢c[—r,] |f”(2)|- Then the Fourier coefficienta are bounded by

1 [E nme 2L2 M
‘an|:‘z/_Lf(ff)COS(T>dm‘SW, (63)
1 rL . /nTx 2L2M
[br| = ‘Z /_L f(z)sin (T)dx‘ < 2z " > 1. (64)

PDE



Using the above theorem we can estimate the number of Fourier coefficients needed

to approximate a function within a given accuracy.

Let N
SN = ?0 Xz: [an cos ( ) + by, sin (%x)]

be the N—th partial sum of the Fourier series of f. If we require that

sup |f(z) — Sn(z)| <&,
x€[—L,L]

then we need at least
N AL2M

m2e

Fouerier coefficients.

PDE

(65)

(66)

(67)



