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Introduction and basic definitions

Physical phenomena which continously depend on spatial and time variables, such

as wave motion and heat dissipation, are modelled by partial differential equations

(PDE’s)

PDE’s play an important role in physics, technology, biology, finance, etc.

A partial differential equation describes a relation between an unkonwn function

u = u(x1, x2, . . . , xn) and its partial derivatives. A general form for a PDE is can

be written as

F

(
x, u,

∂u

∂xi
, . . . ,

∂ku

∂xi1∂xi2 . . . ∂xjk

)
= 0. (1)

We introduce the notation

ux =
∂u

∂x
, uxy =

∂2u

∂x∂y
, etc. (2)

The order of a partial differential equation is the order of the highest derivative

appearing in the equation.

PDE’s are usually defined on an open connected set Ω ⊆ Rn.
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Solutions of partial differential equations can be classfied as

1 classical,

2 weak and

3 distributional solutions.

Definition

A classical solution of a partial differential equation of order k > 0 on the set Ω ⊆ Rn

is a function u ∈ Ck(Ω) which satisfies the equation at every pont of the Ω.

A classical solution is also called a strong solution of the PDE.

Examples

1 Verify that u = (x+ y)3 i u = sin(x− y) are classical solutions of the equation

uxx − uyy = 0 na skupu Ω = R2. (3)

2 Verify that u = ln(x2 + y2) is a classical solution of the equation

uxx + uyy = 0 na skupu Ω = R2 \ {(0, 0)}. (4)
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Basic classification of partial differential equations

We can classify PDE’s according to

1 the order of the equation,

2 linear vs. nonlinear equations.

We say that the equation

F

(
x, u,

∂u

∂xi
, . . . ,

∂ku

∂xi1∂xi2 . . . ∂xjk

)
= 0. (5)

is linear linearna if F if a linear function in the variables u and all its partial

derivatives.

In this case the coffeficients multplying the function u and its derivatives depend

only on the independent variables x1, . . . , xn.

A PDE is nonlinear if it is not linear.
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Examples

1

xux + yuy = u, first order nonlinear PDE (6)

2

ut + uxxx − 6uux = 0, nonlinear third order PDE (7)

3

u2x + u2y = u, nonlinear first order PDE (8)

In mathematical physics and important role is played by partial differential equations

of second order.
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Classical equations of mathematical physics

Most physical phenomena are modelled by second order partial differential equations.

1 The wave equation

utt − c2∇2u = 0, u = u(x, y, z, t) (9)

describes propagation of acoustic and electromagnetic waves in space.

2 The heat equation

ut − k∇2u = 0, u = u(x, y, z, t) (10)

describes time evolution of temperature in heat conducting materials.

3 The Laplace equation

∇2u = 0, u = u(x, y, z) (11)

describes electric potential and also stationary distribution of temperature in a

heat conducting material.

4 The Schrödiger equation

−
ℏ
2m

∇2ψ + V (x, y, z)ψ = iℏψt, ψ = ψ(x, y, z, t) (12)

describes evolution of the wave function ψ in quantum mechanics.
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Linear equations and the principle of superposition

A general PDE of second order in the variables x1, x2, . . . , xn is given by

n∑
i,j=1

Aij(x)uxixj +
n∑

i=1

Bi(x)uxi + F (x)u = G(x). (13)

uxixj = uxjxi ⇒ we can assume that Aij = Aji (14)

To equation (13) we associate the differential operator

L =
n∑

i,j=1

Aij
∂2

∂xi∂xj
+

n∑
i=1

Bi
∂

∂xi
+ F. (15)

Equation (13) in operator form:

L[u] = G. (16)

If G = 0, then we say that the equation is homogeneous.

If G ̸= 0, then we say that the equation is inhomogeneous.
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A differential operator L is linear if

L[α1u1 + α2u2] = α1L[u1] + α2L[u2], α1, α2 ∈ R. (17)

Linear operators satisfy the principle of superposition. If

L[u1] = 0, L[u2] = 0, (18)

then the fuction u = α1u1 + α2u2 is a solution of the same equation because

L[u] = α1L[u1] + α2L[u2] = 0. (19)

PDE



Elementary techniques

1 Direct integration

2 The method of substitution – introduction of new variables

3 Reduction of the number of variables using symmetry properties of the equation

Examples

1 Determine the general solution of the equation uyy = 2 for the function

u = u(x, y).

2 Find the general solution of the equation ux − uy = 0.

3 Determine the general solution of the equation uxy + 1
x
uy = y

x2 .

4 Determine spherically symmetric solution of the Laplace equation

uxx + uyy + uzz = 0.

5 Show that u(x, y) = xf(2x + y) is the general solution of the equation

xux − 2xuy = u.

Determine the solution satisfying the condition u(1, y) = y2.
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Initial and boundary conditions

Partial differential equations generally have infinitely many solutions. In order to

determine a unique solution we have to impose intial and/or boundary conditions.

These conditions naturally arise from the physical problem under consideration.

Example 1 The wave equation

utt − c2uxx = 0, 0 < x < L, t > 0. (20)

u(x, t) wave amplitude at the point x at the moment t.

Initial conditions:

u(x, 0) = f(x), x ∈ [0, L], (21)

ut(x, 0) = g(x), x ∈ [0, L]. (22)

Dirichlet boundary condition:

u(0, t) = u(L, t) = 0, t ≥ 0. (23)

Neumann boundary condition:

ux(0, t) = ux(L, t) = 0, t ≥ 0. (24)
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Example 2 The Laplace equation

uxx + uyy = 0, (x, y) ∈ Ω, (25)

Ω ⊆ R2 domain bounded by a closed piecewise smooth curve ∂Ω.

Dirichlet boundary condition:

u(x, y) = g(x, y), (x, y) ∈ ∂Ω (26)

Neumann boundary condition:

∂u

∂n⃗
(x, y) = g(x, y), (x, y) ∈ ∂Ω, (27)

∂u

∂n⃗
= ∇u · n⃗ normal derivative to the curve ∂Ω (28)

PDE
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Stability of solutions

We say that a partial differential equation with given intial and boundary conditions is

a well posed problem if it satisfies the following conditions (J. Hadamard, 1902.):

existence: the problem has a solution,

uniqueness: the solution of the problem is unique for given initial and boundary

conditions,

stability: the solution continously depends on the equation parameters and given

intial and boundary conditions.

A partial differential equation is stable if small perturbations of initial and boundary

conditions or equation parameters cause small changes of the solution.
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Example

1 Formulate the condition of stability for the Laplace equation

uxx + uyy = 0, (x, y) ∈ Ω, (29)

with respect to the Dirichlet boundary condition.

2 Formulate the condition of stability of the wave equation

utt − c2uxx = 0, x ∈ R, (30)

in the time interval [0, T ] with respect to the initial conditions.
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The following examples illustrate problem that are not well posed.

Hadamard’s example

Show that the solution of the Laplace equation

uxx + uyy = 0, (x, y) ∈ R2 (31)

with boundary condions on the line y = 0,

u(x, 0) = f(x), uy(x, 0) = g(x), (32)

is not stable.

Backwards heat equation

Show that the solution of the equation

ut + uxx = 0, −∞ < x <∞, t > 0, (33)

with initial condition u(x, 0) = 1 is not stable.
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Instabitliy of solution in Hadamard’s example
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Fourier Series

The theory of Fourier series arouse as a method for solving the heat equation by the

method of separation of variables.

Problem: Can a given function f : [−L,L] → R be written as a linear combination of

the functions sin(ωx) i cos(ωx) with different periods?

Under certain conditions on f , it is possible to write f as a trigonometric series

f(x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

) ]
, −L ≤ x ≤ L. (34)

The Fourier series is a linear combination of oscillatory functions with periods and

frequencies given by

Tn =
2L

n
, fn =

1

Tn
=

n

2L
. (35)

The coefficients an i bn determine the ”amount” of each frequency present in the

fuction.
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Trigonometric functions sin(xn), n = 1, 2, 3, . . .

Figure: f(x) = sin(x)

Figure: f(x) = sin(2x)

Figure: f(x) = sin(3x)
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For the moment, let us suppose that it is possible to write

f(x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

) ]
, −L ≤ x ≤ L. (36)

Problem: How can we determine the coefficients an i bn?

On the space of continous functions C([−L,L]) we can define the inner product

⟨f, g⟩ =
∫ L

−L
f(x)g(x)dx. (37)

The set {
1, sin

(nπx
L

)
, cos

(nπx
L

)
| n ∈ N

}
(38)

is orthogonal with respect to the inner product (37).
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The Fourier coefficients can be determined by using the orthogonality relations:

∫ L

−L
1 · cos

(nπx
L

)
dx =

∫ L

−L
1 · sin

(nπx
L

)
dx = 0, n ≥ 1, (39)∫ L

−L
sin

(mπx
L

)
sin

(nπx
L

)
dx = Lδnm, (40)∫ L

−L
cos

(mπx
L

)
cos

(nπx
L

)
dx = Lδnm, (41)∫ L

−L
sin

(mπx
L

)
cos

(nπx
L

)
dx = 0, n,m ≥ 1. (42)

Kronecker delta symbol

δnm =

1, n = m,

0, n ̸= m.
(43)

Assuming that one can interchange summation and integration, determine the

expressions for the Fourier coefficients an and bn.
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Definition

The trigonometric series

a0

2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

) ]
(44)

where

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, n = 0, 1, 2, . . . (45)

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx, n = 1, 2, 3, . . . (46)

is called the Fourier series of the fuction f on the interval [−L,L]. The coefficients an

and bn are called the Fourier coefficients of the function f .
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What can we say about the convergence of the Fourier series?

1 The Fourier coefficients are completely determined by the integral of f , hence the

Fourier series of f remains unchanged if the function is the values of f are

changed at countably many points. This implies that the Fourier series need not

converge to f(x) at evey point x ∈ [−L,L].

2 The convergence of the Fourier series can be pointwise, uniform or in L2–norm,

depending on the properties of the function f .

Problem

We want to determine conditions on the function f such that

f(x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

) ]
, −L ≤ x ≤ L. (47)
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Elementary examples

When computing the Fourier coefficients it is useful to remember the following rules:

1 if h : [−L,L] → R is an odd function, then∫ L

−L
h(x)dx = 0, (48)

2 if h : [−L,L] → R is an even function, then∫ L

−L
h(x)dx = 2

∫ L

0
h(x)dx. (49)

Examples

1 Determine the Fourier series of f(x) = x in the interval [−L,L].

2 Find the Fourier series of f(x) = x2 − 1 in the interval [−1, 1].
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Figure: The Fourier series of f(x) = x, N = 5.
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Figure: The Fourie series of f(x) = x, N = 15.
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Figure: The Fourier series of f(x) = x2 − 1, N = 2.
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Figure: The Fourier series of f(x) = x2 − 1, N = 6.
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Convergence of Fourier series

Definicija

A function f is piecewise continuous on the interval [a, b] if

1 it is defined and continuous on [a, b] except possibly at finitely many points

a ≤ x1 < x2 < . . . < xn ≤ b,

2 at the points xk ̸= a, b, one–sided limits exist

f(x−k ) = lim
x→x−

k

f(x), f(x+k ) = lim
x→x+

k

f(x), (50)

3 at the boundary points there exist limits limx→a+ f(x) i limx→b− f(x).

Such functions have a jump discontinuity at xk and a the change of value

βk = f(x+k )− f(x−k ). (51)
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Definicija

A function f is piecewise C1 on the interval [a, b] if f and f ′ are piecewise continuous

on [a, b].

Example

Determine if the functions f and g defined by

f(x) =


−1, −1 ≤ x < 0,

2, x = 0,

x2, 0 < x ≤ 1,

(52)

g(x) = |x| (53)

are piecewise C1 on [−1, 1].
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Dirichlet theorem

Suppose f is a piecewise C1 function on [−L,L] and let f̃ be the Fourier series of f .

Then

1 f̃(x0) = f(x0) if f is continuous at the point x0 ∈ (−L,L),

2 f̃(x0) =
1
2

[
f(x+0 ) + f(x−0 )

]
if f has a discontinuity at x0 ∈ (−L,L),

3 f̃(±L) = 1
2

[
f(−L+) + f(L−)

]
.

Remarks:

1 Continuity of the function is not a sufficient condition for convergence of its

Fourier series.

2 If f is continuous on [−L,L], then its derivative must be piecewise continuous on

[−L,L] in order to have converence of f̃(x) to f(x) at every point x ∈ (−L,L).
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Example

Let us illustrate the Dirichlet theorem with the functions

f(x) =

0, −1 ≤ x < 0,

1, 0 ≤ x ≤ 1,
(54)

g(x) = |x|, x ∈ [−π, π]. (55)
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Figure: The Fourier series of the step function.
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Figure: The Fourier series of f(x) = |x|.
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Uniform convergence

Cauchy–Schwartz inequality

If zi, wi are complex numbers, 1 ≤ i ≤ n, then∣∣∣∣∣
n∑

i=1

ziw̄i

∣∣∣∣∣ ≤
√√√√ n∑

i=1

|zi|2

√√√√ n∑
i=1

|wi|2. (56)

Bessel inequality

Suppose f : [−L,L] → R is a picewise continuous function and let

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, n ≥ 0, (57)

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx, n ≥ 1. (58)

Then
1

2
a20 +

∞∑
n=1

(a2n + b2n) ≤
1

L

∫ L

−L
f2(x)dx. (59)
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A consequence of Bessel inequality is

Riemann-Lebesgue lemma

If f : [−L,L] → R is a piecewise continuous function, then

lim
n→∞

an =
1

L
lim

n→∞

∫ L

−L
f(x) cos

(nπx
L

)
= 0, (60)

lim
n→∞

bn =
1

L
lim

n→∞

∫ L

−L
f(x) sin

(nπx
L

)
= 0. (61)

One can show that a stronger result holds.

Parseval equality

If f : [−L,L] → R is a piecewise continuous function, then

1

2
a20 +

∞∑
n=1

(a2n + b2n) =
1

L

∫ L

−L
|f(x)|2dx. (62)
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Uniform convergence of Fourier series

Suppose f is a continuous and piecewise C1 function on the inverval [−L,L] and
f(−L) = f(L). Then the Fourier series converges uniformly to f on [−L,L].

If the Fourier coefficients are not known explicitly, one can derive the following bounds

for |an| and |bn|.

Teorem

Suppose f ∈ C2[−L,L] such that f(−L) = f(L) and f ′(−L) = f ′(L). Let

M = maxx∈[−L,L] |f ′′(x)|. Then the Fourier coefficienta are bounded by

|an| =
∣∣∣∣ 1L

∫ L

−L
f(x) cos

(nπx
L

)
dx

∣∣∣∣ ≤ 2L2M

π2n2
, (63)

|bn| =
∣∣∣∣ 1L

∫ L

−L
f(x) sin

(nπx
L

)
dx

∣∣∣∣ ≤ 2L2M

π2n2
, n ≥ 1. (64)
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Using the above theorem we can estimate the number of Fourier coefficients needed

to approximate a function within a given accuracy.

Let

SN (x) =
a0

2
+

N∑
n=1

[
an cos

(nπ
L
x
)
+ bn sin

(nπ
L
x
)]

(65)

be the N–th partial sum of the Fourier series of f . If we require that

sup
x∈[−L,L]

|f(x)− SN (x)| < ε, (66)

then we need at least

N >
4L2M

π2ϵ
(67)

Fouerier coefficients.
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