

Partial differential equations

prof.dr.sc. Saša Krešić-Jurić

PMF–Split

Syllabus

- 1** Introduction
- 2** Fourier series
- 3** Classification of second order linear equations
- 4** Method of separation of variables
- 5** Wave equation
- 6** Heat equation
- 7** Laplace equation

Literature

- 1** Pinchover Y., Rubenstein J. *An Introduction to Partial Differential Equations*, Cambridge University Press, 2007.
- 2** Borthwick D. *Introduction to Partial Differential Equations*, Springer, 2018.
- 3** Guenther R.B., Lee J.W. *Partial Differential Equations of Mathematical Physics and Integral Equations*, Dover Publications, 1996.

Syllabus

- 1** Introduction
- 2** Fourier series
- 3** Classification of second order linear equations
- 4** Method of separation of variables
- 5** Wave equation
- 6** Heat equation
- 7** Laplace equation

Literature

- 1** Pinchover Y., Rubenstein J. *An Introduction to Partial Differential Equations*, Cambridge University Press, 2007.
- 2** Borthwick D. *Introduction to Partial Differential Equations*, Springer, 2018.
- 3** Guenther R.B., Lee J.W. *Partial Differential Equations of Mathematical Physics and Integral Equations*, Dover Publications, 1996.

Introduction and basic definitions

- Physical phenomena which continuously depend on spatial and time variables, such as wave motion and heat dissipation, are modelled by partial differential equations (PDE's)
- PDE's play an important role in physics, technology, biology, finance, etc.
- A partial differential equation describes a relation between an unknown function $u = u(x_1, x_2, \dots, x_n)$ and its partial derivatives. A general form for a PDE is can be written as

$$F \left(x, u, \frac{\partial u}{\partial x_i}, \dots, \frac{\partial^k u}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{j_k}} \right) = 0. \quad (1)$$

We introduce the notation

$$u_x = \frac{\partial u}{\partial x}, \quad u_{xy} = \frac{\partial^2 u}{\partial x \partial y}, \quad \text{etc.} \quad (2)$$

- The order of a partial differential equation is the order of the highest derivative appearing in the equation.
- PDE's are usually defined on an open connected set $\Omega \subseteq \mathbb{R}^n$.

- Physical phenomena which continuously depend on spatial and time variables, such as wave motion and heat dissipation, are modelled by partial differential equations (PDE's)
- PDE's play an important role in physics, technology, biology, finance, etc.
- A partial differential equation describes a relation between an unknown function $u = u(x_1, x_2, \dots, x_n)$ and its partial derivatives. A general form for a PDE is can be written as

$$F \left(x, u, \frac{\partial u}{\partial x_i}, \dots, \frac{\partial^k u}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{j_k}} \right) = 0. \quad (1)$$

We introduce the notation

$$u_x = \frac{\partial u}{\partial x}, \quad u_{xy} = \frac{\partial^2 u}{\partial x \partial y}, \quad \text{etc.} \quad (2)$$

- The order of a partial differential equation is the order of the highest derivative appearing in the equation.
- PDE's are usually defined on an open connected set $\Omega \subseteq \mathbb{R}^n$.

- Physical phenomena which continuously depend on spatial and time variables, such as wave motion and heat dissipation, are modelled by partial differential equations (PDE's)
- PDE's play an important role in physics, technology, biology, finance, etc.
- A partial differential equation describes a relation between an unknown function $u = u(x_1, x_2, \dots, x_n)$ and its partial derivatives. A general form for a PDE is can be written as

$$F\left(x, u, \frac{\partial u}{\partial x_i}, \dots, \frac{\partial^k u}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{j_k}}\right) = 0. \quad (1)$$

We introduce the notation

$$u_x = \frac{\partial u}{\partial x}, \quad u_{xy} = \frac{\partial^2 u}{\partial x \partial y}, \quad \text{etc.} \quad (2)$$

- The order of a partial differential equation is the order of the highest derivative appearing in the equation.
- PDE's are usually defined on an open connected set $\Omega \subseteq \mathbb{R}^n$.

Solutions of partial differential equations can be classified as

- 1** classical,
- 2** weak and
- 3** distributional solutions.

Definition

A classical solution of a partial differential equation of order $k > 0$ on the set $\Omega \subseteq \mathbb{R}^n$ is a function $u \in C^k(\Omega)$ which satisfies the equation at every point of the Ω .

A classical solution is also called a *strong* solution of the PDE.

Examples

- 1** Verify that $u = (x + y)^3$ i $u = \sin(x - y)$ are classical solutions of the equation

$$u_{xx} - u_{yy} = 0 \quad \text{na skupu } \Omega = \mathbb{R}^2. \quad (3)$$

- 2** Verify that $u = \ln(x^2 + y^2)$ is a classical solution of the equation

$$u_{xx} + u_{yy} = 0 \quad \text{na skupu } \Omega = \mathbb{R}^2 \setminus \{(0,0)\}. \quad (4)$$

Solutions of partial differential equations can be classified as

- 1 classical,
- 2 weak and
- 3 distributional solutions.

Definition

A classical solution of a partial differential equation of order $k > 0$ on the set $\Omega \subseteq \mathbb{R}^n$ is a function $u \in C^k(\Omega)$ which satisfies the equation at every point of the Ω .

A classical solution is also called a *strong* solution of the PDE.

Examples

- 1 Verify that $u = (x + y)^3$ i $u = \sin(x - y)$ are classical solutions of the equation

$$u_{xx} - u_{yy} = 0 \quad \text{na skupu } \Omega = \mathbb{R}^2. \quad (3)$$

- 2 Verify that $u = \ln(x^2 + y^2)$ is a classical solution of the equation

$$u_{xx} + u_{yy} = 0 \quad \text{na skupu } \Omega = \mathbb{R}^2 \setminus \{(0,0)\}. \quad (4)$$

Solutions of partial differential equations can be classified as

- 1** classical,
- 2** weak and
- 3** distributional solutions.

Definition

A classical solution of a partial differential equation of order $k > 0$ on the set $\Omega \subseteq \mathbb{R}^n$ is a function $u \in C^k(\Omega)$ which satisfies the equation at every point of the Ω .

A classical solution is also called a *strong* solution of the PDE.

Examples

- 1** Verify that $u = (x + y)^3$ i $u = \sin(x - y)$ are classical solutions of the equation

$$u_{xx} - u_{yy} = 0 \quad \text{na skupu} \quad \Omega = \mathbb{R}^2. \quad (3)$$

- 2** Verify that $u = \ln(x^2 + y^2)$ is a classical solution of the equation

$$u_{xx} + u_{yy} = 0 \quad \text{na skupu} \quad \Omega = \mathbb{R}^2 \setminus \{(0, 0)\}. \quad (4)$$

Basic classification of partial differential equations

We can classify PDE's according to

- 1 the order of the equation,
- 2 linear vs. nonlinear equations.

■ We say that the equation

$$F\left(x, u, \frac{\partial u}{\partial x_i}, \dots, \frac{\partial^k u}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{j_k}}\right) = 0. \quad (5)$$

is linear *linearna* if F is a linear function in the variables u and all its partial derivatives.

In this case the coefficients multiplying the function u and its derivatives depend only on the independent variables x_1, \dots, x_n .

■ A PDE is *nonlinear* if it is not linear.

Basic classification of partial differential equations

We can classify PDE's according to

- 1 the order of the equation,
- 2 linear vs. nonlinear equations.

■ We say that the equation

$$F\left(x, u, \frac{\partial u}{\partial x_i}, \dots, \frac{\partial^k u}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{j_k}}\right) = 0. \quad (5)$$

is linear *linearna* if F is a linear function in the variables u and all its partial derivatives.

In this case the coefficients multiplying the function u and its derivatives depend only on the independent variables x_1, \dots, x_n .

■ A PDE is *nonlinear* if it is not linear.

Examples

1

$$xu_x + yu_y = u, \quad \text{first order nonlinear PDE} \quad (6)$$

2

$$u_t + u_{xxx} - 6uu_x = 0, \quad \text{nonlinear third order PDE} \quad (7)$$

3

$$u_x^2 + u_y^2 = u, \quad \text{nonlinear first order PDE} \quad (8)$$

In mathematical physics an important role is played by partial differential equations of second order.

Examples

1

$$xu_x + yu_y = u, \quad \text{first order nonlinear PDE} \quad (6)$$

2

$$u_t + u_{xxx} - 6uu_x = 0, \quad \text{nonlinear third order PDE} \quad (7)$$

3

$$u_x^2 + u_y^2 = u, \quad \text{nonlinear first order PDE} \quad (8)$$

In mathematical physics an important role is played by partial differential equations of second order.

Classical equations of mathematical physics

Most physical phenomena are modelled by second order partial differential equations.

1 The wave equation

$$u_{tt} - c^2 \nabla^2 u = 0, \quad u = u(x, y, z, t) \quad (9)$$

describes propagation of acoustic and electromagnetic waves in space.

2 The heat equation

$$u_t - k \nabla^2 u = 0, \quad u = u(x, y, z, t) \quad (10)$$

describes time evolution of temperature in heat conducting materials.

3 The Laplace equation

$$\nabla^2 u = 0, \quad u = u(x, y, z) \quad (11)$$

describes electric potential and also stationary distribution of temperature in a heat conducting material.

4 The Schrödiger equation

$$-\frac{\hbar^2}{2m} \nabla^2 \psi + V(x, y, z) \psi = i\hbar \psi_t, \quad \psi = \psi(x, y, z, t) \quad (12)$$

describes evolution of the wave function ψ in quantum mechanics.

Classical equations of mathematical physics

Most physical phenomena are modelled by second order partial differential equations.

1 The wave equation

$$u_{tt} - c^2 \nabla^2 u = 0, \quad u = u(x, y, z, t) \quad (9)$$

describes propagation of acoustic and electromagnetic waves in space.

2 The heat equation

$$u_t - k \nabla^2 u = 0, \quad u = u(x, y, z, t) \quad (10)$$

describes time evolution of temperature in heat conducting materials.

3 The Laplace equation

$$\nabla^2 u = 0, \quad u = u(x, y, z) \quad (11)$$

describes electric potential and also stationary distribution of temperature in a heat conducting material.

4 The Schrödiger equation

$$-\frac{\hbar^2}{2m} \nabla^2 \psi + V(x, y, z) \psi = i\hbar\psi_t, \quad \psi = \psi(x, y, z, t) \quad (12)$$

describes evolution of the wave function ψ in quantum mechanics.

Classical equations of mathematical physics

Most physical phenomena are modelled by second order partial differential equations.

1 The wave equation

$$u_{tt} - c^2 \nabla^2 u = 0, \quad u = u(x, y, z, t) \quad (9)$$

describes propagation of acoustic and electromagnetic waves in space.

2 The heat equation

$$u_t - k \nabla^2 u = 0, \quad u = u(x, y, z, t) \quad (10)$$

describes time evolution of temperature in heat conducting materials.

3 The Laplace equation

$$\nabla^2 u = 0, \quad u = u(x, y, z) \quad (11)$$

describes electric potential and also stationary distribution of temperature in a heat conducting material.

4 The Schrödiger equation

$$-\frac{\hbar^2}{2m} \nabla^2 \psi + V(x, y, z) \psi = i\hbar \psi_t, \quad \psi = \psi(x, y, z, t) \quad (12)$$

describes evolution of the wave function ψ in quantum mechanics.

Classical equations of mathematical physics

Most physical phenomena are modelled by second order partial differential equations.

1 The wave equation

$$u_{tt} - c^2 \nabla^2 u = 0, \quad u = u(x, y, z, t) \quad (9)$$

describes propagation of acoustic and electromagnetic waves in space.

2 The heat equation

$$u_t - k \nabla^2 u = 0, \quad u = u(x, y, z, t) \quad (10)$$

describes time evolution of temperature in heat conducting materials.

3 The Laplace equation

$$\nabla^2 u = 0, \quad u = u(x, y, z) \quad (11)$$

describes electric potential and also stationary distribution of temperature in a heat conducting material.

4 The Schrödiger equation

$$-\frac{\hbar}{2m} \nabla^2 \psi + V(x, y, z) \psi = i\hbar \psi_t, \quad \psi = \psi(x, y, z, t) \quad (12)$$

describes evolution of the wave function ψ in quantum mechanics.

Linear equations and the principle of superposition

A general PDE of second order in the variables x_1, x_2, \dots, x_n is given by

$$\sum_{i,j=1}^n A_{ij}(x)u_{x_i x_j} + \sum_{i=1}^n B_i(x)u_{x_i} + F(x)u = G(x). \quad (13)$$

$$u_{x_i x_j} = u_{x_j x_i} \quad \Rightarrow \quad \text{we can assume that } A_{ij} = A_{ji} \quad (14)$$

To equation (13) we associate the differential operator

$$L = \sum_{i,j=1}^n A_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^n B_i \frac{\partial}{\partial x_i} + F. \quad (15)$$

Equation (13) in operator form:

$$L[u] = G. \quad (16)$$

- If $G = 0$, then we say that the equation is *homogeneous*.
- If $G \neq 0$, then we say that the equation is *inhomogeneous*.

Linear equations and the principle of superposition

A general PDE of second order in the variables x_1, x_2, \dots, x_n is given by

$$\sum_{i,j=1}^n A_{ij}(x)u_{x_i x_j} + \sum_{i=1}^n B_i(x)u_{x_i} + F(x)u = G(x). \quad (13)$$

$$u_{x_i x_j} = u_{x_j x_i} \quad \Rightarrow \quad \text{we can assume that } A_{ij} = A_{ji} \quad (14)$$

To equation (13) we associate the differential operator

$$L = \sum_{i,j=1}^n A_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^n B_i \frac{\partial}{\partial x_i} + F. \quad (15)$$

Equation (13) in operator form:

$$L[u] = G. \quad (16)$$

- If $G = 0$, then we say that the equation is *homogeneous*.
- If $G \neq 0$, then we say that the equation is *inhomogeneous*.

Linear equations and the principle of superposition

A general PDE of second order in the variables x_1, x_2, \dots, x_n is given by

$$\sum_{i,j=1}^n A_{ij}(x)u_{x_i x_j} + \sum_{i=1}^n B_i(x)u_{x_i} + F(x)u = G(x). \quad (13)$$

$$u_{x_i x_j} = u_{x_j x_i} \quad \Rightarrow \quad \text{we can assume that } A_{ij} = A_{ji} \quad (14)$$

To equation (13) we associate the differential operator

$$L = \sum_{i,j=1}^n A_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^n B_i \frac{\partial}{\partial x_i} + F. \quad (15)$$

Equation (13) in operator form:

$$L[u] = G. \quad (16)$$

- If $G = 0$, then we say that the equation is *homogeneous*.
- If $G \neq 0$, then we say that the equation is *inhomogeneous*.

Linear equations and the principle of superposition

A general PDE of second order in the variables x_1, x_2, \dots, x_n is given by

$$\sum_{i,j=1}^n A_{ij}(x)u_{x_i x_j} + \sum_{i=1}^n B_i(x)u_{x_i} + F(x)u = G(x). \quad (13)$$

$$u_{x_i x_j} = u_{x_j x_i} \quad \Rightarrow \quad \text{we can assume that } A_{ij} = A_{ji} \quad (14)$$

To equation (13) we associate the differential operator

$$L = \sum_{i,j=1}^n A_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^n B_i \frac{\partial}{\partial x_i} + F. \quad (15)$$

Equation (13) in operator form:

$$L[u] = G. \quad (16)$$

- If $G = 0$, then we say that the equation is *homogeneous*.
- If $G \neq 0$, then we say that the equation is *inhomogeneous*.

A differential operator L is linear if

$$L[\alpha_1 u_1 + \alpha_2 u_2] = \alpha_1 L[u_1] + \alpha_2 L[u_2], \quad \alpha_1, \alpha_2 \in \mathbb{R}. \quad (17)$$

Linear operators satisfy the *principle of superposition*. If

$$L[u_1] = 0, \quad L[u_2] = 0, \quad (18)$$

then the function $u = \alpha_1 u_1 + \alpha_2 u_2$ is a solution of the same equation because

$$L[u] = \alpha_1 L[u_1] + \alpha_2 L[u_2] = 0. \quad (19)$$

- 1 Direct integration
- 2 The method of substitution – introduction of new variables
- 3 Reduction of the number of variables using symmetry properties of the equation

Examples

- 1 Determine the general solution of the equation $u_{yy} = 2$ for the function $u = u(x, y)$.
- 2 Find the general solution of the equation $u_x - u_y = 0$.
- 3 Determine the general solution of the equation $u_{xy} + \frac{1}{x}u_y = \frac{y}{x^2}$.
- 4 Determine spherically symmetric solution of the Laplace equation

$$u_{xx} + u_{yy} + u_{zz} = 0.$$

- 5 ■ Show that $u(x, y) = xf(2x + y)$ is the general solution of the equation $xu_x - 2xu_y = u$.
- Determine the solution satisfying the condition $u(1, y) = y^2$.

- 1 Direct integration
- 2 The method of substitution – introduction of new variables
- 3 Reduction of the number of variables using symmetry properties of the equation

Examples

- 1 Determine the general solution of the equation $u_{yy} = 2$ for the function $u = u(x, y)$.
- 2 Find the general solution of the equation $u_x - u_y = 0$.
- 3 Determine the general solution of the equation $u_{xy} + \frac{1}{x}u_y = \frac{y}{x^2}$.
- 4 Determine spherically symmetric solution of the Laplace equation

$$u_{xx} + u_{yy} + u_{zz} = 0.$$

- 5 ■ Show that $u(x, y) = xf(2x + y)$ is the general solution of the equation $xu_x - 2xu_y = u$.
- Determine the solution satisfying the condition $u(1, y) = y^2$.

- 1 Direct integration
- 2 The method of substitution – introduction of new variables
- 3 Reduction of the number of variables using symmetry properties of the equation

Examples

- 1 Determine the general solution of the equation $u_{yy} = 2$ for the function $u = u(x, y)$.
- 2 Find the general solution of the equation $u_x - u_y = 0$.
- 3 Determine the general solution of the equation $u_{xy} + \frac{1}{x}u_y = \frac{y}{x^2}$.
- 4 Determine spherically symmetric solution of the Laplace equation

$$u_{xx} + u_{yy} + u_{zz} = 0.$$

- 5 ■ Show that $u(x, y) = xf(2x + y)$ is the general solution of the equation $xu_x - 2xu_y = u$.
- Determine the solution satisfying the condition $u(1, y) = y^2$.

- 1 Direct integration
- 2 The method of substitution – introduction of new variables
- 3 Reduction of the number of variables using symmetry properties of the equation

Examples

- 1 Determine the general solution of the equation $u_{yy} = 2$ for the function $u = u(x, y)$.
- 2 Find the general solution of the equation $u_x - u_y = 0$.
- 3 Determine the general solution of the equation $u_{xy} + \frac{1}{x}u_y = \frac{y}{x^2}$.
- 4 Determine spherically symmetric solution of the Laplace equation

$$u_{xx} + u_{yy} + u_{zz} = 0.$$

- 5
 - Show that $u(x, y) = xf(2x + y)$ is the general solution of the equation $xu_x - 2xu_y = u$.
 - Determine the solution satisfying the condition $u(1, y) = y^2$.

- 1 Direct integration
- 2 The method of substitution – introduction of new variables
- 3 Reduction of the number of variables using symmetry properties of the equation

Examples

- 1 Determine the general solution of the equation $u_{yy} = 2$ for the function $u = u(x, y)$.
- 2 Find the general solution of the equation $u_x - u_y = 0$.
- 3 Determine the general solution of the equation $u_{xy} + \frac{1}{x}u_y = \frac{y}{x^2}$.
- 4 Determine spherically symmetric solution of the Laplace equation

$$u_{xx} + u_{yy} + u_{zz} = 0.$$

- 5
 - Show that $u(x, y) = xf(2x + y)$ is the general solution of the equation $xu_x - 2xu_y = u$.
 - Determine the solution satisfying the condition $u(1, y) = y^2$.

- 1 Direct integration
- 2 The method of substitution – introduction of new variables
- 3 Reduction of the number of variables using symmetry properties of the equation

Examples

- 1 Determine the general solution of the equation $u_{yy} = 2$ for the function $u = u(x, y)$.
- 2 Find the general solution of the equation $u_x - u_y = 0$.
- 3 Determine the general solution of the equation $u_{xy} + \frac{1}{x}u_y = \frac{y}{x^2}$.
- 4 Determine spherically symmetric solution of the Laplace equation

$$u_{xx} + u_{yy} + u_{zz} = 0.$$

- 5 ■ Show that $u(x, y) = xf(2x + y)$ is the general solution of the equation $xu_x - 2xu_y = u$.
- Determine the solution satisfying the condition $u(1, y) = y^2$.

Initial and boundary conditions

Partial differential equations generally have infinitely many solutions. In order to determine a unique solution we have to impose **initial** and/or **boundary** conditions. These conditions naturally arise from the physical problem under consideration.

Example 1 The wave equation

$$u_{tt} - c^2 u_{xx} = 0, \quad 0 < x < L, \quad t > 0. \quad (20)$$

$u(x, t)$ wave amplitude at the point x at the moment t .

Initial conditions:

$$u(x, 0) = f(x), \quad x \in [0, L], \quad (21)$$

$$u_t(x, 0) = g(x), \quad x \in [0, L]. \quad (22)$$

Dirichlet boundary condition:

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (23)$$

Neumann boundary condition:

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (24)$$

Initial and boundary conditions

Partial differential equations generally have infinitely many solutions. In order to determine a unique solution we have to impose **initial** and/or **boundary** conditions. These conditions naturally arise from the physical problem under consideration.

Example 1 The wave equation

$$u_{tt} - c^2 u_{xx} = 0, \quad 0 < x < L, \quad t > 0. \quad (20)$$

$u(x, t)$ wave amplitude at the point x at the moment t .

Initial conditions:

$$u(x, 0) = f(x), \quad x \in [0, L], \quad (21)$$

$$u_t(x, 0) = g(x), \quad x \in [0, L]. \quad (22)$$

Dirichlet boundary condition:

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (23)$$

Neumann boundary condition:

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (24)$$

Initial and boundary conditions

Partial differential equations generally have infinitely many solutions. In order to determine a unique solution we have to impose **initial** and/or **boundary** conditions. These conditions naturally arise from the physical problem under consideration.

Example 1 The wave equation

$$u_{tt} - c^2 u_{xx} = 0, \quad 0 < x < L, \quad t > 0. \quad (20)$$

$u(x, t)$ wave amplitude at the point x at the moment t .

Initial conditions:

$$u(x, 0) = f(x), \quad x \in [0, L], \quad (21)$$

$$u_t(x, 0) = g(x), \quad x \in [0, L]. \quad (22)$$

Dirichlet boundary condition:

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (23)$$

Neumann boundary condition:

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (24)$$

Initial and boundary conditions

Partial differential equations generally have infinitely many solutions. In order to determine a unique solution we have to impose **initial** and/or **boundary** conditions. These conditions naturally arise from the physical problem under consideration.

Example 1 The wave equation

$$u_{tt} - c^2 u_{xx} = 0, \quad 0 < x < L, \quad t > 0. \quad (20)$$

$u(x, t)$ wave amplitude at the point x at the moment t .

Initial conditions:

$$u(x, 0) = f(x), \quad x \in [0, L], \quad (21)$$

$$u_t(x, 0) = g(x), \quad x \in [0, L]. \quad (22)$$

Dirichlet boundary condition:

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (23)$$

Neumann boundary condition:

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (24)$$

Initial and boundary conditions

Partial differential equations generally have infinitely many solutions. In order to determine a unique solution we have to impose **initial** and/or **boundary** conditions. These conditions naturally arise from the physical problem under consideration.

Example 1 The wave equation

$$u_{tt} - c^2 u_{xx} = 0, \quad 0 < x < L, \quad t > 0. \quad (20)$$

$u(x, t)$ wave amplitude at the point x at the moment t .

Initial conditions:

$$u(x, 0) = f(x), \quad x \in [0, L], \quad (21)$$

$$u_t(x, 0) = g(x), \quad x \in [0, L]. \quad (22)$$

Dirichlet boundary condition:

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (23)$$

Neumann boundary condition:

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (24)$$

Example 2 The Laplace equation

$$u_{xx} + u_{yy} = 0, \quad (x, y) \in \Omega, \quad (25)$$

$\Omega \subseteq \mathbb{R}^2$ domain bounded by a closed piecewise smooth curve $\partial\Omega$.

Dirichlet boundary condition:

$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega \quad (26)$$

Neumann boundary condition:

$$\frac{\partial u}{\partial \vec{n}}(x, y) = g(x, y), \quad (x, y) \in \partial\Omega, \quad (27)$$

$$\frac{\partial u}{\partial \vec{n}} = \nabla u \cdot \vec{n} \quad \text{normal derivative to the curve } \partial\Omega \quad (28)$$

Example 2 The Laplace equation

$$u_{xx} + u_{yy} = 0, \quad (x, y) \in \Omega, \quad (25)$$

$\Omega \subseteq \mathbb{R}^2$ domain bounded by a closed piecewise smooth curve $\partial\Omega$.

Dirichlet boundary condition:

$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega \quad (26)$$

Neumann boundary condition:

$$\frac{\partial u}{\partial \vec{n}}(x, y) = g(x, y), \quad (x, y) \in \partial\Omega, \quad (27)$$

$$\frac{\partial u}{\partial \vec{n}} = \nabla u \cdot \vec{n} \quad \text{normal derivative to the curve } \partial\Omega \quad (28)$$

Example 2 The Laplace equation

$$u_{xx} + u_{yy} = 0, \quad (x, y) \in \Omega, \quad (25)$$

$\Omega \subseteq \mathbb{R}^2$ domain bounded by a closed piecewise smooth curve $\partial\Omega$.

Dirichlet boundary condition:

$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega \quad (26)$$

Neumann boundary condition:

$$\frac{\partial u}{\partial \vec{n}}(x, y) = g(x, y), \quad (x, y) \in \partial\Omega, \quad (27)$$

$$\frac{\partial u}{\partial \vec{n}} = \nabla u \cdot \vec{n} \quad \text{normal derivative to the curve} \quad \partial\Omega \quad (28)$$

Stability of solutions

We say that a partial differential equation with given initial and boundary conditions is a well posed problem if it satisfies the following conditions (J. Hadamard, 1902.):

- *existence*: the problem has a solution,
- *uniqueness*: the solution of the problem is unique for given initial and boundary conditions,
- *stability*: the solution continuously depends on the equation parameters and given initial and boundary conditions.

A partial differential equation is stable if small perturbations of initial and boundary conditions or equation parameters cause small changes of the solution.

Stability of solutions

We say that a partial differential equation with given initial and boundary conditions is a well posed problem if it satisfies the following conditions (J. Hadamard, 1902.):

- *existence*: the problem has a solution,
- *uniqueness*: the solution of the problem is unique for given initial and boundary conditions,
- *stability*: the solution continuously depends on the equation parameters and given initial and boundary conditions.

A partial differential equation is stable if small perturbations of initial and boundary conditions or equation parameters cause small changes of the solution.

Stability of solutions

We say that a partial differential equation with given initial and boundary conditions is a well posed problem if it satisfies the following conditions (J. Hadamard, 1902.):

- *existence*: the problem has a solution,
- *uniqueness*: the solution of the problem is unique for given initial and boundary conditions,
- *stability*: the solution continuously depends on the equation parameters and given initial and boundary conditions.

A partial differential equation is stable if small perturbations of initial and boundary conditions or equation parameters cause small changes of the solution.

Stability of solutions

We say that a partial differential equation with given initial and boundary conditions is a well posed problem if it satisfies the following conditions (J. Hadamard, 1902.):

- *existence*: the problem has a solution,
- *uniqueness*: the solution of the problem is unique for given initial and boundary conditions,
- *stability*: the solution continuously depends on the equation parameters and given initial and boundary conditions.

A partial differential equation is stable if small perturbations of initial and boundary conditions or equation parameters cause small changes of the solution.

We say that a partial differential equation with given initial and boundary conditions is a well posed problem if it satisfies the following conditions (J. Hadamard, 1902.):

- *existence*: the problem has a solution,
- *uniqueness*: the solution of the problem is unique for given initial and boundary conditions,
- *stability*: the solution continuously depends on the equation parameters and given initial and boundary conditions.

A partial differential equation is stable if small perturbations of initial and boundary conditions or equation parameters cause small changes of the solution.

We say that a partial differential equation with given initial and boundary conditions is a well posed problem if it satisfies the following conditions (J. Hadamard, 1902.):

- *existence*: the problem has a solution,
- *uniqueness*: the solution of the problem is unique for given initial and boundary conditions,
- *stability*: the solution continuously depends on the equation parameters and given initial and boundary conditions.

A partial differential equation is stable if small perturbations of initial and boundary conditions or equation parameters cause small changes of the solution.

Example

1 Formulate the condition of stability for the Laplace equation

$$u_{xx} + u_{yy} = 0, \quad (x, y) \in \Omega, \quad (29)$$

with respect to the Dirichlet boundary condition.

2 Formulate the condition of stability of the wave equation

$$u_{tt} - c^2 u_{xx} = 0, \quad x \in \mathbb{R}, \quad (30)$$

in the time interval $[0, T]$ with respect to the initial conditions.

Example

1 Formulate the condition of stability for the Laplace equation

$$u_{xx} + u_{yy} = 0, \quad (x, y) \in \Omega, \quad (29)$$

with respect to the Dirichlet boundary condition.

2 Formulate the condition of stability of the wave equation

$$u_{tt} - c^2 u_{xx} = 0, \quad x \in \mathbb{R}, \quad (30)$$

in the time interval $[0, T]$ with respect to the initial conditions.

The following examples illustrate problems that are not well posed.

Hadamard's example

Show that the solution of the Laplace equation

$$u_{xx} + u_{yy} = 0, \quad (x, y) \in \mathbb{R}^2 \quad (31)$$

with boundary conditions on the line $y = 0$,

$$u(x, 0) = f(x), \quad u_y(x, 0) = g(x), \quad (32)$$

is not stable.

Backwards heat equation

Show that the solution of the equation

$$u_t + u_{xx} = 0, \quad -\infty < x < \infty, \quad t > 0, \quad (33)$$

with initial condition $u(x, 0) = 1$ is not stable.

The following examples illustrate problems that are not well posed.

Hadamard's example

Show that the solution of the Laplace equation

$$u_{xx} + u_{yy} = 0, \quad (x, y) \in \mathbb{R}^2 \quad (31)$$

with boundary conditions on the line $y = 0$,

$$u(x, 0) = f(x), \quad u_y(x, 0) = g(x), \quad (32)$$

is not stable.

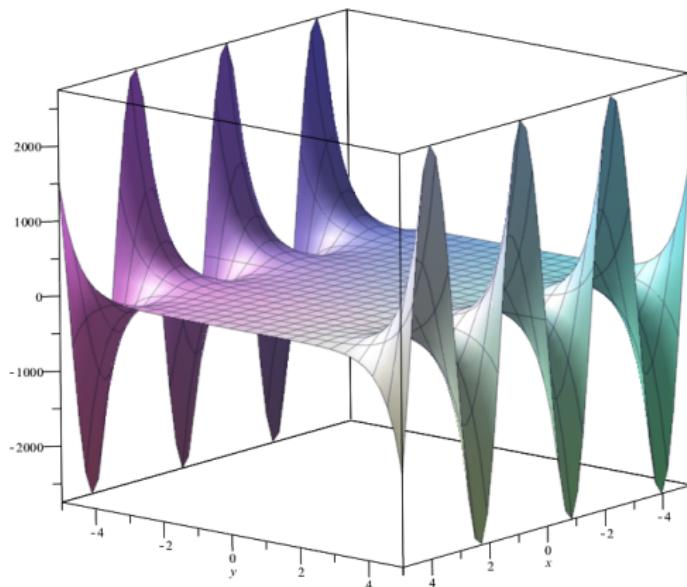
Backwards heat equation

Show that the solution of the equation

$$u_t + u_{xx} = 0, \quad -\infty < x < \infty, \quad t > 0, \quad (33)$$

with initial condition $u(x, 0) = 1$ is not stable.

Instabilitiy of solution in Hadamard's example



Fourier Series

The theory of Fourier series arose as a method for solving the heat equation by the method of separation of variables.

Problem: Can a given function $f: [-L, L] \rightarrow \mathbb{R}$ be written as a linear combination of the functions $\sin(\omega x)$ i $\cos(\omega x)$ with different periods?

Under certain conditions on f , it is possible to write f as a trigonometric series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right], \quad -L \leq x \leq L. \quad (34)$$

The Fourier series is a linear combination of oscillatory functions with periods and frequencies given by

$$T_n = \frac{2L}{n}, \quad f_n = \frac{1}{T_n} = \frac{n}{2L}. \quad (35)$$

The coefficients a_n i b_n determine the "amount" of each frequency present in the function.

Fourier Series

The theory of Fourier series arose as a method for solving the heat equation by the method of separation of variables.

Problem: Can a given function $f: [-L, L] \rightarrow \mathbb{R}$ be written as a linear combination of the functions $\sin(\omega x)$ i $\cos(\omega x)$ with different periods?

Under certain conditions on f , it is possible to write f as a trigonometric series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right], \quad -L \leq x \leq L. \quad (34)$$

The Fourier series is a linear combination of oscillatory functions with periods and frequencies given by

$$T_n = \frac{2L}{n}, \quad f_n = \frac{1}{T_n} = \frac{n}{2L}. \quad (35)$$

The coefficients a_n i b_n determine the "amount" of each frequency present in the function.

Trigonometric functions $\sin(xn)$, $n = 1, 2, 3, \dots$

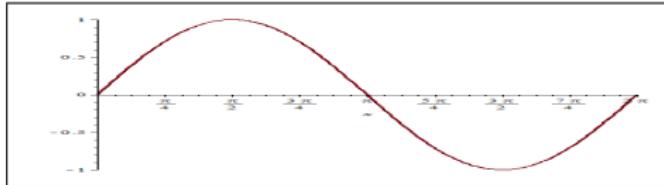


Figure: $f(x) = \sin(x)$

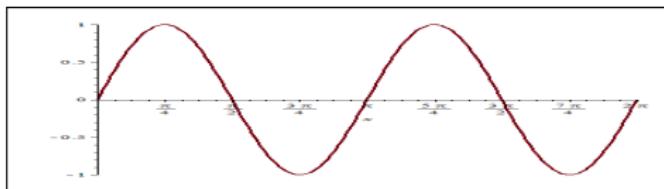


Figure: $f(x) = \sin(2x)$

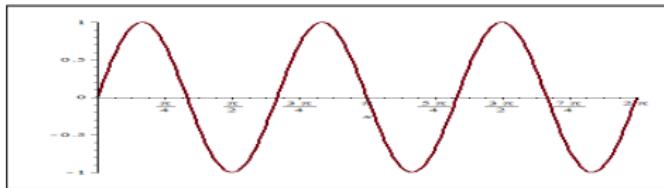


Figure: $f(x) = \sin(3x)$

For the moment, let us suppose that it is possible to write

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right], \quad -L \leq x \leq L. \quad (36)$$

Problem: How can we determine the coefficients a_n i b_n ?

On the space of continuous functions $C([-L, L])$ we can define the inner product

$$\langle f, g \rangle = \int_{-L}^L f(x)g(x)dx. \quad (37)$$

The set

$$\left\{ 1, \sin\left(\frac{n\pi x}{L}\right), \cos\left(\frac{n\pi x}{L}\right) \mid n \in \mathbb{N} \right\} \quad (38)$$

is orthogonal with respect to the inner product (37).

For the moment, let us suppose that it is possible to write

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right], \quad -L \leq x \leq L. \quad (36)$$

Problem: How can we determine the coefficients a_n i b_n ?

On the space of continuous functions $C([-L, L])$ we can define the inner product

$$\langle f, g \rangle = \int_{-L}^L f(x)g(x)dx. \quad (37)$$

The set

$$\left\{ 1, \sin\left(\frac{n\pi x}{L}\right), \cos\left(\frac{n\pi x}{L}\right) \mid n \in \mathbb{N} \right\} \quad (38)$$

is orthogonal with respect to the inner product (37).

The Fourier coefficients can be determined by using the orthogonality relations:

$$\int_{-L}^L 1 \cdot \cos\left(\frac{n\pi x}{L}\right) dx = \int_{-L}^L 1 \cdot \sin\left(\frac{n\pi x}{L}\right) dx = 0, \quad n \geq 1, \quad (39)$$

$$\int_{-L}^L \sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) dx = L \delta_{nm}, \quad (40)$$

$$\int_{-L}^L \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi x}{L}\right) dx = L \delta_{nm}, \quad (41)$$

$$\int_{-L}^L \sin\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi x}{L}\right) dx = 0, \quad n, m \geq 1. \quad (42)$$

Kronecker delta symbol

$$\delta_{nm} = \begin{cases} 1, & n = m, \\ 0, & n \neq m. \end{cases} \quad (43)$$

Assuming that one can interchange summation and integration, determine the expressions for the Fourier coefficients a_n and b_n .

The Fourier coefficients can be determined by using the orthogonality relations:

$$\int_{-L}^L 1 \cdot \cos\left(\frac{n\pi x}{L}\right) dx = \int_{-L}^L 1 \cdot \sin\left(\frac{n\pi x}{L}\right) dx = 0, \quad n \geq 1, \quad (39)$$

$$\int_{-L}^L \sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) dx = L \delta_{nm}, \quad (40)$$

$$\int_{-L}^L \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi x}{L}\right) dx = L \delta_{nm}, \quad (41)$$

$$\int_{-L}^L \sin\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi x}{L}\right) dx = 0, \quad n, m \geq 1. \quad (42)$$

Kronecker delta symbol

$$\delta_{nm} = \begin{cases} 1, & n = m, \\ 0, & n \neq m. \end{cases} \quad (43)$$

Assuming that one can interchange summation and integration, determine the expressions for the Fourier coefficients a_n and b_n .

Definition

The trigonometric series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right] \quad (44)$$

where

$$a_n = \frac{1}{L} \int_{-L}^L f(x) \cos \left(\frac{n\pi x}{L} \right) dx, \quad n = 0, 1, 2, \dots \quad (45)$$

$$b_n = \frac{1}{L} \int_{-L}^L f(x) \sin \left(\frac{n\pi x}{L} \right) dx, \quad n = 1, 2, 3, \dots \quad (46)$$

is called the *Fourier series* of the function f on the interval $[-L, L]$. The coefficients a_n and b_n are called the *Fourier coefficients* of the function f .

What can we say about the convergence of the Fourier series?

- 1 The Fourier coefficients are completely determined by the integral of f , hence the Fourier series of f remains unchanged if the function is the values of f are changed at countably many points. This implies that the Fourier series need not converge to $f(x)$ at every point $x \in [-L, L]$.
- 2 The convergence of the Fourier series can be pointwise, uniform or in L^2 -norm, depending on the properties of the function f .

Problem

We want to determine conditions on the function f such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right], \quad -L \leq x \leq L. \quad (47)$$

What can we say about the convergence of the Fourier series?

- 1 The Fourier coefficients are completely determined by the integral of f , hence the Fourier series of f remains unchanged if the function is the values of f are changed at countably many points. This implies that the Fourier series need not converge to $f(x)$ at every point $x \in [-L, L]$.
- 2 The convergence of the Fourier series can be pointwise, uniform or in L^2 -norm, depending on the properties of the function f .

Problem

We want to determine conditions on the function f such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right], \quad -L \leq x \leq L. \quad (47)$$

What can we say about the convergence of the Fourier series?

- 1 The Fourier coefficients are completely determined by the integral of f , hence the Fourier series of f remains unchanged if the function is the values of f are changed at countably many points. This implies that the Fourier series need not converge to $f(x)$ at every point $x \in [-L, L]$.
- 2 The convergence of the Fourier series can be pointwise, uniform or in L^2 -norm, depending on the properties of the function f .

Problem

We want to determine conditions on the function f such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right], \quad -L \leq x \leq L. \quad (47)$$

Elementary examples

When computing the Fourier coefficients it is useful to remember the following rules:

- 1 if $h: [-L, L] \rightarrow \mathbb{R}$ is an odd function, then

$$\int_{-L}^L h(x)dx = 0, \quad (48)$$

- 2 if $h: [-L, L] \rightarrow \mathbb{R}$ is an even function, then

$$\int_{-L}^L h(x)dx = 2 \int_0^L h(x)dx. \quad (49)$$

Examples

- 1 Determine the Fourier series of $f(x) = x$ in the interval $[-L, L]$.
- 2 Find the Fourier series of $f(x) = x^2 - 1$ in the interval $[-1, 1]$.

Elementary examples

When computing the Fourier coefficients it is useful to remember the following rules:

- 1 if $h: [-L, L] \rightarrow \mathbb{R}$ is an odd function, then

$$\int_{-L}^L h(x)dx = 0, \quad (48)$$

- 2 if $h: [-L, L] \rightarrow \mathbb{R}$ is an even function, then

$$\int_{-L}^L h(x)dx = 2 \int_0^L h(x)dx. \quad (49)$$

Examples

- 1 Determine the Fourier series of $f(x) = x$ in the interval $[-L, L]$.
- 2 Find the Fourier series of $f(x) = x^2 - 1$ in the interval $[-1, 1]$.

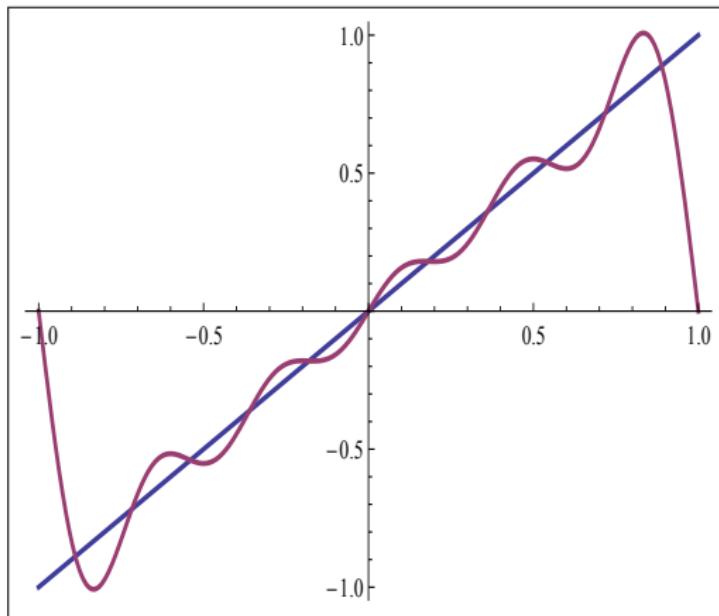


Figure: The Fourier series of $f(x) = x$, $N = 5$.

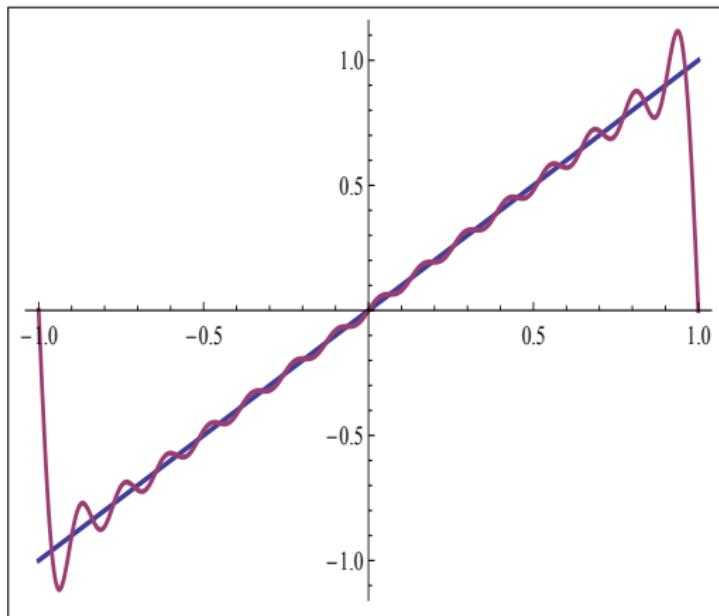


Figure: The Fourier series of $f(x) = x$, $N = 15$.

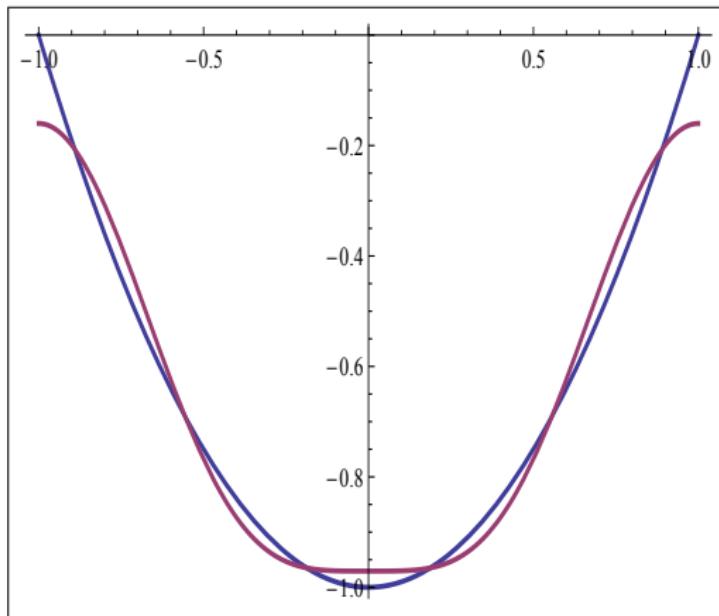


Figure: The Fourier series of $f(x) = x^2 - 1$, $N = 2$.

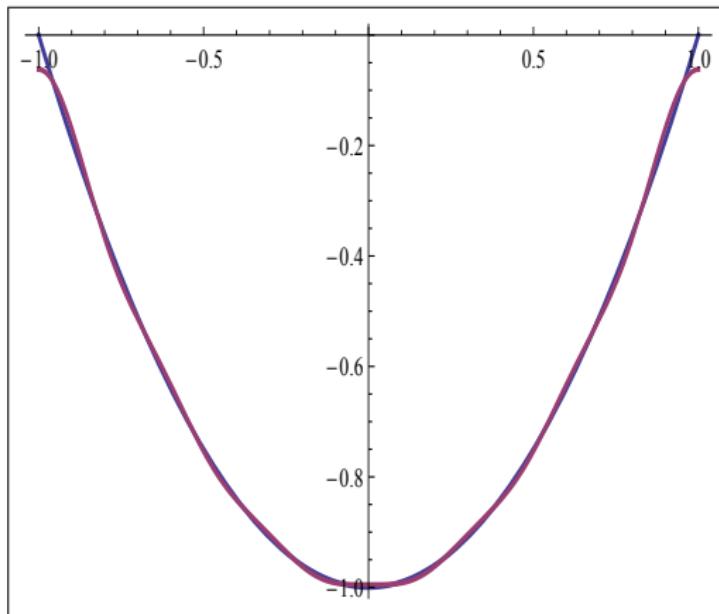


Figure: The Fourier series of $f(x) = x^2 - 1$, $N = 6$.

Definicija

A function f is piecewise continuous on the interval $[a, b]$ if

- 1 it is defined and continuous on $[a, b]$ except possibly at finitely many points $a \leq x_1 < x_2 < \dots < x_n \leq b$,
- 2 at the points $x_k \neq a, b$, one-sided limits exist

$$f(x_k^-) = \lim_{x \rightarrow x_k^-} f(x), \quad f(x_k^+) = \lim_{x \rightarrow x_k^+} f(x), \quad (50)$$

- 3 at the boundary points there exist limits $\lim_{x \rightarrow a^+} f(x)$ i $\lim_{x \rightarrow b^-} f(x)$.

Such functions have a jump discontinuity at x_k and a the change of value

$$\beta_k = f(x_k^+) - f(x_k^-). \quad (51)$$

Definicija

A function f is piecewise C^1 on the interval $[a, b]$ if f and f' are piecewise continuous on $[a, b]$.

Example

Determine if the functions f and g defined by

$$f(x) = \begin{cases} -1, & -1 \leq x < 0, \\ 2, & x = 0, \\ x^2, & 0 < x \leq 1, \end{cases} \quad (52)$$

$$g(x) = |x| \quad (53)$$

are piecewise C^1 on $[-1, 1]$.

Definicija

A function f is piecewise C^1 on the interval $[a, b]$ if f and f' are piecewise continuous on $[a, b]$.

Example

Determine if the functions f and g defined by

$$f(x) = \begin{cases} -1, & -1 \leq x < 0, \\ 2, & x = 0, \\ x^2, & 0 < x \leq 1, \end{cases} \quad (52)$$

$$g(x) = |x| \quad (53)$$

are piecewise C^1 on $[-1, 1]$.

Dirichlet theorem

Suppose f is a piecewise C^1 function on $[-L, L]$ and let \tilde{f} be the Fourier series of f . Then

- 1 $\tilde{f}(x_0) = f(x_0)$ if f is continuous at the point $x_0 \in (-L, L)$,
- 2 $\tilde{f}(x_0) = \frac{1}{2} [f(x_0^+) + f(x_0^-)]$ if f has a discontinuity at $x_0 \in (-L, L)$,
- 3 $\tilde{f}(\pm L) = \frac{1}{2} [f(-L^+) + f(L^-)]$.

Remarks:

- 1 Continuity of the function is not a sufficient condition for convergence of its Fourier series.
- 2 If f is continuous on $[-L, L]$, then its derivative must be piecewise continuous on $[-L, L]$ in order to have convergence of $\tilde{f}(x)$ to $f(x)$ at every point $x \in (-L, L)$.

Dirichlet theorem

Suppose f is a piecewise C^1 function on $[-L, L]$ and let \tilde{f} be the Fourier series of f . Then

- 1 $\tilde{f}(x_0) = f(x_0)$ if f is continuous at the point $x_0 \in (-L, L)$,
- 2 $\tilde{f}(x_0) = \frac{1}{2} [f(x_0^+) + f(x_0^-)]$ if f has a discontinuity at $x_0 \in (-L, L)$,
- 3 $\tilde{f}(\pm L) = \frac{1}{2} [f(-L^+) + f(L^-)]$.

Remarks:

- 1 Continuity of the function is not a sufficient condition for convergence of its Fourier series.
- 2 If f is continuous on $[-L, L]$, then its derivative must be piecewise continuous on $[-L, L]$ in order to have convergence of $\tilde{f}(x)$ to $f(x)$ at every point $x \in (-L, L)$.

Example

Let us illustrate the Dirichlet theorem with the functions

$$f(x) = \begin{cases} 0, & -1 \leq x < 0, \\ 1, & 0 \leq x \leq 1, \end{cases} \quad (54)$$

$$g(x) = |x|, \quad x \in [-\pi, \pi]. \quad (55)$$

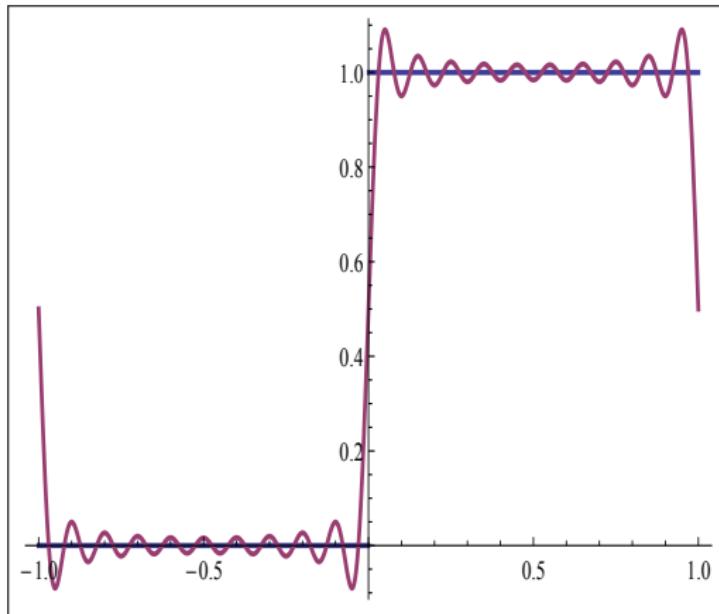


Figure: The Fourier series of the step function.

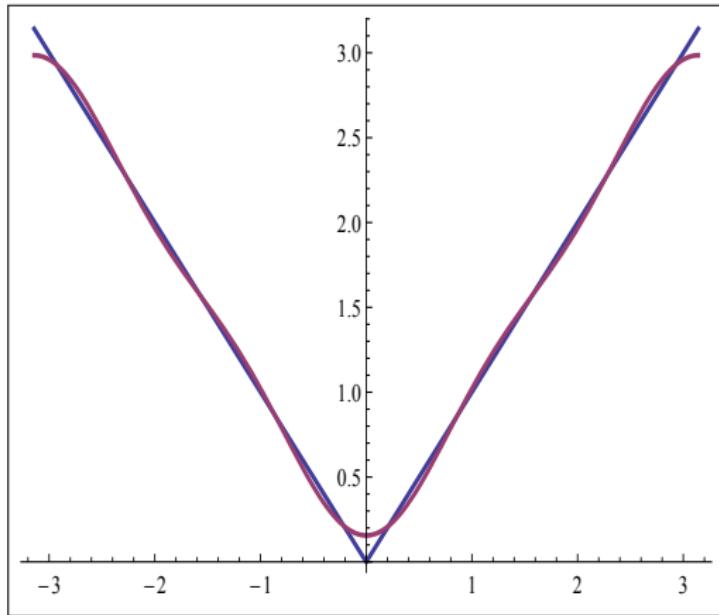


Figure: The Fourier series of $f(x) = |x|$.

Uniform convergence

Cauchy–Schwartz inequality

If z_i, w_i are complex numbers, $1 \leq i \leq n$, then

$$\left| \sum_{i=1}^n z_i \bar{w}_i \right| \leq \sqrt{\sum_{i=1}^n |z_i|^2} \sqrt{\sum_{i=1}^n |w_i|^2}. \quad (56)$$

Bessel inequality

Suppose $f: [-L, L] \rightarrow \mathbb{R}$ is a piecewise continuous function and let

$$a_n = \frac{1}{L} \int_{-L}^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \quad n \geq 0, \quad (57)$$

$$b_n = \frac{1}{L} \int_{-L}^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \quad n \geq 1. \quad (58)$$

Then

$$\frac{1}{2} a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \leq \frac{1}{L} \int_{-L}^L f^2(x) dx. \quad (59)$$

Uniform convergence

Cauchy–Schwartz inequality

If z_i, w_i are complex numbers, $1 \leq i \leq n$, then

$$\left| \sum_{i=1}^n z_i \bar{w}_i \right| \leq \sqrt{\sum_{i=1}^n |z_i|^2} \sqrt{\sum_{i=1}^n |w_i|^2}. \quad (56)$$

Bessel inequality

Suppose $f: [-L, L] \rightarrow \mathbb{R}$ is a piecewise continuous function and let

$$a_n = \frac{1}{L} \int_{-L}^L f(x) \cos \left(\frac{n\pi x}{L} \right) dx, \quad n \geq 0, \quad (57)$$

$$b_n = \frac{1}{L} \int_{-L}^L f(x) \sin \left(\frac{n\pi x}{L} \right) dx, \quad n \geq 1. \quad (58)$$

Then

$$\frac{1}{2} a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \leq \frac{1}{L} \int_{-L}^L f^2(x) dx. \quad (59)$$

A consequence of Bessel inequality is

Riemann-Lebesgue lemma

If $f: [-L, L] \rightarrow \mathbb{R}$ is a piecewise continuous function, then

$$\lim_{n \rightarrow \infty} a_n = \frac{1}{L} \lim_{n \rightarrow \infty} \int_{-L}^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx = 0, \quad (60)$$

$$\lim_{n \rightarrow \infty} b_n = \frac{1}{L} \lim_{n \rightarrow \infty} \int_{-L}^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx = 0. \quad (61)$$

One can show that a stronger result holds.

Parseval equality

If $f: [-L, L] \rightarrow \mathbb{R}$ is a piecewise continuous function, then

$$\frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{L} \int_{-L}^L |f(x)|^2 dx. \quad (62)$$

A consequence of Bessel inequality is

Riemann-Lebesgue lemma

If $f: [-L, L] \rightarrow \mathbb{R}$ is a piecewise continuous function, then

$$\lim_{n \rightarrow \infty} a_n = \frac{1}{L} \lim_{n \rightarrow \infty} \int_{-L}^L f(x) \cos\left(\frac{n\pi x}{L}\right) = 0, \quad (60)$$

$$\lim_{n \rightarrow \infty} b_n = \frac{1}{L} \lim_{n \rightarrow \infty} \int_{-L}^L f(x) \sin\left(\frac{n\pi x}{L}\right) = 0. \quad (61)$$

One can show that a stronger result holds.

Parseval equality

If $f: [-L, L] \rightarrow \mathbb{R}$ is a piecewise continuous function, then

$$\frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{L} \int_{-L}^L |f(x)|^2 dx. \quad (62)$$

Uniform convergence of Fourier series

Suppose f is a continuous and piecewise C^1 function on the interval $[-L, L]$ and $f(-L) = f(L)$. Then the Fourier series converges uniformly to f on $[-L, L]$.

If the Fourier coefficients are not known explicitly, one can derive the following bounds for $|a_n|$ and $|b_n|$.

Theorem

Suppose $f \in C^2[-L, L]$ such that $f(-L) = f(L)$ and $f'(-L) = f'(L)$. Let $M = \max_{x \in [-L, L]} |f''(x)|$. Then the Fourier coefficients are bounded by

$$|a_n| = \left| \frac{1}{L} \int_{-L}^L f(x) \cos \left(\frac{n\pi x}{L} \right) dx \right| \leq \frac{2L^2 M}{\pi^2 n^2}, \quad (63)$$

$$|b_n| = \left| \frac{1}{L} \int_{-L}^L f(x) \sin \left(\frac{n\pi x}{L} \right) dx \right| \leq \frac{2L^2 M}{\pi^2 n^2}, \quad n \geq 1. \quad (64)$$

Uniform convergence of Fourier series

Suppose f is a continuous and piecewise C^1 function on the interval $[-L, L]$ and $f(-L) = f(L)$. Then the Fourier series converges uniformly to f on $[-L, L]$.

If the Fourier coefficients are not known explicitly, one can derive the following bounds for $|a_n|$ and $|b_n|$.

Teorem

Suppose $f \in C^2[-L, L]$ such that $f(-L) = f(L)$ and $f'(-L) = f'(L)$. Let $M = \max_{x \in [-L, L]} |f''(x)|$. Then the Fourier coefficients are bounded by

$$|a_n| = \left| \frac{1}{L} \int_{-L}^L f(x) \cos \left(\frac{n\pi x}{L} \right) dx \right| \leq \frac{2L^2 M}{\pi^2 n^2}, \quad (63)$$

$$|b_n| = \left| \frac{1}{L} \int_{-L}^L f(x) \sin \left(\frac{n\pi x}{L} \right) dx \right| \leq \frac{2L^2 M}{\pi^2 n^2}, \quad n \geq 1. \quad (64)$$

Using the above theorem we can estimate the number of Fourier coefficients needed to approximate a function within a given accuracy.

Let

$$S_N(x) = \frac{a_0}{2} + \sum_{n=1}^N \left[a_n \cos \left(\frac{n\pi}{L} x \right) + b_n \sin \left(\frac{n\pi}{L} x \right) \right] \quad (65)$$

be the N -th partial sum of the Fourier series of f . If we require that

$$\sup_{x \in [-L, L]} |f(x) - S_N(x)| < \varepsilon, \quad (66)$$

then we need at least

$$N > \frac{4L^2 M}{\pi^2 \varepsilon} \quad (67)$$

Fourier coefficients.