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Jednadžbe drugog reda

Opća linearna PDJ drugog reda u dvije nezavisne varijable:

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G. (1)

Fukcije u,A,B,C,D,E, F,G ovise o variablama (x, y) ∈ Ω ⊆ R2.

Operatorski oblik jednadžbe:

L[u] = G, L = A
∂2

∂x2
+ 2B

∂2

∂x∂y
+ C

∂2

∂y2
+D

∂

∂x
+ E

∂

∂y
+ F. (2)

Glavni dio operatora L:

L0 = A
∂2

∂x2
+ 2B

∂2

∂x∂y
+ C

∂2

∂y2
(3)

Svako jednadžbi (1) pridružujemo diskriminantu ∆(x, y):

∆(x, y) = B2(x, y)−A(x, y)C(x, y). (4)

Kvaliativna svojstva rješenja jednadžbe (1) ovise o predznaku ∆(x, y).
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PDJ



Jednadžbe drugog reda
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Definicija

Jednadžba drugog reda L[u] = G naziva se

1 hiperbolička u točki (x, y) ako je ∆(x, y) > 0,

2 parabolička u točki (x, y) ako je ∆(x, y) = 0,

3 eliptička u točki (x, y) ako je ∆(x, y) < 0.

Ako je jednadžba L[u] = G hiperbolička (parabolička, eliptička) u svakoj točki

područja Ω, onda kažemo da je jednadžba hiperbolička (parabolička, eliptička) u Ω.

Primjer

Klasificirajte sljedeće jednadžbe:

1 utt − c2uxx = 0,

2 ut − kuxx = 0,

3 uxx + uyy = 0,

4 yuxx + uyy = 0.
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Tip jednadžbe je invarijantan obzirom na regularnu transformaciju varijabli u

jednadžbi.

Lema

Neka je

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G (5)

linearna jednadžba drugog reda. Ako je α = α(x, y), β = β(x, y) regularna

transformacija variabli, onda je predznak diskriminante ∆ = B2 −AC invarijantan s

obzirom na transformaciju (x, y) 7→ (α, β).

Uvodenjem novih varijabli svaka jednadžba se može transformirati u kanonski oblik.

Transformirani koeficijenti u novim varijablama:

Ā = Aα2
x + 2Bαxαy + Cα2

y , (6)

B̄ = Aαxβx +B(αxβy + αyβx) + Cαyβy , (7)

C̄ = Aβ2
x + 2Bβxβy + Cβ2

y . (8)
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Kanonski oblici

Definicija

1 Kanonski oblik hiperboličke jednadžbe je

uxy + L1[u] = G (9)

gdje je L1 diferencijalni operator prvog reda. Ovaj kanonski oblik je ekvivalentan

sa

wαα − wββ + L1[w] = G (10)

gdje su variable α, β dane transformacijom α = x+ y, β = x− y.

2 Kanonski oblik paraboličke jednadžbe je

uxx + L1[u] = G. (11)

3 Kanonski oblik eliptičke jednadžbe je

uxx + uyy + L1[u] = G. (12)
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Hiperboličke jednadžbe

Teorem

Neka je

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G (13)

jednadžba hiperboličkog tipa u području Ω ⊆ R2. Onda postoje varijable α = α(x, y),

β = β(x, y) u kojima jednadžba (13) ima kanonski oblik

wαβ + L1[w] = Ḡ (14)

gdje je w(α, β) = u(x(α, β), y(α, β)) i L1 je diferencijalni operator prvog reda.

Primjer

Odredite kanonski oblik i opće rješenje jednadžbe

4uxx + 5uxy + uyy + ux + uy = 2. (15)
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Paraboličke jednadžbe

Teorem

Neka je

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G (16)

jednadžba paraboličkog tipa u području Ω ⊆ R2. Onda postoje varijable α = α(x, y),

β = β(x, y) u kojima jednadžba (16) ima kanonski oblik

wαα + L1[w] = Ḡ (17)

gdje je w(α, β) = u
(
x(α, β), y(α, β)

)
i L1 je diferencijalni operator prvog reda.

Primjer

Odredite kanonski oblik i opće rješenje jednadžbe

x2uxx − 2xyuxy + y2uyy + xux + yuy = 0 (18)

u poluravnini x > 0.
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Paraboličke jednadžbe
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Eliptičke jednadžbe

Teorem

Neka je

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G (19)

eliptička jednadžba u području Ω ⊆ R2. Onda postoje varijable α = α(x, y),

β = β(x, y) u kojima jednadžba (19) ima kanonski oblik

wαα + wββ + L1[w] = Ḡ (20)

gdje je w(α, β) = u
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x(α, β), y(α, β)

)
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eliptička jednadžba u području Ω ⊆ R2. Onda postoje varijable α = α(x, y),

β = β(x, y) u kojima jednadžba (19) ima kanonski oblik
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gdje je w(α, β) = u
(
x(α, β), y(α, β)

)
i L1 je diferencijalni operator prvog reda.

Primjer

Odredite kanonski oblik jednadžbe
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Jednadžba provodenja topline

Jednadžba provodenja topline

ut − kuxx = 0, 0 < x < L, t > 0. (22)

opisuje temperaturu u(x, t) u tankom toplinski vodljivom štapu. Štap je toplinski

izoliran osim eventualno u točkama x = 0 i x = L.

Dirichletovi rubni uvjeti:

ut − kuxx = 0, 0 < x < L, t > 0, (23)

u(x, 0) = f(x), 0 ≤ x ≤ L, (24)

u(0, t) = a(t), u(L, t) = b(t), t ≥ 0. (25)

Neumannovi rubni uvjeti:

ux(0, t) = a(t), ux(0, t) = b(t), t ≥ 0. (26)

ux(x0, t) opisuje protok topline u točki x0
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Teorem (Jedinstvenost rješenja)

Ako su u1 i u2 C2 rješenja problema

ut − kuxx = 0, 0 < x < L, t > 0, (27)

u(x, 0) = f(x), 0 ≤ x ≤ L, (28)

u(0, t) = a(t), u(L, t) = b(t), t ≥ 0, (29)

onda je u1 = u2.

Definicija

Parabolički rub pravokutnika D = [0, L]× [0, T ] je unija baze i vertikalnih stranica

pravokutnika,

∂pD =
{

(0, t) | 0 ≤ t ≤ T
}
∪
{

(x, 0) | 0 ≤ x ≤ L
}
∪
{

(L, t) | 0 ≤ t ≤ T
}
.
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∂pD =
{

(0, t) | 0 ≤ t ≤ T
}
∪
{

(x, 0) | 0 ≤ x ≤ L
}
∪
{

(L, t) | 0 ≤ t ≤ T
}
.
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Princip maksimuma

Neka je funkcija u C2 rješenje jednadžbe

ut − kuxx = 0, 0 < x < L, t > 0. (30)

Neka je T > 0 i neka je D = [0, L]× [0, T ]. Onda je

max
(x,t)∈D

u(x, t) = u(x0, t0) (31)

u nekoj točki (x0, t0) ∈ ∂pD.

Princip minimuma

Svako C2 rješenje jednadžbe provodenja topline ima mimimum na paraboličkom rubu

pravokutnika [0, L]× [0, T ].
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Teorem (Stabilnost rješenja)

Neka su u1 i u2 C2 rješenja početno–rubnih problema

∂ui

∂t
− k

∂2ui

∂x2
= 0, 0 < x < L, t > 0, (32)

ui(x, 0) = fi(x), 0 ≤ x ≤ L, (33)

ui(0, t) = ai(t), ui(L, t) = bi(t), t ≥ 0 (34)

za i = 1, 2. Neka je T > 0. Ako je

max
0≤x≤L

|f1(x)− f2(x)| < ε, (35)

max
0≤t≤T

|a1(t)− a2(t)| < ε, max
0≤t≤T

|b1(t)− b2(t)| < ε (36)

za neki ε > 0, onda je

max
(x,t)∈D

|u1(x, t)− u2(x, t)| < ε (37)

gdje je D = [0, L]× [0, T ].
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Metoda separacije varijabli

Promotrimo jednadžbu provodenja s Dirichletovim rubnim uvjetima

ut − kuxx = 0, 0 < x < L, t > 0, (38)

u(x, 0) = f(x), 0 ≤ x ≤ L, (39)

u(0, t) = u(L, t) = 0, t ≥ 0. (40)

Kompatibilnost početnih i rubnih uvjeta: f(0) = f(L) = 0.

Tražimo rješenje u separiranom obliku u(x, t) = P (x)Q(t).

Rješenje se dobiva u obliku beskonačnog reda funkcija

u(x, t) =
∞∑
n=1

Pn(x)Qn(t). (41)
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Promotrimo jednadžbu provodenja s Dirichletovim rubnim uvjetima

ut − kuxx = 0, 0 < x < L, t > 0, (38)

u(x, 0) = f(x), 0 ≤ x ≤ L, (39)

u(0, t) = u(L, t) = 0, t ≥ 0. (40)
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Teorem (Egzistencija rješenja)

Pretpostavimo da funkcija f : [0, L]→ R zadovoljava sljedeće uvjete:

1 f je neprekidna i po dijelovima C1 na [0, L],

2 f(0) = f(L) = 0.

Tada je funkcija

u(x, t) =
∞∑
n=1

Bne
−k(nπ

L
)2t sin

(nπ
L
x
)
, Bn =

2

L

∫ L

0
f(x) sin

(nπx
L

)
dx (42)

klasično rješenje počeno–rubnog problema

ut − kuxx = 0, 0 < x < L, t > 0, (43)

u(x, 0) = f(x), 0 ≤ x ≤ L, (44)

u(0, t) = u(L, t) = 0, t ≥ 0. (45)
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Primjer Odredite rješenje jednadžbe provodenja

ut − uxx = 0, 0 < x < π, t > 0 (46)

u(0, t) = u(L, t) = 0, (47)

u(x, 0) =

x, 0 ≤ x ≤ π
2

π − x, π
2
< x ≤ π.

(48)

u(x, t) =
4

π

∞∑
m=1

(−1)m+1

(2m− 1)2
e−(2m−1)2t sin

(
(2m− 1)x

)
(49)
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Neumannovi rubni uvjeti

ut − kuxx = 0, 0 < x < L, t > 0, (50)

ux(0, t) = ux(L, t) = 0, t ≥ 0, (51)

u(x, 0) = f(x), − L ≤ x ≤ L. (52)

Kompatibilnosti početnih i rubnih uvjeta: f ′(0) = 0, f ′(L) = 0.

Rješenje:

u(x, t) =
A0

2
+
∞∑
n=1

Ane
−k(nπ

L
)2t cos

(nπ
L
x
)
, (53)

An =
2

L

∫ L

0
f(x) cos

(nπ
L
x
)
dx, n ≥ 0. (54)
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Periodički rubni uvjeti

ut − kuxx = 0, − L < x < L, t > 0, (55)

u(x, 0) = f(x), − L ≤ x ≤ L, (56)

u(−L, t) = u(L, t), ux(−L, t) = ux(L, t), t ≥ 0. (57)

Rješenje:

u(x, t) =
A0

2
+

∞∑
n=1

e−k(nπ
L

)2t
[
An cos

(nπ
L
x
)

+Bn sin
(nπ
L
x
)]

(58)

An =
1

L

∫ L

−L
f(x) cos

(nπ
L
x
)
dx, n ≥ 0, (59)

Bn =
1

L

∫ L

−L
f(x) sin

(nπ
L
x
)
dx, n ≥ 1. (60)
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Nehomogena jednadžba provodenja

ut − kuxx = F (x, t), 0 < x < L, t > 0, (61)

u(x, 0) = f(x), 0 ≤ x ≤ L, (62)

u(0, t) = u(L, t) = 0, t ≥ 0. (63)

F (x, t) modelira unutarnji izvor koji grije ili hladi štap.

U homogenom slučaju rješenje je dano sa

u(x, t) =
∞∑
n=1

Bn(t) sin
(nπ
L
x
)
, Bn(t) = Bn e

−k(nπL )2t. (64)

Rješenje tražimo metodom varijacije parametara:

u(x, t) =

∞∑
n=1

Tn(t) sin
(nπ
L
x
)

(65)
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U homogenom slučaju rješenje je dano sa

u(x, t) =
∞∑
n=1

Bn(t) sin
(nπ
L
x
)
, Bn(t) = Bn e

−k(nπL )2t. (64)
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Primjer Riješite nehomogenu jednadžbu

ut − uxx = e−t sin(3x), 0 < x < π, t > 0, (66)

u(0, t) = u(π, t) = 0, t ≥ 0, (67)

u(x, 0) = x sin(x), 0 ≤ x ≤ π. (68)

u(x, t) =
π

2
e−t sin(x) +

1

8
(e−t − e−9t) sin(3x)−

16

π

∞∑
n=1

n

(4n2 − 1)2
e−4n2t sin(2nx)

(69)
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Valna jednadžba

Valna jednadžba opisuje valna gibanja u prirodi kako što su titranje kontinuiranih

mehaničkih sredina i širenje elektromagnetiskih i zvučnih valova.

Valna jednadžba u jednoj prostornoj dimenziji

utt − c2uxx = 0 (70)

opisuje titranje elastične žice pod sljedećim pretpostavkama:

disipativni efekti (unutarnje trenje žice i trenje zraka) su zanemarivi,

otklon žice u(x, t) od ravnotežnog položaja je okomit na os x,

na žicu ne djeluje vanjska sila.

D’Alambertovo rješenje za homogenu jednadžbu beskonačne žice

utt − c2uxx = 0, x ∈ R, t > 0, (71)

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R, (72)

f(x) početna amplituda, g(x) početna brzina točke x.
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PDJ



Opće rješenje valne jednažbe je superpozicija dva putujuća vala

u(x, t) = A(x+ ct) +B(x− ct). (73)

(a) Početni profil f(x) (b) Funkcija u(x, t) kao superpozicija dva

putujuća vala.

Slika:
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Teorem

Neka su f ∈ C2(R) i g ∈ C1(R). Tada valna jednadžba

utt − c2uxx = 0, x ∈ R, t > 0, (74)

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R, (75)

ima jedinstveno rješenje

u(x, t) =
1

2

[
f(x+ ct) + f(x− ct)

]
+

1

2c

∫ x+ct

x−ct
g(s)ds (76)

koje je u svakom konačnom intervalu 0 ≤ t ≤ T stabilno obzirom na početne uvjete

(75).
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D’Alambertovo rješenje za nehomogenu jednadžbu beskonačne žice

utt − c2uxx = F (x, t), x ∈ R, t > 0, (77)

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R. (78)

F (x, t) modelira vanjsku silu koja djeluje na žicu.

Rješenje se dobiva integracijom transformirane jednadžbe po području prikazanom na

slici i primjenom Greenovog teorema. Ova metoda daje vrijednost funkcije u(x, t) u

vrhu trokuta.
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Postupak rješavanja nehomogene jednadžbe

utt − c2uxx = F (x, t), x ∈ R, t > 0, (79)

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R. (80)

Uvodjenjem funkcije w(x, y) = u(x, y
c

) tranformirajte jednadžbu u oblik

wxx − wyy = F ∗(x, y), x ∈ R, y > 0, (81)

w(x, 0) = f(x), wy(x, 0) = g∗(x), x ∈ R (82)

gdje su

F ∗(x, y) = −
1

c2
F (x, t), g∗(x) =

1

c
g(x). (83)

Odredite funkciju

w(x, y) =
1

2

[
f(x+y)+f(x−y)

]
+

1

2

∫ x+y

x−y
g∗(x′)dx′−

1

2

∫∫
D
F ∗(x′, y′)dx′dy′

Odredite rješenje u(x, t) = w(x, ct).

PDJ
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Odredite rješenje u(x, t) = w(x, ct).

PDJ
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Početno–rubni problem za valnu jednadžbu

Titranje elastične žice duljine L opisano je valnom jednadžbom

utt − c2uxx = F (x, t), 0 < x < L, t > 0, (84)

s početnim uvjetima

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L. (85)

Ako su krajevi žice učvřsćeni, onda u(x, t) zadovoljava Dirichletove rubne uvjete

u(0, t) = u(L, t) = 0, t ≥ 0. (86)

Ako krajevi žice slobodno titraju, onda u(x, t) zadovoljava Neumannove rubne uvjete

ux(0, t) = ux(L, t) = 0, t ≥ 0. (87)

Teorem o jedinstvenosti rješenja

Neka su u1 i u2 C2 rješenja valne jednadžbe (85) s početnim uvjetima (86) i

Dirichletovim rubnim uvjetima (87). Onda je u1 = u2.
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Ako krajevi žice slobodno titraju, onda u(x, t) zadovoljava Neumannove rubne uvjete

ux(0, t) = ux(L, t) = 0, t ≥ 0. (87)

Teorem o jedinstvenosti rješenja
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Dirichletovim rubnim uvjetima (87). Onda je u1 = u2.
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Separacija varijabli za homogenu valnu jednadžbu

Dirichletovi rubni uvjeti

utt − c2uxx = 0, 0 < x < L, t > 0, (88)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L, (89)

u(0, t) = u(L, t) = 0, t ≥ 0. (90)

Kompatibilnost rubnih i početnih uvjeta

f(0) = f(L) = 0, g(0) = g(L) = 0. (91)

Separacijom varijabli u(x, t) = P (x)Q(t) dobivamo niz funkcija

un(x, t) = Pn(x)Qn(t) =
[
an cos

(nπc
L
t
)

+ bn sin
(nπc
L
t
)]

sin
(nπ
L
x
)

(92)

koje nazivamo harmonici n–tog reda. Harmonik n–tog reda možemo zapisati u obliku

un(x, t) = Rn sin
(nπ
L
x
)

sin
(nπc
L
t+ θn

)
(93)

gdje je

Rn =
√
a2
n + b2n, an = Rn sin(θn), bn = Rn cos(θn). (94)
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Prvi harmonik
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Drugi harmonik
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Treći harmonik
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Teorem (Egzistencija rješenja)

Neka su f ∈ C4([0, L]) i g ∈ C3([0, L]). Pretpostavimo da funkcije f i g

zadovoljavaju uvjete

1 f(0) = f(L) = 0, f ′′(0) = f ′′(L) = 0,

2 g(0) = g(L) = 0.

Tada je

u(x, t) =
∞∑
n=1

[
an cos

(nπc
L
t
)

+ bn sin
(nπc
L
t
)]

sin
(nπ
L
x
)
, (95)

an =
2

L

∫ L

0
f(x) sin

(nπ
L
x
)
dx, bn =

2

nπc

∫ L

0
g(x) sin

(nπ
L
x
)
dx, (96)

klasično rješenje valne jednadžbe s Dirichletovim uvjetima

utt − c2uxx = 0, 0 < x < L, t > 0, (97)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L, (98)

u(0, t) = u(L, t) = 0, t ≥ 0. (99)
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Primjedba

Ako f i g ne ispunjavaju uvjete iz teorema o egzistenciji, moguće je da formalno

rješenje ne zadovoljava valnu jednadžbu.

Primjer

f(x) =


u0
x0
x, 0 ≤ x ≤ x0,

u0
x−L
x0−L

, x0 < x ≤ L,
(100)

g(x) = 0, (101)

u(x, t) =
2L2

π2

u0

x0(L− x0)

∞∑
n=1

1

n2
sin
(nπx0

L

)
cos
(nπc
L
t
)

sin
(nπ
L
x
)

(102)

Funkcija u je dobro definirana, ali derivacije uxx i utt ne konvergiraju!
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Neumannovi rubni uvjeti

utt − c2uxx = 0, 0 < x < L, (103)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L, (104)

ux(0, t) = ux(L, t) = 0, t ≥ 0. (105)

Kompatibilnost rubnih i početnih uvjeta

f ′(0) = f ′(L) = 0, g′(0) = g′(L) = 0. (106)

Rješenje:

u(x, t) =
a0 + b0t

2
+
∞∑
n=1

[
an cos

(nπc
L
t
)

+ bn sin
(nπc
L
t
)]

cos
(nπ
L
x
)
, (107)

gdje su an i bn odredeni početnim uvjetima:

a0 =
2

L

∫ L

0
f(x)dx, an =

2

L

∫ L

0
f(x) cos

(nπ
L
x
)
dx, (108)

b0 =
2

L

∫ L

0
g(x)dx, bn =

2

nπc

∫ L

0
g(x) cos

(nπ
L
x
)
dx. (109)
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Nehomogena valna jednadžba

Neumannovi rubni uvjeti

utt − c2uxx = F (x, t), 0 < x < L, t > 0, (110)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L. (111)

F (x, t) modelira vanjsku silu na titrajuću žicu.

ux(0, t) = ux(L, t) = 0, t ≥ 0. (112)

Pretpostavimo rješenje u obliku

u(x, t) =
1

2
Q0(t) +

∞∑
n=1

Qn(t) cos
(nπ
L
x
)

(113)

za nepoznate funkcije Qn(t), n ≥ 0. Supstitucijom u(x, t) u valnu jednadžbu

dobivamo

1

2
Q′′0 (t) +

∞∑
n=1

[
Q′′n(t) +

(nπc
L

)2
Qn(t)

]
cos
(nπ
L
x
)

= F (x, t). (114)
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Neumannovi rubni uvjeti

utt − c2uxx = F (x, t), 0 < x < L, t > 0, (110)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L. (111)

F (x, t) modelira vanjsku silu na titrajuću žicu.
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Ako F (x, t) zadovoljava rubne uvjete

Fx(0, t) = Fx(L, t) = 0, t ≥ 0, (115)

onda F (x, t) možemo prikazati u obliku

F (x, t) =
1

2
C0(t) +

∞∑
n=1

Cn(t) cos
(nπ
L
x
)
, 0 ≤ x ≤ L. (116)

Iz valne jednadžbe dobivamo

Q′′0 (t) = C0(t), (117)

Q′′n(t) +
(nπc
L

)2
Qn(t) = Cn(t), n ≥ 1. (118)

Rješenja:

Q0(t) = a0 + b0t+Qp0(t), (119)

Qn(t) = an cos
(nπc
L
t
)

+ bn sin
(nπc
L
t
)

+Qpn(t). (120)
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Rješenje nehomogene jednadžbe:

u(x, t) = uh(x, t) + up(x, t) (121)

gdje su

uh(x, t) =
a0 + b0t

2
+
∞∑
n=1

[
an cos

(nπc
L
t
)

+ bn sin
(nπc
L
t
)]

cos
(nπ
L
x
)
, (122)

up(x, t) =
1

2
Qp0(t) +

∞∑
n=1

Qpn(t) cos
(nπ
L
x
)
. (123)
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Laplaceova jednadžba

Laplaceova jednadžba u domeni Ω je eliptička jednadžba

uxx + uyy = 0, (x, y) ∈ Ω (124)

Ω ⊆ R2 je ograničena domena (otvoren, povezan, ograničen skup)

∂Ω je unija zatvorenih, jednostavnih, po dijelovima glatkih krivulja

∇2 =
∂2

∂x2
+

∂2

∂y2
Laplaceov operator (125)

Primjene Laplaceove jednadžbe

Raspodjela električnog potencijala u području bez naboja.

Stacionarna raspodjela temperature u toplinski vodljivom tijelu.

Definicija

Ako funkcija u ∈ C2(Ω) zadovoljava Laplaceovu jednadžbu u području Ω ⊆ R2, onda

kažemo da je u harmonijska funkcija u Ω.
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Rubni problem za Poissonovu jednadžbu

Poissonova jednadžba je zadana sa

uxx + uyy = f(x, y), (x, y) ∈ Ω. (126)

Ω ograničena domena

Dirichletov rubni problem

u(x, y) = g(x, y), (x, y) ∈ ∂Ω (127)

Neumannov rubni problem

∂u

∂~n
(x, y) = g(x, y), (x, y) ∈ ∂Ω (128)

∂u

∂~n
= ∇ · ~n usmjerena derivacija, (129)

~n jedinični vektor normale u točki (x, y) ∈ ∂Ω usmjeren prema van. (130)
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uxx + uyy = f(x, y), (x, y) ∈ Ω. (126)
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U proučavanju Laplaceove i Poissonove jednadžbe koristimo se Gaussovim teoremom.

Teorem (Gauss)

Neka je Ω ⊂ R2 ograničena domena čiji rub ∂Ω = ∪ni=1Ci je unija zatvorenih,

jednostavnih, po dijelovima glatkih krivulja. Neka je ~n jedinični vektor normale na ∂Ω

usmjeren prema van. Ako je ~F vektorsko polje klase C1 u Ω̄, onda je∫
∂Ω

~F · ~nds =

∫∫
Ω

(∇ · ~F ) dx dy (131)

gdje je ∂Ω pozitivno orijentirani rub područja Ω.
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Lema

Neka je Ω ograničena domena u R2. Nužni uvjet za egistenciju rješenja Neumannovog

problema

uxx + uyy = f(x, y), (x, y) ∈ Ω, (132)

∂u

∂~n
(x, y) = g(x, y), (x, y) ∈ ∂Ω, (133)

je uvjet konzistentnosti ∫
∂Ω

g ds =

∫∫
Ω
f dxdy. (134)

Nužni uvjet za egzistenciju rješenja Laplaceove jednadžbe s Neumannovim

uvjetima:

f = 0 ⇒
∫
∂Ω

g ds = 0. (135)

Harmonijska funkcija zadovoljava∫
∂Ω

∂u

∂~n
ds = 0. (136)
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Slabi princip maksimuma

Neka je u ∈ C2(Ω) ∩ C(Ω̄) harmonijska funkcija na ograničenoj domenti Ω ⊂ R2.

Onda je

max
Ω̄

u = u(x′, y′) (137)

za neku točku (x′, y′) ∈ ∂Ω. Drugim riječima, funkcija u ima maksimum po skupu Ω̄

u nekoj točki ruba ∂Ω.

Slabi princip minimuma

Neka je u ∈ C2(Ω) ∩ C(Ω̄) harmonijska funkcija na ograničenoj domeni Ω ⊆ R2.

Onda je

min
Ω̄
u = u(x′, y′) (138)

za neku točku (x′, y′) ∈ ∂Ω.

Za harmonijsku funkciju vrijedi

max
Ω̄

u = max
∂Ω

u, min
Ω̄
u = min

∂Ω
u. (139)
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za neku točku (x′, y′) ∈ ∂Ω. Drugim riječima, funkcija u ima maksimum po skupu Ω̄

u nekoj točki ruba ∂Ω.
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Korolar

Ako je u ∈ C2(Ω) ∩ C(Ω̄) harmonijska funkcija na ograničenoj domeni Ω ⊆ R2 i

u(x, y) = 0 u svakoj točki (x, y) ∈ ∂Ω, onda je u = 0.

Jedinstvenost rješenja Dirichletovog problema

Neka je Ω ograničena domena u R2. Onda postoji najvǐse jedno rješenje

u ∈ C2(Ω) ∩ C(Ω̄) Dirichletovog problema

∆u(x, y) = f(x, y), (x, y) ∈ Ω, (140)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω. (141)

PDJ



Korolar

Ako je u ∈ C2(Ω) ∩ C(Ω̄) harmonijska funkcija na ograničenoj domeni Ω ⊆ R2 i
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Stabilnost rješenja Dirichletovog problema

Neka je Ω ograničena domena u R2, i neka su u1, u2 ∈ C2(Ω) ∩ C(Ω̄) rješenja

Poissonove jednadžbe

∆u1(x, y) = f(x, y), ∆u2(x, y) = f(x, y), (x, y) ∈ Ω, (142)

koje zadovoljavaju rubne uvjete

u1(x, y) = g1(x, y) u2(x, y) = g(x, y), (x, y) ∈ ∂Ω, (143)

gdje su g1 i g2 neprekidne funkcije na ∂Ω. Ako je

max
∂Ω
|g1 − g2| < ε, (144)

onda je

max
Ω̄
|u1 − u2| < ε. (145)
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Princip srednje vrijednosti

Neka je u harmonijska funkcija u domeni Ω (koja nije nužno ograničena), i neka je

K̄r(x0, y0) ⊂ Ω zatvoreni krug radijusa r > 0 sa sredǐstem u (x0, y0) ∈ Ω. Tada je

u(x0, y0) =
1

2πr

∫
Cr

u ds (146)

gdje je Cr kružnica radiju r > 0 sa sredǐstem u (x0, y0).

Teorem

Pretpostavimo da funkcija u ∈ C2(Ω) zadovoljava princip srednje vrijednosti u svakoj

točki domene Ω. Onda je u harmonijska funkcija u Ω.

Jaki princip maksimuma

Neka je u harmonijska funkcija u domeni Ω (koja nije nužno ograničena). Ako u ima

minimum ili maksimum u unutrašnjosti područja Ω, onda je u konstantna funkcija.
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Separacija varijabli za Laplaceovu jednadžbu

Separacijom varijabli dobivamo rješenje Laplaceove jednadžbu u obliku reda

u =
∑∞
n=1 un gdje su un harmonijske funkcije u području Ω.

Oblik rješenja ovisi o

geometriji domene Ω,

uvjetima na rubu domene ∂Ω.

Problem: Pod kojim uvjetima formalno rješenje
∑∞
n=1 un definira harmonijsku

funkciju u Ω?

Teorem

Neka je Ω ograničena domena u R2. Neka je u =
∑∞
n=1 un formalno rješenje

Dirichletovog problema

∆u(x, y) = 0, (x, y) ∈ Ω, (147)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω, (148)

gdje je g ∈ C(∂Ω) i un ∈ C2(Ω) ∩ C(Ω̄) je harmonijska funkcija u Ω za svaki n ∈ N.

Ako red
∑∞
n=1 un konvergira uniformno ka g na skupu ∂Ω, onda red

∑∞
n=1 un

konvergira uniformno u Ω̄, i u je klasično rješenje problema (148)–(149).
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Dirichletov problem na pravokutnoj domeni

∆u(x, y) = 0, 0 < x < b, 0 < y < d, (149)

u(x, 0) = h(x), u(x, d) = k(x), 0 ≤ x ≤ b, (150)

u(0, y) = f(y), u(b, y) = g(y), 0 ≤ y ≤ d. (151)

Rješenje Laplaceove jednadžbe želimo napisati kao red po vlastitim funkcijama

Sturm–Liouvilleovog problema.

Rješenje tražimo u obliku u = u1 + u2 gdje u1 i u2 zadovoljavaju homogene

rubne uvjete na suprotnim stranicama pravokutnika.
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Separacijom varijabli dobivamo

u1(x, y) =
∞∑
n=1

[
Ansh

(nπ
d
x
)

+Bnsh
(nπ
d

(x− b)
)]

sin
(nπ
d
y
)
, (152)

An =
2

d sh
(
nπb
d

) ∫ d

0
g(y) sin

(nπ
d
y
)
dy, (153)

Bn = −
2

d sh
(
nπb
d

) ∫ d

0
f(y) sin

(nπ
d
y)
)
dy. (154)
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Drugo rješenje je dano sa

u2(x, y) =
∞∑
n=1

[
Cnsh

(nπ
b
y
)

+Dnsh
(nπ
b

(y − d)
)]

sin
(nπ
b
x
)
, (155)

Cn =
2

b sh
(
nπd
b

) ∫ b

0
k(x) sin

(nπ
b
x
)
dx, (156)

Dn = −
2

b sh
(
nπd
b

) ∫ b

0
h(x) sin

(π
b
x
)
dx. (157)

PDJ



Harmonijski polinomi

Ako funkcije f , g, h i k ne isčezavaju u vrhovima pravokutnika Ω = (0, b)× (0, d),

onda se Dirichletov problem može riješiti dodavanjem harmonijski polinoma u rubne

uvjete.

Početni problem

∇2u(x, y) = 0, (x, y) ∈ Ω, (158)

u(x, y) = G(x, y), (x, y) ∈ ∂Ω, G ∈ C(∂Ω). (159)

Transformirani problem

∇2
(
u(x, y)− P2(x, y)

)
= 0, (x, y) ∈ Ω, (160)

u(x, y)− P2(x, y) = G(x, y)− P2(x, y), (x, y) ∈ ∂Ω (161)

gdje je

P2(x, y) = a1(x2 − y2) + a2xy + a3x+ a4y + a5, ai ∈ R. (162)
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P2(x, y) je harmonijski polinom jer je

∇2P2(x, y) = 0 za svaki izbor koeficijenata ai ∈ R. (163)

Definirajmo funkcije

v(x, y) = u(x, y)− P2(x, y), G̃(x, y) = G(x, y)− P2(x, y). (164)

Dirichletov problem za funkciju v:

∇2v(x, y) = 0, (x, y) ∈ Ω, (165)

v(x, y) = G̃(x, y), (x, y) ∈ ∂Ω. (166)

Polinom P2 možemo odabrati tako da funkcija G̃(x, y) = G(x, y)− P2(x, y) isčezava

u vrhovima pravokutnika Ω:

G(0, 0)− P2(0, 0) = 0, (167)

G(b, 0)− P2(b, 0) = 0, (168)

G(0, d)− P2(0, d) = 0, (169)

G(b, d)− P2(b, d) = 0. (170)
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u vrhovima pravokutnika Ω:

G(0, 0)− P2(0, 0) = 0, (167)

G(b, 0)− P2(b, 0) = 0, (168)

G(0, d)− P2(0, d) = 0, (169)

G(b, d)− P2(b, d) = 0. (170)

PDJ



P2(x, y) je harmonijski polinom jer je

∇2P2(x, y) = 0 za svaki izbor koeficijenata ai ∈ R. (163)

Definirajmo funkcije

v(x, y) = u(x, y)− P2(x, y), G̃(x, y) = G(x, y)− P2(x, y). (164)

Dirichletov problem za funkciju v:

∇2v(x, y) = 0, (x, y) ∈ Ω, (165)

v(x, y) = G̃(x, y), (x, y) ∈ ∂Ω. (166)
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Rubni uvjeti za v su neprekidni na ∂Ω pa se jednadžba za v može riješiti na standardni

način metodom separacije varijabli.

Rješenje početnog problema: u(x, y) = v(x, y) + P2(x, y).

Diskutirajte zašto rješenje u(x, y) ne ovisi o izboru koeficijenata polinoma

P2(x, y).
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