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Second order equations

A general second order PDE in two independent variables is given by

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G. (1)

The functions u,A,B,C,D,E, F,G depend on the variables (x, y) ∈ Ω ⊆ R2.

Operator form of the equation:

L[u] = G, L = A
∂2

∂x2
+ 2B

∂2

∂x∂y
+ C

∂2

∂y2
+D

∂

∂x
+ E

∂

∂y
+ F (2)

The principal part of L:

L0 = A
∂2

∂x2
+ 2B

∂2

∂x∂y
+ C

∂2

∂y2
. (3)

To each equation (1) we associate the discriminant ∆(x, y):

∆(x, y) = B2(x, y)−A(x, y)C(x, y). (4)

Qualitative properties of solutons of Eq. (1) depend on the sign of ∆(x, y).
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Definition

Second order equation L[u] = G is called

1 hyperbolic at the point (x, y) if ∆(x, y) > 0,

2 parabolic at the point (x, y) if ∆(x, y) = 0,

3 elliptic at the point (x, y) if ∆(x, y) < 0.

If the equation L[u] = G is hyperbolic (parabolic, elliptic) at every point in the

domain Ω, then we say that the equation is hyperbolic (parabolic, elliptic) in Ω.

Examples

Classify the following equations:

1 utt − c2uxx = 0,

2 ut − kuxx = 0,

3 uxx + uyy = 0,

4 yuxx + uyy = 0.
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The type of equation is invariant with respect to a regular transformation of variables

in the equation.

Lemma

Consider a second order equation

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G. (5)

If α = α(x, y), β = β(x, y) is a regular transformation of variables, then the sign of

the discriminant ∆ = B2 −AC is invariant with respect to the transformation

(x, y) 7→ (α, β).

By introducing new variables, every equation of second order can be transformed into

a canonical form.

Transformed coefficients in new variables:

Ā = Aα2
x + 2Bαxαy + Cα2

y , (6)

B̄ = Aαxβx +B(αxβy + αyβx) + Cαyβy , (7)

C̄ = Aβ2
x + 2Bβxβy + Cβ2

y . (8)
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Canonical forms

Definition

1 The canonical form of a hyperbolic equation is

uxy + L1[u] = G (9)

where L1 is a differential operator of first order. This canonical form is equivalent

with

wαα − wββ + L1[w] = G (10)

where the variables α, β are given by α = x+ y, β = x− y.

2 The canonical form of a parabolic equation is

uxx + L1[u] = G. (11)

3 The canonical form an elliptic equation is

uxx + uyy + L1[u] = G. (12)
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Hyperbolic equations

Theorem

Suppose

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G (13)

is a hyperbolic equation in the domain Ω ⊆ R2. Then there exist variables

α = α(x, y), β = β(x, y) in which the equation (13) has the canonical form

wαβ + L1[w] = Ḡ (14)

where w(α, β) = u(x(α, β), y(α, β)) and L1 is a differential operator of first order.

Example

Determine the canonical form and find a general solution of the equation

4uxx + 5uxy + uyy + ux + uy = 2. (15)
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Parabolic equations

Theorem

Suppose

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G (16)

is a parabolic equation in the domain Ω ⊆ R2. Then there exist variables α = α(x, y),

β = β(x, y) in which the equation (16) has the canonical form

wαα + L1[w] = Ḡ (17)

where w(α, β) = u
(
x(α, β), y(α, β)

)
and L1 is a differential operator of first order.

Example

Determine the canonical form and find a general solution of of the equation

x2uxx − 2xyuxy + y2uyy + xux + yuy = 0 (18)

in the half–plane x > 0.

PDE



Parabolic equations

Theorem

Suppose

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G (16)

is a parabolic equation in the domain Ω ⊆ R2. Then there exist variables α = α(x, y),

β = β(x, y) in which the equation (16) has the canonical form

wαα + L1[w] = Ḡ (17)
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Elliptic equations

Theorem

Suppose

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G (19)

is an elliptic equation in the region Ω ⊆ R2. Then there exist variables α = α(x, y),

β = β(x, y) in which the equation (19) has the canonical form

wαα + wββ + L1[w] = Ḡ (20)

where w(α, β) = u
(
x(α, β), y(α, β)

)
and L1 is a first order differential operator.

Primjer

Determine the canonical form of the equation

uxx + uxy + uyy + ux = 0. (21)
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The heat equation

The heat equation

ut − kuxx = 0, 0 < x < L, t > 0. (22)

describes the temperature u(x, t) in a thin heat conducing rod. The rod is insulated

everywhere except possibly at the end points x = 0 i x = L.

Dirichlet boundary conditions:

ut − kuxx = 0, 0 < x < L, t > 0, (23)

u(x, 0) = f(x), 0 ≤ x ≤ L, (24)

u(0, t) = a(t), u(L, t) = b(t), t ≥ 0. (25)

Neumann boundary conditions:

ux(0, t) = a(t), ux(0, t) = b(t), t ≥ 0. (26)

ux(x0, t) describes heat flow at the point x0

PDE
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Theorem (Uniqueness of solution)

If u1 and u2 are C2 solutions of the problem

ut − kuxx = 0, 0 < x < L, t > 0, (27)

u(x, 0) = f(x), 0 ≤ x ≤ L, (28)

u(0, t) = a(t), u(L, t) = b(t), t ≥ 0, (29)

then u1 = u2.

Definition

The parabolic border of the rectangle D = [0, L]× [0, T ] is the union of its base and

the vertical sides of the rectangle,

∂pD =
{

(0, t) | 0 ≤ t ≤ T
}
∪
{

(x, 0) | 0 ≤ x ≤ L
}
∪
{

(L, t) | 0 ≤ t ≤ T
}
.
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The maximum principle

Suppose u is a C2 solution of the heat equation

ut − kuxx = 0, 0 < x < L, t > 0. (30)

Let T > 0 and let D = [0, L]× [0, T ]. Then

max
(x,t)∈D

u(x, t) = u(x0, t0) (31)

at some point (x0, t0) ∈ ∂pD.

The minimum principle

Every C2 solution of the heat equation attains a minimum on the parabolic border of

the rectangle [0, L]× [0, T ].
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Theorem (Stability of solutions)

Suppose u1 and u2 C2 are solutions of the initial–boundary value problems

∂ui

∂t
− k

∂2ui

∂x2
= 0, 0 < x < L, t > 0, (32)

ui(x, 0) = fi(x), 0 ≤ x ≤ L, (33)

ui(0, t) = ai(t), ui(L, t) = bi(t), t ≥ 0 (34)

for i = 1, 2. Let T > 0. If

max
0≤x≤L

|f1(x)− f2(x)| < ε, (35)

max
0≤t≤T

|a1(t)− a2(t)| < ε, max
0≤t≤T

|b1(t)− b2(t)| < ε (36)

for some ε > 0, then

max
(x,t)∈D

|u1(x, t)− u2(x, t)| < ε (37)

where D = [0, L]× [0, T ].
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Separation of variables

Consider the heat equation with Dirichlet boundary condtions

ut − kuxx = 0, 0 < x < L, t > 0, (38)

u(x, 0) = f(x), 0 ≤ x ≤ L, (39)

u(0, t) = u(L, t) = 0, t ≥ 0. (40)

Compatibility of the initial and boundary conditions: f(0) = f(L) = 0.

We seek solution in the separated form u(x, t) = P (x)Q(t).

The solution is obtained in the form of an infinite series

u(x, t) =

n∑
n=1

Pn(x)Qn(t). (41)
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Theorem (Existence of solution)

Suppose the function f : [0, L]→ R satisfies the following conditions:

1 f is continuous and picewise C1 on [0, L],

2 f(0) = f(L) = 0.

Then the function

u(x, t) =
∞∑
n=1

Bne
−k(nπ

L
)2t sin

(nπ
L
x
)
, Bn =

2

L

∫ L

0
f(x) sin

(nπx
L

)
dx (42)

is a classical solution of the initial–boundary value problem

ut − kuxx = 0, 0 < x < L, t > 0, (43)

u(x, 0) = f(x), 0 ≤ x ≤ L, (44)

u(0, t) = u(L, t) = 0, t ≥ 0. (45)
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Example Determine the solution of the heat equation

ut − uxx = 0, 0 < x < π, t > 0 (46)

u(0, t) = u(L, t) = 0, (47)

u(x, 0) =

x, 0 ≤ x ≤ π
2

π − x, π
2
< x ≤ π.

(48)

u(x, t) =
4

π

∞∑
m=1

(−1)m+1

(2m− 1)2
e−(2m−1)2t sin

(
(2m− 1)x

)
(49)
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Neumann boundary conditions

ut − kuxx = 0, 0 < x < L, t > 0, (50)

ux(0, t) = ux(L, t) = 0, t ≥ 0, (51)

u(x, 0) = f(x), − L ≤ x ≤ L. (52)

Compatibility of initial and boundary conditions: f ′(0) = 0, f ′(L) = 0.

Solution:

u(x, t) =
A0

2
+
∞∑
n=1

Ane
−k(nπ

L
)2t cos

(nπ
L
x
)
, (53)

An =
2

L

∫ L

0
f(x) cos

(nπ
L
x
)
dx, n ≥ 0. (54)
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Periodic boundary conditions

ut − kuxx = 0, − L < x < L, t > 0, (55)

u(x, 0) = f(x), − L ≤ x ≤ L, (56)

u(−L, t) = u(L, t), ux(−L, t) = ux(L, t), t ≥ 0. (57)

Solution:

u(x, t) =
A0

2
+

∞∑
n=1

e−k(nπ
L

)2t
[
An cos

(nπ
L
x
)

+Bn sin
(nπ
L
x
)]

(58)

An =
1

L

∫ L

−L
f(x) cos

(nπ
L
x
)
dx, n ≥ 0, (59)

Bn =
1

L

∫ L

−L
f(x) sin

(nπ
L
x
)
dx, n ≥ 1. (60)
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Nonhomogeneous heat equation

ut − kuxx = F (x, t), 0 < x < L, t > 0, (61)

u(x, 0) = f(x), 0 ≤ x ≤ L, (62)

u(0, t) = u(L, t) = 0, t ≥ 0. (63)

F (x, t) models an internal heat source in the rod.

In the homogeneous case the solution is given by

u(x, t) =
∞∑
n=1

Bn(t) sin
(nπ
L
x
)
, Bn(t) = Bn e

−k(nπL )2t. (64)

We seek solution by the method of variation of parameters:

u(x, t) =

∞∑
n=1

Tn(t) sin
(nπ
L
x
)

(65)
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Example Solve the nonhomogeneous equation

ut − uxx = e−t sin(3x), 0 < x < π, t > 0, (66)

u(0, t) = u(π, t) = 0, t ≥ 0, (67)

u(x, 0) = x sin(x), 0 ≤ x ≤ π. (68)

u(x, t) =
π

2
e−t sin(x) +

1

8
(e−t − e−9t) sin(3x)−

16

π

∞∑
n=1

n

(4n2 − 1)2
e−4n2t sin(2nx)

(69)
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The wave equation

The wave equation describes period motion such as oscillations in continuum

mechanics or propagation of electromagnetic and sound waves.

The one–dimensional wave eqation

utt − c2uxx = 0 (70)

describes oscillations of an elastic wire under the following assumptions:

dissipative effects (such as internal friction) are negligible,

displacement u(x, t) from the equilibrium position is perpendicular to the x–axis,

no external forces act on the wire.

D’Alambert solution for homogeneous wave equation

utt − c2uxx = 0, x ∈ R, t > 0, (71)

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R, (72)

f(x) initial amplitude, g(x) initial velocity of the point x.
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The general solution of the wave equation is a superposition of two traveling waves:

u(x, t) = A(x+ ct) +B(x− ct). (73)

(a) Initial profile f(x) (b) Function u(x, t) as a superposition of

two traveling waves.

Slika:

PDE



Theorem

Let f ∈ C2(R) and g ∈ C1(R). Then the wave equation

utt − c2uxx = 0, x ∈ R, t > 0, (74)

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R, (75)

has a unique solution

u(x, t) =
1

2

[
f(x+ ct) + f(x− ct)

]
+

1

2c

∫ x+ct

x−ct
g(s)ds (76)

which is in every finite interval 0 ≤ t ≤ T stable with respect to the initial condtions

(75).

PDE



D’Alambert soluton for nonhomogenous wave equation

utt − c2uxx = F (x, t), x ∈ R, t > 0, (77)

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R. (78)

F (x, t) models an external force acting on the wire

Introduce the variable y = ct and define w(x, y) = u(x, y/c). Then w satisfies

wxx − wyy = F ∗(x, y), F ∗(x, y) = −
1

c2
F (x, y), (79)

w(x, 0) = f(x), (80)

wy(x, 0) = g∗(x), g∗(x) =
1

c
g(x). (81)

PDE
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By applying the Green’s theorem to the triangle in the picture, we can find the value

of w at the point (x0, y0).

w(x0, y0) =
1

2

[
f(x0+y0)+f(x0−y0)

]
+

1

2

∫ x0+y0

x0−y0
g∗(x′)dx′−

1

2

∫∫
D
F ∗(x′, y′)dx′dy′.
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Initial–boundary value problem for the wave equation

Oscillations of an elastic wire of length L are described by the wave equation

utt − c2uxx = F (x, t), 0 < x < L, t > 0, (82)

with initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L. (83)

If the endpoints are fixed, then u(x, t) satisfies Dirichletove boundary conditions

u(0, t) = u(L, t) = 0, t ≥ 0. (84)

If the end points freely oscillate, then u(x, t) satisfies Neumann conditions

ux(0, t) = ux(L, t) = 0, t ≥ 0. (85)

PDE
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Theorem (Uniqueness of solution)

Let u1 and u2 be C2 solutions of the wave equation (82) with initial conditions (83)

and Dirichlet boundary conditions (84). Then u1 = u2.

Remark

The same proof applies to the wave equation with Neumann boundary conditions.
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Separation of variables for homogeneous wave equation

Dirichlet boundary conditions

utt − c2uxx = 0, 0 < x < L, t > 0, (86)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L, (87)

u(0, t) = u(L, t) = 0, t ≥ 0. (88)

Compatibility of initial and boundary conditions

f(0) = f(L) = 0, g(0) = g(L) = 0. (89)

By the method of separation of variables u(x, t) = P (x)Q(t) we obtain a sequence of

solutions

un(x, t) = Pn(x)Qn(t) =
[
an cos

(nπc
L
t
)

+ bn sin
(nπc
L
t
)]

sin
(nπ
L
x
)

(90)

called n–th order harmonics.
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First harmonic
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Second harmonic
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Third harmonic
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Theorem (Egzistence)

Let f ∈ C4([0, L]) and g ∈ C3([0, L]). Assume that f and g satisfy the following

conditions

1 f(0) = f(L) = 0, f ′′(0) = f ′′(L) = 0,

2 g(0) = g(L) = 0.

Then

u(x, t) =
∞∑
n=1

[
an cos

(nπc
L
t
)

+ bn sin
(nπc
L
t
)]

sin
(nπ
L
x
)
, (91)

an =
2

L

∫ L

0
f(x) sin

(nπ
L
x
)
dx, bn =

2

nπc

∫ L

0
g(x) sin

(nπ
L
x
)
dx, (92)

is a classical solution of the wave equation with Dirichlet boundary conditions

utt − c2uxx = 0, 0 < x < L, t > 0, (93)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L, (94)

u(0, t) = u(L, t) = 0, t ≥ 0. (95)

PDE



Remark

If f and g od not satisfy the conditions in the theorem, the formal solution may not

satisfy the wave equation.

Example

f(x) =


u0
x0
x, 0 ≤ x ≤ x0,

u0
x−L
x0−L

, x0 < x ≤ L,
(96)

g(x) = 0, (97)

u(x, t) =
2L2

π2

u0

x0(L− x0)

∞∑
n=1

1

n2
sin
(nπx0

L

)
cos
(nπc
L
t
)

sin
(nπ
L
x
)

(98)

The function u is well defined, but uxx and utt diverge!
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Neumann boundary condtions

utt − c2uxx = 0, 0 < x < L, (99)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L, (100)

ux(0, t) = ux(L, t) = 0, t ≥ 0. (101)

Compatibility of initial and boundary conditions

f ′(0) = f ′(L) = 0, g′(0) = g′(L) = 0. (102)

Solution:

u(x, t) =
a0 + b0t

2
+
∞∑
n=1

[
an cos

(nπc
L
t
)

+ bn sin
(nπc
L
t
)]

cos
(nπ
L
x
)
, (103)

where an and bn are determined from the boundary conditions:

a0 =
2

L

∫ L

0
f(x)dx, an =

2

L

∫ L

0
f(x) cos

(nπ
L
x
)
dx, (104)

b0 =
2

L

∫ L

0
g(x)dx, bn =

2

nπc

∫ L

0
g(x) cos

(nπ
L
x
)
dx. (105)
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Nonhomogeneous wave equation

Neumann boundary conditions

utt − c2uxx = F (x, t), 0 < x < L, t > 0, (106)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L. (107)

F (x, t) models an external force acting on the wire.

ux(0, t) = ux(L, t) = 0, t ≥ 0. (108)

We assume the solution in the form

u(x, t) =
1

2
Q0(t) +

∞∑
n=1

Qn(t) cos
(nπ
L
x
)

(109)

for some unknown functions Qn(t), n ≥ 0. By substituting u(x, t) into the wave

equation we find

1

2
Q′′0 (t) +

∞∑
n=1

[
Q′′n(t) +

(nπc
L

)2
Qn(t)

]
cos
(nπ
L
x
)

= F (x, t). (110)
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If F (x, t) satisfies the conditions

Fx(0, t) = Fx(L, t) = 0, t ≥ 0, (111)

then F (x, t) can be written in the form

F (x, t) =
1

2
C0(t) +

∞∑
n=1

Cn(t) cos
(nπ
L
x
)
, 0 ≤ x ≤ L. (112)

The wave equation yields

Q′′0 (t) = C0(t), (113)

Q′′n(t) +
(nπc
L

)2
Qn(t) = Cn(t), n ≥ 1. (114)

Solution:

Q0(t) = a0 + b0t+Qp0(t), (115)

Qn(t) = an cos
(nπc
L
t
)

+ bn sin
(nπc
L
t
)

+Qpn(t). (116)
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Solution of the nonhomogeneous equation:

u(x, t) = uh(x, t) + up(x, t) (117)

where

uh(x, t) =
a0 + b0t

2
+
∞∑
n=1

[
an cos

(nπc
L
t
)

+ bn sin
(nπc
L
t
)]

cos
(nπ
L
x
)
, (118)

up(x, t) =
1

2
Qp0(t) +

∞∑
n=1

Qpn(t) cos
(nπ
L
x
)
. (119)
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The Laplace equation

The Laplace equation is an elliptic equation of the form

uxx + uyy = 0, (x, y) ∈ Ω (120)

Ω ⊆ R2 is a bounded domain (open, connected, bounded set)

∂Ω is a union of simple, closed, piecewise smooth curves

∇2 =
∂2

∂x2
+

∂2

∂y2
Laplace operator (121)

Applications of Laplace equation

Distrubution of electric potential in a domain free of charge.

Stationary distribution of temperature in a heat conducting body.

Definition

A function u ∈ C2(Ω) satisfying the Laplace equation in the domain Ω ⊆ R2 is called

a harmonic function in Ω.
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Boundary problem

A nonhomogeneous Laplace equation is called the Poisson equation:

uxx + uyy = f(x, y), (x, y) ∈ Ω. (122)

Ω bounded domain

Dirichlet boundary condition

u(x, y) = g(x, y), (x, y) ∈ ∂Ω (123)

Neumann boundary condtion

∂u

∂~n
(x, y) = g(x, y), (x, y) ∈ ∂Ω (124)

∂u

∂~n
= ∇ · ~n directional derivative, (125)

~n unit normal vector at the point (x, y) ∈ ∂Ω pointing outwards. (126)
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In studying the Laplace equation we need the Gauss theorem.

Theorem (Gauss)

Let Ω ⊂ R2 be a bounded domain whose boundary ∂Ω is a union of simple, closed

piecewise shooth curves. Let ~n be a unit normal vector on the boundary ∂Ω pointing

outwards. If ~F is a vector field of class C1 in Ω̄, then∫
∂Ω

~F · ~nds =

∫∫
Ω

(∇ · ~F ) dx dy (127)

where ∂Ω is positively oriented.
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Lemma

Let Ω be a bounded domain in R2. If the Neumann problem

uxx + uyy = f(x, y), (x, y) ∈ Ω, (128)

∂u

∂~n
(x, y) = g(x, y), (x, y) ∈ ∂Ω, (129)

has a solution, then f and g satisfy the consistency condition∫
∂Ω

g ds =

∫∫
Ω
f dxdy. (130)

Note that for the Laplace equation we have

f = 0 ⇒
∫
∂Ω

g ds = 0. (131)

Thus, a harmonic function u satisfies the condition∫
∂Ω

∂u

∂~n
ds = 0. (132)
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Theorem (Weak maximum principle)

If u ∈ C2(Ω) ∩ C(Ω̄) is a harmonic function in a bounded domain Ω ⊂ R2, then

max
Ω̄

u = u(x′, y′) (133)

at some point (x′, y′) ∈ ∂Ω. In other words, the function u attains its maximum in Ω̄

at a boundary point (x′, y′) ∈ ∂Ω.

Theorem (Weak maximum principle

If u ∈ C2(Ω) ∩ C(Ω̄) is a harmonic function in a bounded domain Ω ⊆ R2, then

min
Ω̄

u = u(x′, y′) (134)

at some point (x′, y′) ∈ ∂Ω.

For a harmonic function we have

max
Ω̄

u = max
∂Ω

u, min
Ω̄
u = min

∂Ω
u. (135)
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Corollary

If u ∈ C2(Ω) ∩ C(Ω̄) is a harmonic function in a bounded domain Ω ⊆ R2 and

u(x, y) = 0 for all (x, y) ∈ ∂Ω, then u = 0.

Theorem (Uniqueness of solution for Dirichlet problem)

Assume Ω is a bounded domain in R2. Then there exists at most one solution

u ∈ C2(Ω) ∩ C(Ω̄) of the Dirichlet problem

∆u(x, y) = f(x, y), (x, y) ∈ Ω, (136)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω. (137)
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Stability of solutions of the Dirichlet problem

Let Ω be a bounded domain in R2. Assume u1, u2 ∈ C2(Ω) ∩ C(Ω̄) are two solutions

of the Poisson equation

∆u1(x, y) = f(x, y), ∆u2(x, y) = f(x, y), (x, y) ∈ Ω, (138)

satisfying the boundary conditions

u1(x, y) = g1(x, y) u2(x, y) = g2(x, y), (x, y) ∈ ∂Ω, (139)

where g1, g2 ∈ C(∂Ω). If

max
∂Ω
|g1 − g2| < ε, then max

Ω̄
|u1 − u2| < ε. (140)
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Theorem (Mean value principle)

Let u be a harmonic function in the domain Ω (which may not be bounded), and let

K̄r(x0, y0) ⊂ Ω be a closed disk of radius r > 0 centered at (x0, y0) ∈ Ω. Then

u(x0, y0) =
1

2πr

∫
Cr

u ds (141)

where Cr is a circle of radius r > 0 centered at (x0, y0).

Theorem

Assume the function u ∈ C2(Ω) satisfies the Mean value principle at every point in

the domain Ω. Then u is a harmonic function in Ω.

Theorem (Strong maximum principle)

Assume u is a harmonic function in the domain Ω (which may not be bounded). If u

attains a minimum or maximum value at an interior point of Ω, then u is a constant

function.
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Separation of variables for Laplace equation

The method of separation of variables for the Laplace equation yileds solution in the

form of a series u =
∑∞
n=1 un where un are harmonic functions in a domain Ω.

The exact form of the solution depends on

the geometry of Ω,

boundary conditions on ∂Ω.

Problem: Under which conditions does the formal solution u =
∑∞
n=1 un represent a

harmonic function in Ω?

Theorem

Assume Ω is a bounded domain in R2. Let u =
∑∞
n=1 un be a formal solution of the

Dirichlet problem

∆u(x, y) = 0, (x, y) ∈ Ω, (142)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω, (143)

where g ∈ C(∂Ω) and un ∈ C2(Ω) ∩ C(Ω̄) are harmonic functions in Ω for all n ∈ N.

If the series
∑∞
n=1 un converges uniformly to g on ∂Ω, the

∑∞
n=1 un converges

uniformly in Ω̄, i u =
∑∞
n=1 un is a classical solution of (142)–(143).
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Dirichlet problem in a rectangular domain

∆u(x, y) = 0, 0 < x < b, 0 < y < d, (144)

u(x, 0) = h(x), u(x, d) = k(x), 0 ≤ x ≤ b, (145)

u(0, y) = f(y), u(b, y) = g(y), 0 ≤ y ≤ d. (146)

We want to write solution of the Laplace equation as a series using the

eingenfunctions of the associated Sturm–Liouville problem.

We look for the solution in the form u = u1 + u2 where u1 and u2 satisfy

homogeneous boundary conditions on the opposite sides the rectagnle.
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By separating the variatibles in the equation for u1 we obtain

u1(x, y) =
∞∑
n=1

[
Ansh

(nπ
d
x
)

+Bnsh
(nπ
d

(x− b)
)]

sin
(nπ
d
y
)
, (147)

An =
2

d sh
(
nπb
d

) ∫ d

0
g(y) sin

(nπ
d
y
)
dy, (148)

Bn = −
2

d sh
(
nπb
d

) ∫ d

0
f(y) sin

(nπ
d
y)
)
dy. (149)
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Similarly, we find

u2(x, y) =
∞∑
n=1

[
Cnsh

(nπ
b
y
)

+Dnsh
(nπ
b

(y − d)
)]

sin
(nπ
b
x
)
, (150)

Cn =
2

b sh
(
nπd
b

) ∫ b

0
k(x) sin

(nπ
b
x
)
dx, (151)

Dn = −
2

b sh
(
nπd
b

) ∫ b

0
h(x) sin

(π
b
x
)
dx. (152)
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Harmonic polynomials

If the functions f , g, h and k do not vanish at the vertices of the rectangle

Ω = (0, b)× (0, d), then the Dirichlet problem can be solved by adding harmonic

polynomials to the boundary conditions.

Initial problem

∇2u(x, y) = 0, (x, y) ∈ Ω, (153)

u(x, y) = G(x, y), (x, y) ∈ ∂Ω, G ∈ C(∂Ω). (154)

Modified problem

∇2
(
u(x, y)− P2(x, y)

)
= 0, (x, y) ∈ Ω, (155)

u(x, y)− P2(x, y) = G(x, y)− P2(x, y), (x, y) ∈ ∂Ω (156)

where

P2(x, y) = a1(x2 − y2) + a2xy + a3x+ a4y + a5, ai ∈ R. (157)
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Note that P2(x, y) is a harmonic polynomial because

∇2P2(x, y) = 0 for any choice of the coefficients ai ∈ R. (158)

Define

v(x, y) = u(x, y)− P2(x, y), G̃(x, y) = G(x, y)− P2(x, y). (159)

Dirichlet problem for v:

∇2v(x, y) = 0, (x, y) ∈ Ω, (160)

v(x, y) = G̃(x, y), (x, y) ∈ ∂Ω. (161)

The polynomial P2 can be chosen such that G̃(x, y) = G(x, y)− P2(x, y) vanishes at

the vertices of the rectangle Ω:

G(0, 0)− P2(0, 0) = 0, (162)

G(b, 0)− P2(b, 0) = 0, (163)

G(0, d)− P2(0, d) = 0, (164)

G(b, d)− P2(b, d) = 0. (165)
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∇2v(x, y) = 0, (x, y) ∈ Ω, (160)

v(x, y) = G̃(x, y), (x, y) ∈ ∂Ω. (161)

The polynomial P2 can be chosen such that G̃(x, y) = G(x, y)− P2(x, y) vanishes at

the vertices of the rectangle Ω:

G(0, 0)− P2(0, 0) = 0, (162)

G(b, 0)− P2(b, 0) = 0, (163)

G(0, d)− P2(0, d) = 0, (164)

G(b, d)− P2(b, d) = 0. (165)

PDE



The boundary conditions for v are continuous on ∂Ω, hence the Laplace equation for v

can be solved by the method of separation of variables.

Solution of the initial problem: u(x, y) = v(x, y) + P2(x, y).

Explain why the solution u(x, y) does not depend on the choice of the polynomial

P2(x, y).
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can be solved by the method of separation of variables.

Solution of the initial problem: u(x, y) = v(x, y) + P2(x, y).

Explain why the solution u(x, y) does not depend on the choice of the polynomial

P2(x, y).
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