

Partial differential equations

prof.dr.sc. Saša Krešić-Jurić

PMF–Split

Second order equations

A general second order PDE in two independent variables is given by

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G. \quad (1)$$

The functions u, A, B, C, D, E, F, G depend on the variables $(x, y) \in \Omega \subseteq \mathbb{R}^2$.

Operator form of the equation:

$$L[u] = G, \quad L = A \frac{\partial^2}{\partial x^2} + 2B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2} + D \frac{\partial}{\partial x} + E \frac{\partial}{\partial y} + F \quad (2)$$

The principal part of L :

$$L_0 = A \frac{\partial^2}{\partial x^2} + 2B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2}. \quad (3)$$

To each equation (1) we associate the discriminant $\Delta(x, y)$:

$$\Delta(x, y) = B^2(x, y) - A(x, y)C(x, y). \quad (4)$$

Qualitative properties of solutions of Eq. (1) depend on the sign of $\Delta(x, y)$.

Second order equations

A general second order PDE in two independent variables is given by

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G. \quad (1)$$

The functions u, A, B, C, D, E, F, G depend on the variables $(x, y) \in \Omega \subseteq \mathbb{R}^2$.

Operator form of the equation:

$$L[u] = G, \quad L = A \frac{\partial^2}{\partial x^2} + 2B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2} + D \frac{\partial}{\partial x} + E \frac{\partial}{\partial y} + F \quad (2)$$

The principal part of L :

$$L_0 = A \frac{\partial^2}{\partial x^2} + 2B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2}. \quad (3)$$

To each equation (1) we associate the discriminant $\Delta(x, y)$:

$$\Delta(x, y) = B^2(x, y) - A(x, y)C(x, y). \quad (4)$$

Qualitative properties of solutions of Eq. (1) depend on the sign of $\Delta(x, y)$.

Second order equations

A general second order PDE in two independent variables is given by

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G. \quad (1)$$

The functions u, A, B, C, D, E, F, G depend on the variables $(x, y) \in \Omega \subseteq \mathbb{R}^2$.

Operator form of the equation:

$$L[u] = G, \quad L = A \frac{\partial^2}{\partial x^2} + 2B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2} + D \frac{\partial}{\partial x} + E \frac{\partial}{\partial y} + F \quad (2)$$

The principal part of L :

$$L_0 = A \frac{\partial^2}{\partial x^2} + 2B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2}. \quad (3)$$

To each equation (1) we associate the discriminant $\Delta(x, y)$:

$$\Delta(x, y) = B^2(x, y) - A(x, y)C(x, y). \quad (4)$$

Qualitative properties of solutions of Eq. (1) depend on the sign of $\Delta(x, y)$.

Second order equations

A general second order PDE in two independent variables is given by

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G. \quad (1)$$

The functions u, A, B, C, D, E, F, G depend on the variables $(x, y) \in \Omega \subseteq \mathbb{R}^2$.

Operator form of the equation:

$$L[u] = G, \quad L = A \frac{\partial^2}{\partial x^2} + 2B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2} + D \frac{\partial}{\partial x} + E \frac{\partial}{\partial y} + F \quad (2)$$

The principal part of L :

$$L_0 = A \frac{\partial^2}{\partial x^2} + 2B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2}. \quad (3)$$

To each equation (1) we associate the discriminant $\Delta(x, y)$:

$$\Delta(x, y) = B^2(x, y) - A(x, y)C(x, y). \quad (4)$$

Qualitative properties of solutions of Eq. (1) depend on the sign of $\Delta(x, y)$.

Second order equations

A general second order PDE in two independent variables is given by

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G. \quad (1)$$

The functions u, A, B, C, D, E, F, G depend on the variables $(x, y) \in \Omega \subseteq \mathbb{R}^2$.

Operator form of the equation:

$$L[u] = G, \quad L = A \frac{\partial^2}{\partial x^2} + 2B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2} + D \frac{\partial}{\partial x} + E \frac{\partial}{\partial y} + F \quad (2)$$

The principal part of L :

$$L_0 = A \frac{\partial^2}{\partial x^2} + 2B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2}. \quad (3)$$

To each equation (1) we associate the discriminant $\Delta(x, y)$:

$$\Delta(x, y) = B^2(x, y) - A(x, y)C(x, y). \quad (4)$$

Qualitative properties of solutions of Eq. (1) depend on the sign of $\Delta(x, y)$.

Definition

Second order equation $L[u] = G$ is called

- 1 hyperbolic at the point (x, y) if $\Delta(x, y) > 0$,
- 2 parabolic at the point (x, y) if $\Delta(x, y) = 0$,
- 3 elliptic at the point (x, y) if $\Delta(x, y) < 0$.

If the equation $L[u] = G$ is hyperbolic (parabolic, elliptic) at every point in the domain Ω , then we say that the equation is hyperbolic (parabolic, elliptic) in Ω .

Examples

Classify the following equations:

- 1 $u_{tt} - c^2 u_{xx} = 0$,
- 2 $u_t - ku_{xx} = 0$,
- 3 $u_{xx} + u_{yy} = 0$,
- 4 $yu_{xx} + u_{yy} = 0$.

Definition

Second order equation $L[u] = G$ is called

- 1 hyperbolic at the point (x, y) if $\Delta(x, y) > 0$,
- 2 parabolic at the point (x, y) if $\Delta(x, y) = 0$,
- 3 elliptic at the point (x, y) if $\Delta(x, y) < 0$.

If the equation $L[u] = G$ is hyperbolic (parabolic, elliptic) at every point in the domain Ω , then we say that the equation is hyperbolic (parabolic, elliptic) in Ω .

Examples

Classify the following equations:

- 1 $u_{tt} - c^2 u_{xx} = 0$,
- 2 $u_t - ku_{xx} = 0$,
- 3 $u_{xx} + u_{yy} = 0$,
- 4 $yu_{xx} + u_{yy} = 0$.

The type of equation is invariant with respect to a regular transformation of variables in the equation.

Lemma

Consider a second order equation

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G. \quad (5)$$

If $\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ is a regular transformation of variables, then the sign of the discriminant $\Delta = B^2 - AC$ is invariant with respect to the transformation $(x, y) \mapsto (\alpha, \beta)$.

By introducing new variables, every equation of second order can be transformed into a *canonical form*.

Transformed coefficients in new variables:

$$\bar{A} = A\alpha_x^2 + 2B\alpha_x\alpha_y + C\alpha_y^2, \quad (6)$$

$$\bar{B} = A\alpha_x\beta_x + B(\alpha_x\beta_y + \alpha_y\beta_x) + C\alpha_y\beta_y, \quad (7)$$

$$\bar{C} = A\beta_x^2 + 2B\beta_x\beta_y + C\beta_y^2. \quad (8)$$

The type of equation is invariant with respect to a regular transformation of variables in the equation.

Lemma

Consider a second order equation

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G. \quad (5)$$

If $\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ is a regular transformation of variables, then the sign of the discriminant $\Delta = B^2 - AC$ is invariant with respect to the transformation $(x, y) \mapsto (\alpha, \beta)$.

By introducing new variables, every equation of second order can be transformed into a *canonical form*.

Transformed coefficients in new variables:

$$\bar{A} = A\alpha_x^2 + 2B\alpha_x\alpha_y + C\alpha_y^2, \quad (6)$$

$$\bar{B} = A\alpha_x\beta_x + B(\alpha_x\beta_y + \alpha_y\beta_x) + C\alpha_y\beta_y, \quad (7)$$

$$\bar{C} = A\beta_x^2 + 2B\beta_x\beta_y + C\beta_y^2. \quad (8)$$

The type of equation is invariant with respect to a regular transformation of variables in the equation.

Lemma

Consider a second order equation

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G. \quad (5)$$

If $\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ is a regular transformation of variables, then the sign of the discriminant $\Delta = B^2 - AC$ is invariant with respect to the transformation $(x, y) \mapsto (\alpha, \beta)$.

By introducing new variables, every equation of second order can be transformed into a *canonical form*.

Transformed coefficients in new variables:

$$\bar{A} = A\alpha_x^2 + 2B\alpha_x\alpha_y + C\alpha_y^2, \quad (6)$$

$$\bar{B} = A\alpha_x\beta_x + B(\alpha_x\beta_y + \alpha_y\beta_x) + C\alpha_y\beta_y, \quad (7)$$

$$\bar{C} = A\beta_x^2 + 2B\beta_x\beta_y + C\beta_y^2. \quad (8)$$

The type of equation is invariant with respect to a regular transformation of variables in the equation.

Lemma

Consider a second order equation

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G. \quad (5)$$

If $\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ is a regular transformation of variables, then the sign of the discriminant $\Delta = B^2 - AC$ is invariant with respect to the transformation $(x, y) \mapsto (\alpha, \beta)$.

By introducing new variables, every equation of second order can be transformed into a *canonical form*.

Transformed coefficients in new variables:

$$\bar{A} = A\alpha_x^2 + 2B\alpha_x\alpha_y + C\alpha_y^2, \quad (6)$$

$$\bar{B} = A\alpha_x\beta_x + B(\alpha_x\beta_y + \alpha_y\beta_x) + C\alpha_y\beta_y, \quad (7)$$

$$\bar{C} = A\beta_x^2 + 2B\beta_x\beta_y + C\beta_y^2. \quad (8)$$

Canonical forms

Definition

1 The canonical form of a hyperbolic equation is

$$u_{xy} + L_1[u] = G \quad (9)$$

where L_1 is a differential operator of first order. This canonical form is equivalent with

$$w_{\alpha\alpha} - w_{\beta\beta} + L_1[w] = G \quad (10)$$

where the variables α, β are given by $\alpha = x + y, \beta = x - y$.

2 The canonical form of a parabolic equation is

$$u_{xx} + L_1[u] = G. \quad (11)$$

3 The canonical form an elliptic equation is

$$u_{xx} + u_{yy} + L_1[u] = G. \quad (12)$$

Canonical forms

Definition

1 The canonical form of a **hyperbolic** equation is

$$u_{xy} + L_1[u] = G \quad (9)$$

where L_1 is a differential operator of first order. This canonical form is equivalent with

$$w_{\alpha\alpha} - w_{\beta\beta} + L_1[w] = G \quad (10)$$

where the variables α, β are given by $\alpha = x + y, \beta = x - y$.

2 The canonical form of a **parabolic** equation is

$$u_{xx} + L_1[u] = G. \quad (11)$$

3 The canonical form an **elliptic** equation is

$$u_{xx} + u_{yy} + L_1[u] = G. \quad (12)$$

Canonical forms

Definition

1 The canonical form of a **hyperbolic** equation is

$$u_{xy} + L_1[u] = G \quad (9)$$

where L_1 is a differential operator of first order. This canonical form is equivalent with

$$w_{\alpha\alpha} - w_{\beta\beta} + L_1[w] = G \quad (10)$$

where the variables α, β are given by $\alpha = x + y, \beta = x - y$.

2 The canonical form of a **parabolic** equation is

$$u_{xx} + L_1[u] = G. \quad (11)$$

3 The canonical form an **elliptic** equation is

$$u_{xx} + u_{yy} + L_1[u] = G. \quad (12)$$

Canonical forms

Definition

1 The canonical form of a **hyperbolic** equation is

$$u_{xy} + L_1[u] = G \quad (9)$$

where L_1 is a differential operator of first order. This canonical form is equivalent with

$$w_{\alpha\alpha} - w_{\beta\beta} + L_1[w] = G \quad (10)$$

where the variables α, β are given by $\alpha = x + y, \beta = x - y$.

2 The canonical form of a **parabolic** equation is

$$u_{xx} + L_1[u] = G. \quad (11)$$

3 The canonical form an **elliptic** equation is

$$u_{xx} + u_{yy} + L_1[u] = G. \quad (12)$$

Hyperbolic equations

Theorem

Suppose

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G \quad (13)$$

is a hyperbolic equation in the domain $\Omega \subseteq \mathbb{R}^2$. Then there exist variables $\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ in which the equation (13) has the canonical form

$$w_{\alpha\beta} + L_1[w] = \bar{G} \quad (14)$$

where $w(\alpha, \beta) = u(x(\alpha, \beta), y(\alpha, \beta))$ and L_1 is a differential operator of first order.

Example

Determine the canonical form and find a general solution of the equation

$$4u_{xx} + 5u_{xy} + u_{yy} + u_x + u_y = 2. \quad (15)$$

Hyperbolic equations

Theorem

Suppose

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G \quad (13)$$

is a hyperbolic equation in the domain $\Omega \subseteq \mathbb{R}^2$. Then there exist variables

$\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ in which the equation (13) has the canonical form

$$w_{\alpha\beta} + L_1[w] = \bar{G} \quad (14)$$

where $w(\alpha, \beta) = u(x(\alpha, \beta), y(\alpha, \beta))$ and L_1 is a differential operator of first order.

Example

Determine the canonical form and find a general solution of the equation

$$4u_{xx} + 5u_{xy} + u_{yy} + u_x + u_y = 2. \quad (15)$$

Hyperbolic equations

Theorem

Suppose

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G \quad (13)$$

is a hyperbolic equation in the domain $\Omega \subseteq \mathbb{R}^2$. Then there exist variables

$\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ in which the equation (13) has the canonical form

$$w_{\alpha\beta} + L_1[w] = \bar{G} \quad (14)$$

where $w(\alpha, \beta) = u(x(\alpha, \beta), y(\alpha, \beta))$ and L_1 is a differential operator of first order.

Example

Determine the canonical form and find a general solution of the equation

$$4u_{xx} + 5u_{xy} + u_{yy} + u_x + u_y = 2. \quad (15)$$

Parabolic equations

Theorem

Suppose

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G \quad (16)$$

is a parabolic equation in the domain $\Omega \subseteq \mathbb{R}^2$. Then there exist variables $\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ in which the equation (16) has the canonical form

$$w_{\alpha\alpha} + L_1[w] = \bar{G} \quad (17)$$

where $w(\alpha, \beta) = u(x(\alpha, \beta), y(\alpha, \beta))$ and L_1 is a differential operator of first order.

Example

Determine the canonical form and find a general solution of the equation

$$x^2u_{xx} - 2xyu_{xy} + y^2u_{yy} + xu_x + yu_y = 0 \quad (18)$$

in the half-plane $x > 0$.

Parabolic equations

Theorem

Suppose

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G \quad (16)$$

is a parabolic equation in the domain $\Omega \subseteq \mathbb{R}^2$. Then there exist variables $\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ in which the equation (16) has the canonical form

$$w_{\alpha\alpha} + L_1[w] = \bar{G} \quad (17)$$

where $w(\alpha, \beta) = u(x(\alpha, \beta), y(\alpha, \beta))$ and L_1 is a differential operator of first order.

Example

Determine the canonical form and find a general solution of the equation

$$x^2u_{xx} - 2xyu_{xy} + y^2u_{yy} + xu_x + yu_y = 0 \quad (18)$$

in the half-plane $x > 0$.

Parabolic equations

Theorem

Suppose

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G \quad (16)$$

is a parabolic equation in the domain $\Omega \subseteq \mathbb{R}^2$. Then there exist variables $\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ in which the equation (16) has the canonical form

$$w_{\alpha\alpha} + L_1[w] = \bar{G} \quad (17)$$

where $w(\alpha, \beta) = u(x(\alpha, \beta), y(\alpha, \beta))$ and L_1 is a differential operator of first order.

Example

Determine the canonical form and find a general solution of the equation

$$x^2u_{xx} - 2xyu_{xy} + y^2u_{yy} + xu_x + yu_y = 0 \quad (18)$$

in the half-plane $x > 0$.

Elliptic equations

Theorem

Suppose

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G \quad (19)$$

is an elliptic equation in the region $\Omega \subseteq \mathbb{R}^2$. Then there exist variables $\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ in which the equation (19) has the canonical form

$$w_{\alpha\alpha} + w_{\beta\beta} + L_1[w] = \bar{G} \quad (20)$$

where $w(\alpha, \beta) = u(x(\alpha, \beta), y(\alpha, \beta))$ and L_1 is a first order differential operator.

Primjer

Determine the canonical form of the equation

$$u_{xx} + u_{xy} + u_{yy} + u_x = 0. \quad (21)$$

Elliptic equations

Theorem

Suppose

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G \quad (19)$$

is an elliptic equation in the region $\Omega \subseteq \mathbb{R}^2$. Then there exist variables $\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ in which the equation (19) has the canonical form

$$w_{\alpha\alpha} + w_{\beta\beta} + L_1[w] = \bar{G} \quad (20)$$

where $w(\alpha, \beta) = u(x(\alpha, \beta), y(\alpha, \beta))$ and L_1 is a first order differential operator.

Primjer

Determine the canonical form of the equation

$$u_{xx} + u_{xy} + u_{yy} + u_x = 0. \quad (21)$$

Elliptic equations

Theorem

Suppose

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G \quad (19)$$

is an elliptic equation in the region $\Omega \subseteq \mathbb{R}^2$. Then there exist variables $\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$ in which the equation (19) has the canonical form

$$w_{\alpha\alpha} + w_{\beta\beta} + L_1[w] = \bar{G} \quad (20)$$

where $w(\alpha, \beta) = u(x(\alpha, \beta), y(\alpha, \beta))$ and L_1 is a first order differential operator.

Primjer

Determine the canonical form of the equation

$$u_{xx} + u_{xy} + u_{yy} + u_x = 0. \quad (21)$$

The heat equation

The heat equation

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0. \quad (22)$$

describes the temperature $u(x, t)$ in a thin heat conducting rod. The rod is insulated everywhere except possibly at the end points $x = 0$ and $x = L$.

Dirichlet boundary conditions:

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (23)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (24)$$

$$u(0, t) = a(t), \quad u(L, t) = b(t), \quad t \geq 0. \quad (25)$$

Neumann boundary conditions:

$$u_x(0, t) = a(t), \quad u_x(L, t) = b(t), \quad t \geq 0. \quad (26)$$

$u_x(x_0, t)$ describes heat flow at the point x_0

The heat equation

The heat equation

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0. \quad (22)$$

describes the temperature $u(x, t)$ in a thin heat conducting rod. The rod is insulated everywhere except possibly at the end points $x = 0$ and $x = L$.

Dirichlet boundary conditions:

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (23)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (24)$$

$$u(0, t) = a(t), \quad u(L, t) = b(t), \quad t \geq 0. \quad (25)$$

Neumann boundary conditions:

$$u_x(0, t) = a(t), \quad u_x(L, t) = b(t), \quad t \geq 0. \quad (26)$$

$u_x(x_0, t)$ describes heat flow at the point x_0

The heat equation

The heat equation

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0. \quad (22)$$

describes the temperature $u(x, t)$ in a thin heat conducting rod. The rod is insulated everywhere except possibly at the end points $x = 0$ and $x = L$.

Dirichlet boundary conditions:

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (23)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (24)$$

$$u(0, t) = a(t), \quad u(L, t) = b(t), \quad t \geq 0. \quad (25)$$

Neumann boundary conditions:

$$u_x(0, t) = a(t), \quad u_x(L, t) = b(t), \quad t \geq 0. \quad (26)$$

$u_x(x_0, t)$ describes heat flow at the point x_0

The heat equation

The heat equation

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0. \quad (22)$$

describes the temperature $u(x, t)$ in a thin heat conducting rod. The rod is insulated everywhere except possibly at the end points $x = 0$ and $x = L$.

Dirichlet boundary conditions:

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (23)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (24)$$

$$u(0, t) = a(t), \quad u(L, t) = b(t), \quad t \geq 0. \quad (25)$$

Neumann boundary conditions:

$$u_x(0, t) = a(t), \quad u_x(L, t) = b(t), \quad t \geq 0. \quad (26)$$

$u_x(x_0, t)$ describes heat flow at the point x_0

Theorem (Uniqueness of solution)

If u_1 and u_2 are C^2 solutions of the problem

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (27)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (28)$$

$$u(0, t) = a(t), \quad u(L, t) = b(t), \quad t \geq 0, \quad (29)$$

then $u_1 = u_2$.

Definition

The parabolic border of the rectangle $D = [0, L] \times [0, T]$ is the union of its base and the vertical sides of the rectangle,

$$\partial_p D = \{(0, t) \mid 0 \leq t \leq T\} \cup \{(x, 0) \mid 0 \leq x \leq L\} \cup \{(L, t) \mid 0 \leq t \leq T\}.$$

Theorem (Uniqueness of solution)

If u_1 and u_2 are C^2 solutions of the problem

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (27)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (28)$$

$$u(0, t) = a(t), \quad u(L, t) = b(t), \quad t \geq 0, \quad (29)$$

then $u_1 = u_2$.

Definition

The parabolic border of the rectangle $D = [0, L] \times [0, T]$ is the union of its base and the vertical sides of the rectangle,

$$\partial_p D = \{(0, t) \mid 0 \leq t \leq T\} \cup \{(x, 0) \mid 0 \leq x \leq L\} \cup \{(L, t) \mid 0 \leq t \leq T\}.$$

The maximum principle

Suppose u is a C^2 solution of the heat equation

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0. \quad (30)$$

Let $T > 0$ and let $D = [0, L] \times [0, T]$. Then

$$\max_{(x,t) \in D} u(x, t) = u(x_0, t_0) \quad (31)$$

at some point $(x_0, t_0) \in \partial_p D$.

The minimum principle

Every C^2 solution of the heat equation attains a minimum on the parabolic border of the rectangle $[0, L] \times [0, T]$.

The maximum principle

Suppose u is a C^2 solution of the heat equation

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0. \quad (30)$$

Let $T > 0$ and let $D = [0, L] \times [0, T]$. Then

$$\max_{(x,t) \in D} u(x, t) = u(x_0, t_0) \quad (31)$$

at some point $(x_0, t_0) \in \partial_p D$.

The minimum principle

Every C^2 solution of the heat equation attains a minimum on the parabolic border of the rectangle $[0, L] \times [0, T]$.

Theorem (Stability of solutions)

Suppose u_1 and u_2 C^2 are solutions of the initial-boundary value problems

$$\frac{\partial u_i}{\partial t} - k \frac{\partial^2 u_i}{\partial x^2} = 0, \quad 0 < x < L, \quad t > 0, \quad (32)$$

$$u_i(x, 0) = f_i(x), \quad 0 \leq x \leq L, \quad (33)$$

$$u_i(0, t) = a_i(t), \quad u_i(L, t) = b_i(t), \quad t \geq 0 \quad (34)$$

for $i = 1, 2$. Let $T > 0$. If

$$\max_{0 \leq x \leq L} |f_1(x) - f_2(x)| < \varepsilon, \quad (35)$$

$$\max_{0 \leq t \leq T} |a_1(t) - a_2(t)| < \varepsilon, \quad \max_{0 \leq t \leq T} |b_1(t) - b_2(t)| < \varepsilon \quad (36)$$

for some $\varepsilon > 0$, then

$$\max_{(x, t) \in D} |u_1(x, t) - u_2(x, t)| < \varepsilon \quad (37)$$

where $D = [0, L] \times [0, T]$.

Separation of variables

Consider the heat equation with Dirichlet boundary conditions

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (38)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (39)$$

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (40)$$

Compatibility of the initial and boundary conditions: $f(0) = f(L) = 0$.

We seek solution in the separated form $u(x, t) = P(x)Q(t)$.

The solution is obtained in the form of an infinite series

$$u(x, t) = \sum_{n=1}^{\infty} P_n(x)Q_n(t). \quad (41)$$

Separation of variables

Consider the heat equation with **Dirichlet** boundary conditions

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (38)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (39)$$

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (40)$$

Compatibility of the initial and boundary conditions: $f(0) = f(L) = 0$.

We seek solution in the separated form $u(x, t) = P(x)Q(t)$.

The solution is obtained in the form of an infinite series

$$u(x, t) = \sum_{n=1}^{\infty} P_n(x)Q_n(t). \quad (41)$$

Separation of variables

Consider the heat equation with **Dirichlet** boundary conditions

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (38)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (39)$$

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (40)$$

Compatibility of the initial and boundary conditions: $f(0) = f(L) = 0$.

We seek solution in the separated form $u(x, t) = P(x)Q(t)$.

The solution is obtained in the form of an infinite series

$$u(x, t) = \sum_{n=1}^{\infty} P_n(x)Q_n(t). \quad (41)$$

Separation of variables

Consider the heat equation with **Dirichlet** boundary conditions

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (38)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (39)$$

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (40)$$

Compatibility of the initial and boundary conditions: $f(0) = f(L) = 0$.

We seek solution in the separated form $u(x, t) = P(x)Q(t)$.

The solution is obtained in the form of an infinite series

$$u(x, t) = \sum_{n=1}^{\infty} P_n(x)Q_n(t). \quad (41)$$

Theorem (Existence of solution)

Suppose the function $f: [0, L] \rightarrow \mathbb{R}$ satisfies the following conditions:

- 1 f is continuous and piecewise C^1 on $[0, L]$,
- 2 $f(0) = f(L) = 0$.

Then the function

$$u(x, t) = \sum_{n=1}^{\infty} B_n e^{-k(\frac{n\pi}{L})^2 t} \sin\left(\frac{n\pi}{L}x\right), \quad B_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx \quad (42)$$

is a classical solution of the initial-boundary value problem

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (43)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (44)$$

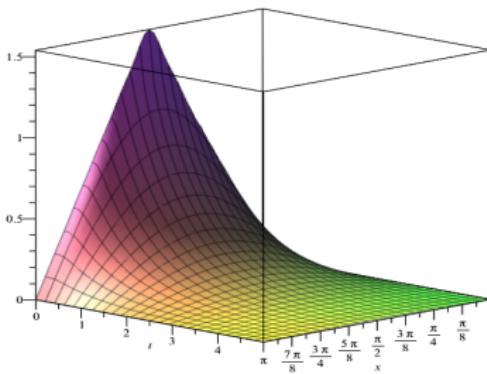
$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (45)$$

Example Determine the solution of the heat equation

$$u_t - u_{xx} = 0, \quad 0 < x < \pi, \quad t > 0 \quad (46)$$

$$u(0, t) = u(L, t) = 0, \quad (47)$$

$$u(x, 0) = \begin{cases} x, & 0 \leq x \leq \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x \leq \pi. \end{cases} \quad (48)$$



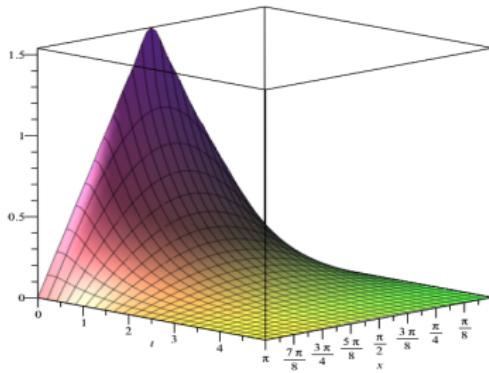
$$u(x, t) = \frac{4}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{(2m-1)^2} e^{-(2m-1)^2 t} \sin((2m-1)x) \quad (49)$$

Example Determine the solution of the heat equation

$$u_t - u_{xx} = 0, \quad 0 < x < \pi, \quad t > 0 \quad (46)$$

$$u(0, t) = u(L, t) = 0, \quad (47)$$

$$u(x, 0) = \begin{cases} x, & 0 \leq x \leq \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x \leq \pi. \end{cases} \quad (48)$$



$$u(x, t) = \frac{4}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{(2m-1)^2} e^{-(2m-1)^2 t} \sin((2m-1)x) \quad (49)$$

Neumann boundary conditions

$$u_t - ku_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (50)$$

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0, \quad (51)$$

$$u(x, 0) = f(x), \quad -L \leq x \leq L. \quad (52)$$

Compatibility of initial and boundary conditions: $f'(0) = 0, f'(L) = 0$.

Solution:

$$u(x, t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n e^{-k(\frac{n\pi}{L})^2 t} \cos\left(\frac{n\pi}{L}x\right), \quad (53)$$

$$A_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi}{L}x\right) dx, \quad n \geq 0. \quad (54)$$

Periodic boundary conditions

$$u_t - ku_{xx} = 0, \quad -L < x < L, \quad t > 0, \quad (55)$$

$$u(x, 0) = f(x), \quad -L \leq x \leq L, \quad (56)$$

$$u(-L, t) = u(L, t), \quad u_x(-L, t) = u_x(L, t), \quad t \geq 0. \quad (57)$$

Solution:

$$u(x, t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} e^{-k(\frac{n\pi}{L})^2 t} \left[A_n \cos \left(\frac{n\pi}{L} x \right) + B_n \sin \left(\frac{n\pi}{L} x \right) \right] \quad (58)$$

$$A_n = \frac{1}{L} \int_{-L}^L f(x) \cos \left(\frac{n\pi}{L} x \right) dx, \quad n \geq 0, \quad (59)$$

$$B_n = \frac{1}{L} \int_{-L}^L f(x) \sin \left(\frac{n\pi}{L} x \right) dx, \quad n \geq 1. \quad (60)$$

Nonhomogeneous heat equation

$$u_t - ku_{xx} = F(x, t), \quad 0 < x < L, \quad t > 0, \quad (61)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (62)$$

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (63)$$

$F(x, t)$ models an internal heat source in the rod.

In the homogeneous case the solution is given by

$$u(x, t) = \sum_{n=1}^{\infty} B_n(t) \sin\left(\frac{n\pi}{L}x\right), \quad B_n(t) = B_n e^{-k\left(\frac{n\pi}{L}\right)^2 t}. \quad (64)$$

We seek solution by the method of variation of parameters:

$$u(x, t) = \sum_{n=1}^{\infty} T_n(t) \sin\left(\frac{n\pi}{L}x\right) \quad (65)$$

Nonhomogeneous heat equation

$$u_t - ku_{xx} = F(x, t), \quad 0 < x < L, \quad t > 0, \quad (61)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (62)$$

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (63)$$

$F(x, t)$ models an internal heat source in the rod.

In the homogeneous case the solution is given by

$$u(x, t) = \sum_{n=1}^{\infty} B_n(t) \sin\left(\frac{n\pi}{L}x\right), \quad B_n(t) = B_n e^{-k\left(\frac{n\pi}{L}\right)^2 t}. \quad (64)$$

We seek solution by the method of variation of parameters:

$$u(x, t) = \sum_{n=1}^{\infty} T_n(t) \sin\left(\frac{n\pi}{L}x\right) \quad (65)$$

Nonhomogeneous heat equation

$$u_t - ku_{xx} = F(x, t), \quad 0 < x < L, \quad t > 0, \quad (61)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (62)$$

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (63)$$

$F(x, t)$ models an internal heat source in the rod.

In the homogeneous case the solution is given by

$$u(x, t) = \sum_{n=1}^{\infty} B_n(t) \sin\left(\frac{n\pi}{L}x\right), \quad B_n(t) = B_n e^{-k\left(\frac{n\pi}{L}\right)^2 t}. \quad (64)$$

We seek solution by the method of variation of parameters:

$$u(x, t) = \sum_{n=1}^{\infty} T_n(t) \sin\left(\frac{n\pi}{L}x\right) \quad (65)$$

Nonhomogeneous heat equation

$$u_t - ku_{xx} = F(x, t), \quad 0 < x < L, \quad t > 0, \quad (61)$$

$$u(x, 0) = f(x), \quad 0 \leq x \leq L, \quad (62)$$

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (63)$$

$F(x, t)$ models an internal heat source in the rod.

In the homogeneous case the solution is given by

$$u(x, t) = \sum_{n=1}^{\infty} B_n(t) \sin\left(\frac{n\pi}{L}x\right), \quad B_n(t) = B_n e^{-k\left(\frac{n\pi}{L}\right)^2 t}. \quad (64)$$

We seek solution by the method of variation of parameters:

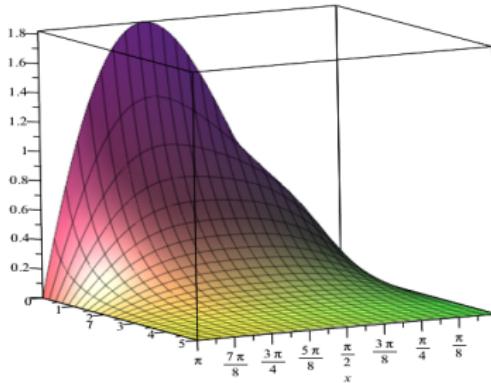
$$u(x, t) = \sum_{n=1}^{\infty} T_n(t) \sin\left(\frac{n\pi}{L}x\right) \quad (65)$$

Example Solve the nonhomogeneous equation

$$u_t - u_{xx} = e^{-t} \sin(3x), \quad 0 < x < \pi, \quad t > 0, \quad (66)$$

$$u(0, t) = u(\pi, t) = 0, \quad t \geq 0, \quad (67)$$

$$u(x, 0) = x \sin(x), \quad 0 \leq x \leq \pi. \quad (68)$$



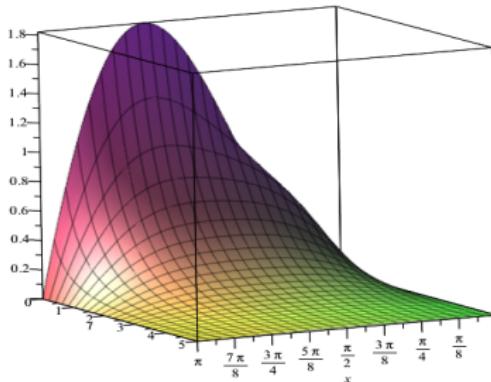
$$u(x, t) = \frac{\pi}{2} e^{-t} \sin(x) + \frac{1}{8} (e^{-t} - e^{-9t}) \sin(3x) - \frac{16}{\pi} \sum_{n=1}^{\infty} \frac{n}{(4n^2-1)^2} e^{-4n^2 t} \sin(2nx)$$

Example Solve the nonhomogeneous equation

$$u_t - u_{xx} = e^{-t} \sin(3x), \quad 0 < x < \pi, \quad t > 0, \quad (66)$$

$$u(0, t) = u(\pi, t) = 0, \quad t \geq 0, \quad (67)$$

$$u(x, 0) = x \sin(x), \quad 0 \leq x \leq \pi. \quad (68)$$



$$u(x, t) = \frac{\pi}{2} e^{-t} \sin(x) + \frac{1}{8} (e^{-t} - e^{-9t}) \sin(3x) - \frac{16}{\pi} \sum_{n=1}^{\infty} \frac{n}{(4n^2 - 1)^2} e^{-4n^2 t} \sin(2nx) \quad (69)$$

The wave equation

The wave equation describes periodic motion such as oscillations in continuum mechanics or propagation of electromagnetic and sound waves.

The one-dimensional wave equation

$$u_{tt} - c^2 u_{xx} = 0 \quad (70)$$

describes oscillations of an elastic wire under the following assumptions:

- dissipative effects (such as internal friction) are negligible,
- displacement $u(x, t)$ from the equilibrium position is perpendicular to the x -axis,
- no external forces act on the wire.

D'Alambert solution for homogeneous wave equation

$$u_{tt} - c^2 u_{xx} = 0, \quad x \in \mathbb{R}, \quad t > 0, \quad (71)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad x \in \mathbb{R}, \quad (72)$$

$f(x)$ initial amplitude, $g(x)$ initial velocity of the point x .

The wave equation

The wave equation describes periodic motion such as oscillations in continuum mechanics or propagation of electromagnetic and sound waves.

The one-dimensional wave equation

$$u_{tt} - c^2 u_{xx} = 0 \quad (70)$$

describes oscillations of an elastic wire under the following assumptions:

- dissipative effects (such as internal friction) are negligible,
- displacement $u(x, t)$ from the equilibrium position is perpendicular to the x -axis,
- no external forces act on the wire.

D'Alambert solution for homogeneous wave equation

$$u_{tt} - c^2 u_{xx} = 0, \quad x \in \mathbb{R}, \quad t > 0, \quad (71)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad x \in \mathbb{R}, \quad (72)$$

$f(x)$ initial amplitude, $g(x)$ initial velocity of the point x .

The wave equation

The wave equation describes periodic motion such as oscillations in continuum mechanics or propagation of electromagnetic and sound waves.

The one-dimensional wave equation

$$u_{tt} - c^2 u_{xx} = 0 \quad (70)$$

describes oscillations of an elastic wire under the following assumptions:

- dissipative effects (such as internal friction) are negligible,
- displacement $u(x, t)$ from the equilibrium position is perpendicular to the x -axis,
- no external forces act on the wire.

D'Alambert solution for homogeneous wave equation

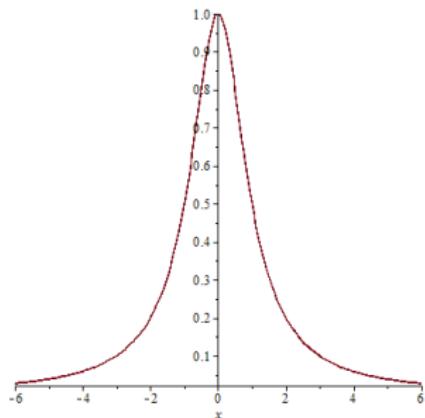
$$u_{tt} - c^2 u_{xx} = 0, \quad x \in \mathbb{R}, \quad t > 0, \quad (71)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad x \in \mathbb{R}, \quad (72)$$

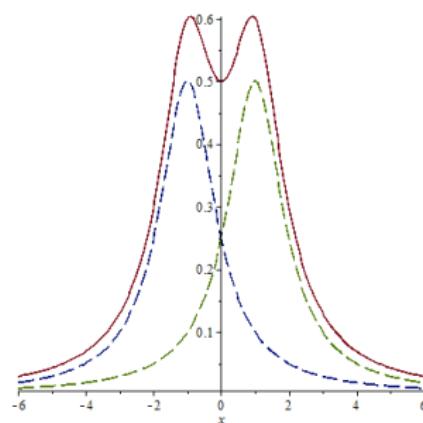
$f(x)$ initial amplitude, $g(x)$ initial velocity of the point x .

The general solution of the wave equation is a superposition of two traveling waves:

$$u(x, t) = A(x + ct) + B(x - ct). \quad (73)$$



(a) Initial profile $f(x)$



(b) Function $u(x, t)$ as a superposition of two traveling waves.

Slika:

Theorem

Let $f \in C^2(\mathbb{R})$ and $g \in C^1(\mathbb{R})$. Then the wave equation

$$u_{tt} - c^2 u_{xx} = 0, \quad x \in \mathbb{R}, \quad t > 0, \quad (74)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad x \in \mathbb{R}, \quad (75)$$

has a unique solution

$$u(x, t) = \frac{1}{2} \left[f(x + ct) + f(x - ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds \quad (76)$$

which is in every finite interval $0 \leq t \leq T$ stable with respect to the initial conditions (75).

D'Alambert solution for nonhomogeneous wave equation

$$u_{tt} - c^2 u_{xx} = F(x, t), \quad x \in \mathbb{R}, \quad t > 0, \quad (77)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad x \in \mathbb{R}. \quad (78)$$

$F(x, t)$ models an external force acting on the wire

Introduce the variable $y = ct$ and define $w(x, y) = u(x, y/c)$. Then w satisfies

$$w_{xx} - w_{yy} = F^*(x, y), \quad F^*(x, y) = -\frac{1}{c^2} F(x, y), \quad (79)$$

$$w(x, 0) = f(x), \quad (80)$$

$$w_y(x, 0) = g^*(x), \quad g^*(x) = \frac{1}{c} g(x). \quad (81)$$

D'Alambert solution for nonhomogeneous wave equation

$$u_{tt} - c^2 u_{xx} = F(x, t), \quad x \in \mathbb{R}, \quad t > 0, \quad (77)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad x \in \mathbb{R}. \quad (78)$$

$F(x, t)$ models an external force acting on the wire

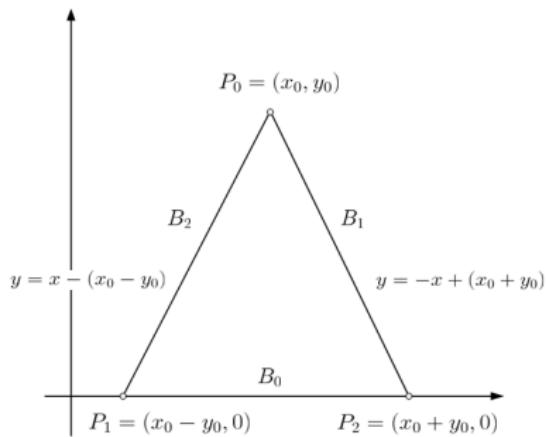
Introduce the variable $y = ct$ and define $w(x, y) = u(x, y/c)$. Then w satisfies

$$w_{xx} - w_{yy} = F^*(x, y), \quad F^*(x, y) = -\frac{1}{c^2} F(x, y), \quad (79)$$

$$w(x, 0) = f(x), \quad (80)$$

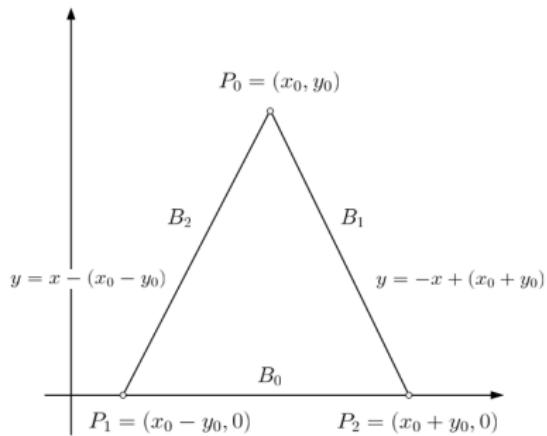
$$w_y(x, 0) = g^*(x), \quad g^*(x) = \frac{1}{c} g(x). \quad (81)$$

By applying the Green's theorem to the triangle in the picture, we can find the value of w at the point (x_0, y_0) .



$$w(x_0, y_0) = \frac{1}{2} [f(x_0 + y_0) + f(x_0 - y_0)] + \frac{1}{2} \int_{x_0 - y_0}^{x_0 + y_0} g^*(x') dx' - \frac{1}{2} \iint_D F^*(x', y') dx' dy'.$$

By applying the Green's theorem to the triangle in the picture, we can find the value of w at the point (x_0, y_0) .



$$w(x_0, y_0) = \frac{1}{2} [f(x_0 + y_0) + f(x_0 - y_0)] + \frac{1}{2} \int_{x_0 - y_0}^{x_0 + y_0} g^*(x') dx' - \frac{1}{2} \iint_D F^*(x', y') dx' dy'.$$

Initial-boundary value problem for the wave equation

Oscillations of an elastic wire of length L are described by the wave equation

$$u_{tt} - c^2 u_{xx} = F(x, t), \quad 0 < x < L, \quad t > 0, \quad (82)$$

with initial conditions

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad 0 \leq x \leq L. \quad (83)$$

- If the endpoints are fixed, then $u(x, t)$ satisfies Dirichletove boundary conditions

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (84)$$

- If the end points freely oscillate, then $u(x, t)$ satisfies Neumann conditions

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (85)$$

Initial-boundary value problem for the wave equation

Oscillations of an elastic wire of length L are described by the wave equation

$$u_{tt} - c^2 u_{xx} = F(x, t), \quad 0 < x < L, \quad t > 0, \quad (82)$$

with initial conditions

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad 0 \leq x \leq L. \quad (83)$$

- If the endpoints are fixed, then $u(x, t)$ satisfies Dirichletove boundary conditions

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (84)$$

- If the end points freely oscillate, then $u(x, t)$ satisfies Neumann conditions

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (85)$$

Initial-boundary value problem for the wave equation

Oscillations of an elastic wire of length L are described by the wave equation

$$u_{tt} - c^2 u_{xx} = F(x, t), \quad 0 < x < L, \quad t > 0, \quad (82)$$

with initial conditions

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad 0 \leq x \leq L. \quad (83)$$

- If the endpoints are fixed, then $u(x, t)$ satisfies Dirichletove boundary conditions

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (84)$$

- If the end points freely oscillate, then $u(x, t)$ satisfies Neumann conditions

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (85)$$

Theorem (Uniqueness of solution)

Let u_1 and u_2 be C^2 solutions of the wave equation (82) with initial conditions (83) and Dirichlet boundary conditions (84). Then $u_1 = u_2$.

Remark

The same proof applies to the wave equation with Neumann boundary conditions.

Theorem (Uniqueness of solution)

Let u_1 and u_2 be C^2 solutions of the wave equation (82) with initial conditions (83) and Dirichlet boundary conditions (84). Then $u_1 = u_2$.

Remark

The same proof applies to the wave equation with Neumann boundary conditions.

Separation of variables for homogeneous wave equation

Dirichlet boundary conditions

$$u_{tt} - c^2 u_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (86)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad 0 \leq x \leq L, \quad (87)$$

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (88)$$

Compatibility of initial and boundary conditions

$$f(0) = f(L) = 0, \quad g(0) = g(L) = 0. \quad (89)$$

By the method of separation of variables $u(x, t) = P(x)Q(t)$ we obtain a sequence of solutions

$$u_n(x, t) = P_n(x)Q_n(t) = \left[a_n \cos\left(\frac{n\pi c}{L}t\right) + b_n \sin\left(\frac{n\pi c}{L}t\right) \right] \sin\left(\frac{n\pi}{L}x\right) \quad (90)$$

called n -th order harmonics.

Separation of variables for homogeneous wave equation

Dirichlet boundary conditions

$$u_{tt} - c^2 u_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (86)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad 0 \leq x \leq L, \quad (87)$$

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (88)$$

Compatibility of initial and boundary conditions

$$f(0) = f(L) = 0, \quad g(0) = g(L) = 0. \quad (89)$$

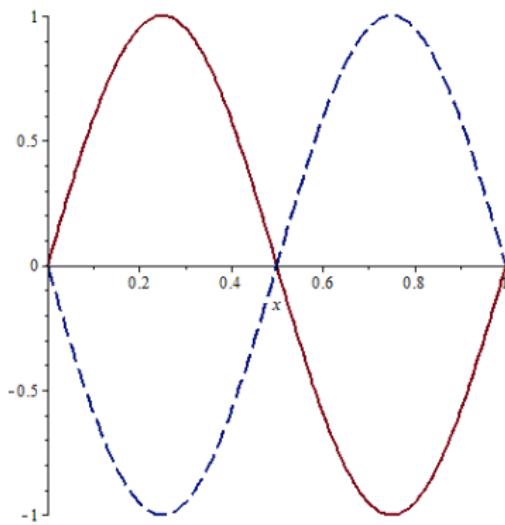
By the method of separation of variables $u(x, t) = P(x)Q(t)$ we obtain a sequence of solutions

$$u_n(x, t) = P_n(x)Q_n(t) = \left[a_n \cos \left(\frac{n\pi c}{L} t \right) + b_n \sin \left(\frac{n\pi c}{L} t \right) \right] \sin \left(\frac{n\pi}{L} x \right) \quad (90)$$

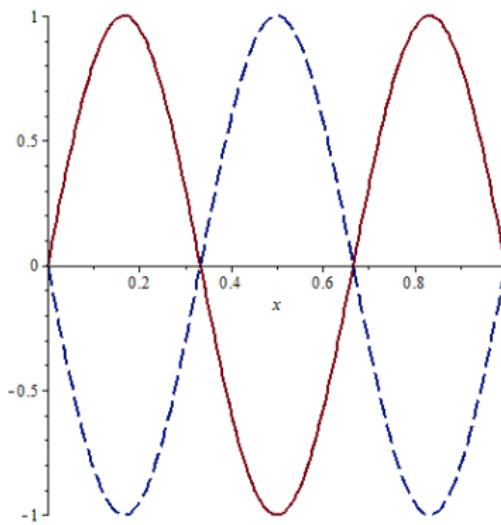
called n -th order harmonics.



First harmonic



Second harmonic



Third harmonic

Theorem (Existence)

Let $f \in C^4([0, L])$ and $g \in C^3([0, L])$. Assume that f and g satisfy the following conditions

- 1 $f(0) = f(L) = 0, f''(0) = f''(L) = 0,$
- 2 $g(0) = g(L) = 0.$

Then

$$u(x, t) = \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi c}{L} t \right) + b_n \sin \left(\frac{n\pi c}{L} t \right) \right] \sin \left(\frac{n\pi}{L} x \right), \quad (91)$$

$$a_n = \frac{2}{L} \int_0^L f(x) \sin \left(\frac{n\pi}{L} x \right) dx, \quad b_n = \frac{2}{n\pi c} \int_0^L g(x) \sin \left(\frac{n\pi}{L} x \right) dx, \quad (92)$$

is a classical solution of the wave equation with Dirichlet boundary conditions

$$u_{tt} - c^2 u_{xx} = 0, \quad 0 < x < L, \quad t > 0, \quad (93)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad 0 \leq x \leq L, \quad (94)$$

$$u(0, t) = u(L, t) = 0, \quad t \geq 0. \quad (95)$$

Remark

If f and g do not satisfy the conditions in the theorem, the formal solution may not satisfy the wave equation.

Example

$$f(x) = \begin{cases} \frac{u_0}{x_0}x, & 0 \leq x \leq x_0, \\ u_0 \frac{x-L}{x_0-L}, & x_0 < x \leq L, \end{cases} \quad (96)$$

$$g(x) = 0, \quad (97)$$

$$u(x, t) = \frac{2L^2}{\pi^2} \frac{u_0}{x_0(L-x_0)} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{n\pi x_0}{L}\right) \cos\left(\frac{n\pi c}{L}t\right) \sin\left(\frac{n\pi}{L}x\right) \quad (98)$$

The function u is well defined, but u_{xx} and u_{tt} diverge!

Remark

If f and g do not satisfy the conditions in the theorem, the formal solution may not satisfy the wave equation.

Example

$$f(x) = \begin{cases} \frac{u_0}{x_0}x, & 0 \leq x \leq x_0, \\ u_0 \frac{x-L}{x_0-L}, & x_0 < x \leq L, \end{cases} \quad (96)$$

$$g(x) = 0, \quad (97)$$

$$u(x, t) = \frac{2L^2}{\pi^2} \frac{u_0}{x_0(L-x_0)} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{n\pi x_0}{L}\right) \cos\left(\frac{n\pi c}{L}t\right) \sin\left(\frac{n\pi}{L}x\right) \quad (98)$$

The function u is well defined, but u_{xx} and u_{tt} diverge!

Neumann boundary conditions

$$u_{tt} - c^2 u_{xx} = 0, \quad 0 < x < L, \quad (99)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad 0 \leq x \leq L, \quad (100)$$

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (101)$$

Compatibility of initial and boundary conditions

$$f'(0) = f'(L) = 0, \quad g'(0) = g'(L) = 0. \quad (102)$$

Solution:

$$u(x, t) = \frac{a_0 + b_0 t}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi c}{L} t \right) + b_n \sin \left(\frac{n\pi c}{L} t \right) \right] \cos \left(\frac{n\pi}{L} x \right), \quad (103)$$

where a_n and b_n are determined from the boundary conditions:

$$a_0 = \frac{2}{L} \int_0^L f(x) dx, \quad a_n = \frac{2}{L} \int_0^L f(x) \cos \left(\frac{n\pi}{L} x \right) dx, \quad (104)$$

$$b_0 = \frac{2}{L} \int_0^L g(x) dx, \quad b_n = \frac{2}{n\pi c} \int_0^L g(x) \cos \left(\frac{n\pi}{L} x \right) dx. \quad (105)$$

Neumann boundary conditions

$$u_{tt} - c^2 u_{xx} = 0, \quad 0 < x < L, \quad (99)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad 0 \leq x \leq L, \quad (100)$$

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (101)$$

Compatibility of initial and boundary conditions

$$f'(0) = f'(L) = 0, \quad g'(0) = g'(L) = 0. \quad (102)$$

Solution:

$$u(x, t) = \frac{a_0 + b_0 t}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi c}{L} t \right) + b_n \sin \left(\frac{n\pi c}{L} t \right) \right] \cos \left(\frac{n\pi}{L} x \right), \quad (103)$$

where a_n and b_n are determined from the boundary conditions:

$$a_0 = \frac{2}{L} \int_0^L f(x) dx, \quad a_n = \frac{2}{L} \int_0^L f(x) \cos \left(\frac{n\pi}{L} x \right) dx, \quad (104)$$

$$b_0 = \frac{2}{L} \int_0^L g(x) dx, \quad b_n = \frac{2}{n\pi c} \int_0^L g(x) \cos \left(\frac{n\pi}{L} x \right) dx. \quad (105)$$

Nonhomogeneous wave equation

Neumann boundary conditions

$$u_{tt} - c^2 u_{xx} = F(x, t), \quad 0 < x < L, \quad t > 0, \quad (106)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad 0 \leq x \leq L. \quad (107)$$

$F(x, t)$ models an external force acting on the wire.

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (108)$$

We assume the solution in the form

$$u(x, t) = \frac{1}{2}Q_0(t) + \sum_{n=1}^{\infty} Q_n(t) \cos\left(\frac{n\pi}{L}x\right) \quad (109)$$

for some unknown functions $Q_n(t)$, $n \geq 0$. By substituting $u(x, t)$ into the wave equation we find

$$\frac{1}{2}Q_0''(t) + \sum_{n=1}^{\infty} \left[Q_n''(t) + \left(\frac{n\pi c}{L}\right)^2 Q_n(t) \right] \cos\left(\frac{n\pi}{L}x\right) = F(x, t). \quad (110)$$

Nonhomogeneous wave equation

Neumann boundary conditions

$$u_{tt} - c^2 u_{xx} = F(x, t), \quad 0 < x < L, \quad t > 0, \quad (106)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad 0 \leq x \leq L. \quad (107)$$

$F(x, t)$ models an external force acting on the wire.

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (108)$$

We assume the solution in the form

$$u(x, t) = \frac{1}{2}Q_0(t) + \sum_{n=1}^{\infty} Q_n(t) \cos\left(\frac{n\pi}{L}x\right) \quad (109)$$

for some unknown functions $Q_n(t)$, $n \geq 0$. By substituting $u(x, t)$ into the wave equation we find

$$\frac{1}{2}Q_0''(t) + \sum_{n=1}^{\infty} \left[Q_n''(t) + \left(\frac{n\pi c}{L}\right)^2 Q_n(t) \right] \cos\left(\frac{n\pi}{L}x\right) = F(x, t). \quad (110)$$

Nonhomogeneous wave equation

Neumann boundary conditions

$$u_{tt} - c^2 u_{xx} = F(x, t), \quad 0 < x < L, \quad t > 0, \quad (106)$$

$$u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad 0 \leq x \leq L. \quad (107)$$

$F(x, t)$ models an external force acting on the wire.

$$u_x(0, t) = u_x(L, t) = 0, \quad t \geq 0. \quad (108)$$

We assume the solution in the form

$$u(x, t) = \frac{1}{2}Q_0(t) + \sum_{n=1}^{\infty} Q_n(t) \cos\left(\frac{n\pi}{L}x\right) \quad (109)$$

for some unknown functions $Q_n(t)$, $n \geq 0$. By substituting $u(x, t)$ into the wave equation we find

$$\frac{1}{2}Q_0''(t) + \sum_{n=1}^{\infty} \left[Q_n''(t) + \left(\frac{n\pi c}{L}\right)^2 Q_n(t) \right] \cos\left(\frac{n\pi}{L}x\right) = F(x, t). \quad (110)$$

If $F(x, t)$ satisfies the conditions

$$F_x(0, t) = F_x(L, t) = 0, \quad t \geq 0, \quad (111)$$

then $F(x, t)$ can be written in the form

$$F(x, t) = \frac{1}{2}C_0(t) + \sum_{n=1}^{\infty} C_n(t) \cos\left(\frac{n\pi}{L}x\right), \quad 0 \leq x \leq L. \quad (112)$$

The wave equation yields

$$Q_0''(t) = C_0(t), \quad (113)$$

$$Q_n''(t) + \left(\frac{n\pi c}{L}\right)^2 Q_n(t) = C_n(t), \quad n \geq 1. \quad (114)$$

Solution:

$$Q_0(t) = a_0 + b_0 t + Q_0^p(t), \quad (115)$$

$$Q_n(t) = a_n \cos\left(\frac{n\pi c}{L}t\right) + b_n \sin\left(\frac{n\pi c}{L}t\right) + Q_n^p(t). \quad (116)$$

Solution of the nonhomogeneous equation:

$$u(x, t) = u_h(x, t) + u_p(x, t) \quad (117)$$

where

$$u_h(x, t) = \frac{a_0 + b_0 t}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi c}{L} t \right) + b_n \sin \left(\frac{n\pi c}{L} t \right) \right] \cos \left(\frac{n\pi}{L} x \right), \quad (118)$$

$$u_p(x, t) = \frac{1}{2} Q_0^p(t) + \sum_{n=1}^{\infty} Q_n^p(t) \cos \left(\frac{n\pi}{L} x \right). \quad (119)$$

The Laplace equation

The Laplace equation is an elliptic equation of the form

$$u_{xx} + u_{yy} = 0, \quad (x, y) \in \Omega \quad (120)$$

$\Omega \subseteq \mathbb{R}^2$ is a bounded domain (open, connected, bounded set)

$\partial\Omega$ is a union of simple, closed, piecewise smooth curves

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \quad \text{Laplace operator} \quad (121)$$

Applications of Laplace equation

- Distribution of electric potential in a domain free of charge.
- Stationary distribution of temperature in a heat conducting body.

Definition

A function $u \in C^2(\Omega)$ satisfying the Laplace equation in the domain $\Omega \subseteq \mathbb{R}^2$ is called a harmonic function in Ω .

The Laplace equation

The Laplace equation is an elliptic equation of the form

$$u_{xx} + u_{yy} = 0, \quad (x, y) \in \Omega \quad (120)$$

$\Omega \subseteq \mathbb{R}^2$ is a bounded domain (open, connected, bounded set)

$\partial\Omega$ is a union of simple, closed, piecewise smooth curves

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \quad \text{Laplace operator} \quad (121)$$

Applications of Laplace equation

- Distribution of electric potential in a domain free of charge.
- Stationary distribution of temperature in a heat conducting body.

Definition

A function $u \in C^2(\Omega)$ satisfying the Laplace equation in the domain $\Omega \subseteq \mathbb{R}^2$ is called a harmonic function in Ω .

The Laplace equation

The Laplace equation is an elliptic equation of the form

$$u_{xx} + u_{yy} = 0, \quad (x, y) \in \Omega \quad (120)$$

$\Omega \subseteq \mathbb{R}^2$ is a bounded domain (open, connected, bounded set)

$\partial\Omega$ is a union of simple, closed, piecewise smooth curves

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \quad \text{Laplace operator} \quad (121)$$

Applications of Laplace equation

- Distribution of electric potential in a domain free of charge.
- Stationary distribution of temperature in a heat conducting body.

Definition

A function $u \in C^2(\Omega)$ satisfying the Laplace equation in the domain $\Omega \subseteq \mathbb{R}^2$ is called a harmonic function in Ω .

Boundary problem

A nonhomogeneous Laplace equation is called the Poisson equation:

$$u_{xx} + u_{yy} = f(x, y), \quad (x, y) \in \Omega. \quad (122)$$

Ω bounded domain

■ Dirichlet boundary condition

$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega \quad (123)$$

■ Neumann boundary condition

$$\frac{\partial u}{\partial \vec{n}}(x, y) = g(x, y), \quad (x, y) \in \partial\Omega \quad (124)$$

$$\frac{\partial u}{\partial \vec{n}} = \nabla \cdot \vec{n} \quad \text{directional derivative,} \quad (125)$$

\vec{n} unit normal vector at the point $(x, y) \in \partial\Omega$ pointing outwards. (126)

Boundary problem

A nonhomogeneous Laplace equation is called the Poisson equation:

$$u_{xx} + u_{yy} = f(x, y), \quad (x, y) \in \Omega. \quad (122)$$

Ω bounded domain

- Dirichlet boundary condition

$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega \quad (123)$$

- Neumann boundary condition

$$\frac{\partial u}{\partial \vec{n}}(x, y) = g(x, y), \quad (x, y) \in \partial\Omega \quad (124)$$

$$\frac{\partial u}{\partial \vec{n}} = \nabla \cdot \vec{n} \quad \text{directional derivative,} \quad (125)$$

\vec{n} unit normal vector at the point $(x, y) \in \partial\Omega$ pointing outwards. (126)

Boundary problem

A nonhomogeneous Laplace equation is called the Poisson equation:

$$u_{xx} + u_{yy} = f(x, y), \quad (x, y) \in \Omega. \quad (122)$$

Ω bounded domain

- Dirichlet boundary condition

$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega \quad (123)$$

- Neumann boundary condition

$$\frac{\partial u}{\partial \vec{n}}(x, y) = g(x, y), \quad (x, y) \in \partial\Omega \quad (124)$$

$$\frac{\partial u}{\partial \vec{n}} = \nabla \cdot \vec{n} \quad \text{directional derivative,} \quad (125)$$

\vec{n} unit normal vector at the point $(x, y) \in \partial\Omega$ pointing outwards. (126)

In studying the Laplace equation we need the Gauss theorem.

Theorem (Gauss)

Let $\Omega \subset \mathbb{R}^2$ be a bounded domain whose boundary $\partial\Omega$ is a union of simple, closed piecewise smooth curves. Let \vec{n} be a unit normal vector on the boundary $\partial\Omega$ pointing outwards. If \vec{F} is a vector field of class C^1 in $\bar{\Omega}$, then

$$\int_{\partial\Omega} \vec{F} \cdot \vec{n} ds = \iint_{\Omega} (\nabla \cdot \vec{F}) dx dy \quad (127)$$

where $\partial\Omega$ is positively oriented.

Lemma

Let Ω be a bounded domain in \mathbb{R}^2 . If the Neumann problem

$$u_{xx} + u_{yy} = f(x, y), \quad (x, y) \in \Omega, \quad (128)$$

$$\frac{\partial u}{\partial \vec{n}}(x, y) = g(x, y), \quad (x, y) \in \partial\Omega, \quad (129)$$

has a solution, then f and g satisfy the consistency condition

$$\int_{\partial\Omega} g \, ds = \iint_{\Omega} f \, dxdy. \quad (130)$$

■ Note that for the Laplace equation we have

$$f = 0 \quad \Rightarrow \quad \int_{\partial\Omega} g \, ds = 0. \quad (131)$$

■ Thus, a harmonic function u satisfies the condition

$$\int_{\partial\Omega} \frac{\partial u}{\partial \vec{n}} \, ds = 0. \quad (132)$$

Lemma

Let Ω be a bounded domain in \mathbb{R}^2 . If the Neumann problem

$$u_{xx} + u_{yy} = f(x, y), \quad (x, y) \in \Omega, \quad (128)$$

$$\frac{\partial u}{\partial \vec{n}}(x, y) = g(x, y), \quad (x, y) \in \partial\Omega, \quad (129)$$

has a solution, then f and g satisfy the consistency condition

$$\int_{\partial\Omega} g \, ds = \iint_{\Omega} f \, dxdy. \quad (130)$$

■ Note that for the Laplace equation we have

$$f = 0 \quad \Rightarrow \quad \int_{\partial\Omega} g \, ds = 0. \quad (131)$$

■ Thus, a harmonic function u satisfies the condition

$$\int_{\partial\Omega} \frac{\partial u}{\partial \vec{n}} \, ds = 0. \quad (132)$$

Theorem (Weak maximum principle)

If $u \in C^2(\Omega) \cap C(\bar{\Omega})$ is a harmonic function in a bounded domain $\Omega \subset \mathbb{R}^2$, then

$$\max_{\bar{\Omega}} u = u(x', y') \quad (133)$$

at some point $(x', y') \in \partial\Omega$. In other words, the function u attains its maximum in $\bar{\Omega}$ at a boundary point $(x', y') \in \partial\Omega$.

Theorem (Weak maximum principle)

If $u \in C^2(\Omega) \cap C(\bar{\Omega})$ is a harmonic function in a bounded domain $\Omega \subseteq \mathbb{R}^2$, then

$$\min_{\bar{\Omega}} u = u(x', y') \quad (134)$$

at some point $(x', y') \in \partial\Omega$.

For a harmonic function we have

$$\max_{\bar{\Omega}} u = \max_{\partial\Omega} u, \quad \min_{\bar{\Omega}} u = \min_{\partial\Omega} u. \quad (135)$$

Theorem (Weak maximum principle)

If $u \in C^2(\Omega) \cap C(\bar{\Omega})$ is a harmonic function in a bounded domain $\Omega \subset \mathbb{R}^2$, then

$$\max_{\bar{\Omega}} u = u(x', y') \quad (133)$$

at some point $(x', y') \in \partial\Omega$. In other words, the function u attains its maximum in $\bar{\Omega}$ at a boundary point $(x', y') \in \partial\Omega$.

Theorem (Weak maximum principle)

If $u \in C^2(\Omega) \cap C(\bar{\Omega})$ is a harmonic function in a bounded domain $\Omega \subseteq \mathbb{R}^2$, then

$$\min_{\bar{\Omega}} u = u(x', y') \quad (134)$$

at some point $(x', y') \in \partial\Omega$.

For a harmonic function we have

$$\max_{\bar{\Omega}} u = \max_{\partial\Omega} u, \quad \min_{\bar{\Omega}} u = \min_{\partial\Omega} u. \quad (135)$$

Theorem (Weak maximum principle)

If $u \in C^2(\Omega) \cap C(\bar{\Omega})$ is a harmonic function in a bounded domain $\Omega \subset \mathbb{R}^2$, then

$$\max_{\bar{\Omega}} u = u(x', y') \quad (133)$$

at some point $(x', y') \in \partial\Omega$. In other words, the function u attains its maximum in $\bar{\Omega}$ at a boundary point $(x', y') \in \partial\Omega$.

Theorem (Weak maximum principle)

If $u \in C^2(\Omega) \cap C(\bar{\Omega})$ is a harmonic function in a bounded domain $\Omega \subseteq \mathbb{R}^2$, then

$$\min_{\bar{\Omega}} u = u(x', y') \quad (134)$$

at some point $(x', y') \in \partial\Omega$.

For a harmonic function we have

$$\max_{\bar{\Omega}} u = \max_{\partial\Omega} u, \quad \min_{\bar{\Omega}} u = \min_{\partial\Omega} u. \quad (135)$$

Corollary

If $u \in C^2(\Omega) \cap C(\bar{\Omega})$ is a harmonic function in a bounded domain $\Omega \subseteq \mathbb{R}^2$ and $u(x, y) = 0$ for all $(x, y) \in \partial\Omega$, then $u = 0$.

Theorem (Uniqueness of solution for Dirichlet problem)

Assume Ω is a bounded domain in \mathbb{R}^2 . Then there exists at most one solution $u \in C^2(\Omega) \cap C(\bar{\Omega})$ of the Dirichlet problem

$$\Delta u(x, y) = f(x, y), \quad (x, y) \in \Omega, \quad (136)$$

$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega. \quad (137)$$

Corollary

If $u \in C^2(\Omega) \cap C(\bar{\Omega})$ is a harmonic function in a bounded domain $\Omega \subseteq \mathbb{R}^2$ and $u(x, y) = 0$ for all $(x, y) \in \partial\Omega$, then $u = 0$.

Theorem (Uniqueness of solution for Dirichlet problem)

Assume Ω is a bounded domain in \mathbb{R}^2 . Then there exists at most one solution $u \in C^2(\Omega) \cap C(\bar{\Omega})$ of the Dirichlet problem

$$\Delta u(x, y) = f(x, y), \quad (x, y) \in \Omega, \tag{136}$$

$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega. \tag{137}$$

Stability of solutions of the Dirichlet problem

Let Ω be a bounded domain in \mathbb{R}^2 . Assume $u_1, u_2 \in C^2(\Omega) \cap C(\bar{\Omega})$ are two solutions of the Poisson equation

$$\Delta u_1(x, y) = f(x, y), \quad \Delta u_2(x, y) = f(x, y), \quad (x, y) \in \Omega, \quad (138)$$

satisfying the boundary conditions

$$u_1(x, y) = g_1(x, y) \quad u_2(x, y) = g_2(x, y), \quad (x, y) \in \partial\Omega, \quad (139)$$

where $g_1, g_2 \in C(\partial\Omega)$. If

$$\max_{\partial\Omega} |g_1 - g_2| < \varepsilon, \quad \text{then} \quad \max_{\bar{\Omega}} |u_1 - u_2| < \varepsilon. \quad (140)$$

Theorem (Mean value principle)

Let u be a harmonic function in the domain Ω (which may not be bounded), and let $\bar{K}_r(x_0, y_0) \subset \Omega$ be a closed disk of radius $r > 0$ centered at $(x_0, y_0) \in \Omega$. Then

$$u(x_0, y_0) = \frac{1}{2\pi r} \int_{C_r} u \, ds \quad (141)$$

where C_r is a circle of radius $r > 0$ centered at (x_0, y_0) .

Theorem

Assume the function $u \in C^2(\Omega)$ satisfies the Mean value principle at every point in the domain Ω . Then u is a harmonic function in Ω .

Theorem (Strong maximum principle)

Assume u is a harmonic function in the domain Ω (which may not be bounded). If u attains a minimum or maximum value at an interior point of Ω , then u is a constant function.

Theorem (Mean value principle)

Let u be a harmonic function in the domain Ω (which may not be bounded), and let $\bar{K}_r(x_0, y_0) \subset \Omega$ be a closed disk of radius $r > 0$ centered at $(x_0, y_0) \in \Omega$. Then

$$u(x_0, y_0) = \frac{1}{2\pi r} \int_{C_r} u \, ds \quad (141)$$

where C_r is a circle of radius $r > 0$ centered at (x_0, y_0) .

Theorem

Assume the function $u \in C^2(\Omega)$ satisfies the Mean value principle at every point in the domain Ω . Then u is a harmonic function in Ω .

Theorem (Strong maximum principle)

Assume u is a harmonic function in the domain Ω (which may not be bounded). If u attains a minimum or maximum value at an interior point of Ω , then u is a constant function.

Theorem (Mean value principle)

Let u be a harmonic function in the domain Ω (which may not be bounded), and let $\bar{K}_r(x_0, y_0) \subset \Omega$ be a closed disk of radius $r > 0$ centered at $(x_0, y_0) \in \Omega$. Then

$$u(x_0, y_0) = \frac{1}{2\pi r} \int_{C_r} u \, ds \quad (141)$$

where C_r is a circle of radius $r > 0$ centered at (x_0, y_0) .

Theorem

Assume the function $u \in C^2(\Omega)$ satisfies the Mean value principle at every point in the domain Ω . Then u is a harmonic function in Ω .

Theorem (Strong maximum principle)

Assume u is a harmonic function in the domain Ω (which may not be bounded). If u attains a minimum or maximum value at an interior point of Ω , then u is a constant function.

Separation of variables for Laplace equation

The method of separation of variables for the Laplace equation yields solution in the form of a series $u = \sum_{n=1}^{\infty} u_n$ where u_n are harmonic functions in a domain Ω .

The exact form of the solution depends on

- the geometry of Ω ,
- boundary conditions on $\partial\Omega$.

Problem: Under which conditions does the formal solution $u = \sum_{n=1}^{\infty} u_n$ represent a harmonic function in Ω ?

Theorem

Assume Ω is a bounded domain in \mathbb{R}^2 . Let $u = \sum_{n=1}^{\infty} u_n$ be a formal solution of the Dirichlet problem

$$\Delta u(x, y) = 0, \quad (x, y) \in \Omega, \tag{142}$$

$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega, \tag{143}$$

where $g \in C(\partial\Omega)$ and $u_n \in C^2(\Omega) \cap C(\bar{\Omega})$ are harmonic functions in Ω for all $n \in \mathbb{N}$.

If the series $\sum_{n=1}^{\infty} u_n$ converges uniformly to g on $\partial\Omega$, the $\sum_{n=1}^{\infty} u_n$ converges uniformly in $\bar{\Omega}$, i.e. $u = \sum_{n=1}^{\infty} u_n$ is a classical solution of (142)–(143).

Separation of variables for Laplace equation

The method of separation of variables for the Laplace equation yields solution in the form of a series $u = \sum_{n=1}^{\infty} u_n$ where u_n are harmonic functions in a domain Ω .

The exact form of the solution depends on

- the geometry of Ω ,
- boundary conditions on $\partial\Omega$.

Problem: Under which conditions does the formal solution $u = \sum_{n=1}^{\infty} u_n$ represent a harmonic function in Ω ?

Theorem

Assume Ω is a bounded domain in \mathbb{R}^2 . Let $u = \sum_{n=1}^{\infty} u_n$ be a formal solution of the Dirichlet problem

$$\Delta u(x, y) = 0, \quad (x, y) \in \Omega, \tag{142}$$

$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega, \tag{143}$$

where $g \in C(\partial\Omega)$ and $u_n \in C^2(\Omega) \cap C(\bar{\Omega})$ are harmonic functions in Ω for all $n \in \mathbb{N}$. If the series $\sum_{n=1}^{\infty} u_n$ converges uniformly to g on $\partial\Omega$, the $\sum_{n=1}^{\infty} u_n$ converges uniformly in $\bar{\Omega}$, i.e. $u = \sum_{n=1}^{\infty} u_n$ is a classical solution of (142)–(143).

Separation of variables for Laplace equation

The method of separation of variables for the Laplace equation yields solution in the form of a series $u = \sum_{n=1}^{\infty} u_n$ where u_n are harmonic functions in a domain Ω .

The exact form of the solution depends on

- the geometry of Ω ,
- boundary conditions on $\partial\Omega$.

Problem: Under which conditions does the formal solution $u = \sum_{n=1}^{\infty} u_n$ represent a harmonic function in Ω ?

Theorem

Assume Ω is a bounded domain in \mathbb{R}^2 . Let $u = \sum_{n=1}^{\infty} u_n$ be a formal solution of the Dirichlet problem

$$\Delta u(x, y) = 0, \quad (x, y) \in \Omega, \tag{142}$$

$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega, \tag{143}$$

where $g \in C(\partial\Omega)$ and $u_n \in C^2(\Omega) \cap C(\bar{\Omega})$ are harmonic functions in Ω for all $n \in \mathbb{N}$. If the series $\sum_{n=1}^{\infty} u_n$ converges uniformly to g on $\partial\Omega$, the $\sum_{n=1}^{\infty} u_n$ converges uniformly in $\bar{\Omega}$, i.e. $u = \sum_{n=1}^{\infty} u_n$ is a classical solution of (142)–(143).

Separation of variables for Laplace equation

The method of separation of variables for the Laplace equation yields solution in the form of a series $u = \sum_{n=1}^{\infty} u_n$ where u_n are harmonic functions in a domain Ω .

The exact form of the solution depends on

- the geometry of Ω ,
- boundary conditions on $\partial\Omega$.

Problem: Under which conditions does the formal solution $u = \sum_{n=1}^{\infty} u_n$ represent a harmonic function in Ω ?

Theorem

Assume Ω is a bounded domain in \mathbb{R}^2 . Let $u = \sum_{n=1}^{\infty} u_n$ be a formal solution of the Dirichlet problem

$$\Delta u(x, y) = 0, \quad (x, y) \in \Omega, \tag{142}$$

$$u(x, y) = g(x, y), \quad (x, y) \in \partial\Omega, \tag{143}$$

where $g \in C(\partial\Omega)$ and $u_n \in C^2(\Omega) \cap C(\bar{\Omega})$ are harmonic functions in Ω for all $n \in \mathbb{N}$.

If the series $\sum_{n=1}^{\infty} u_n$ converges uniformly to g on $\partial\Omega$, the $\sum_{n=1}^{\infty} u_n$ converges uniformly in $\bar{\Omega}$, i.e. $u = \sum_{n=1}^{\infty} u_n$ is a classical solution of (142)–(143).

Dirichlet problem in a rectangular domain

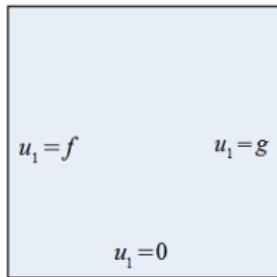
$$\Delta u(x, y) = 0, \quad 0 < x < b, \quad 0 < y < d, \quad (144)$$

$$u(x, 0) = h(x), \quad u(x, d) = k(x), \quad 0 \leq x \leq b, \quad (145)$$

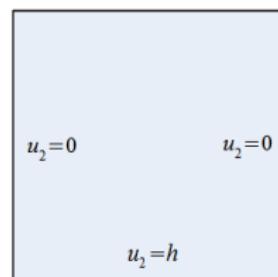
$$u(0, y) = f(y), \quad u(b, y) = g(y), \quad 0 \leq y \leq d. \quad (146)$$

- We want to write solution of the Laplace equation as a series using the eigenfunctions of the associated Sturm–Liouville problem.
- We look for the solution in the form $u = u_1 + u_2$ where u_1 and u_2 satisfy homogeneous boundary conditions on the opposite sides the rectangle.

$$u_1 = 0$$



$$u_2 = k$$



Dirichlet problem in a rectangular domain

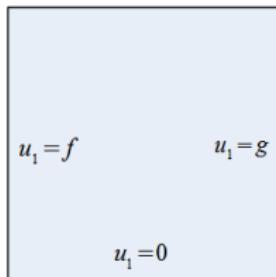
$$\Delta u(x, y) = 0, \quad 0 < x < b, \quad 0 < y < d, \quad (144)$$

$$u(x, 0) = h(x), \quad u(x, d) = k(x), \quad 0 \leq x \leq b, \quad (145)$$

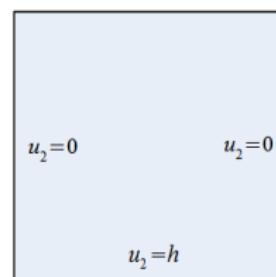
$$u(0, y) = f(y), \quad u(b, y) = g(y), \quad 0 \leq y \leq d. \quad (146)$$

- We want to write solution of the Laplace equation as a series using the eigenfunctions of the associated Sturm–Liouville problem.
- We look for the solution in the form $u = u_1 + u_2$ where u_1 and u_2 satisfy homogeneous boundary conditions on the opposite sides the rectangle.

$$u_1 = 0$$



$$u_2 = k$$



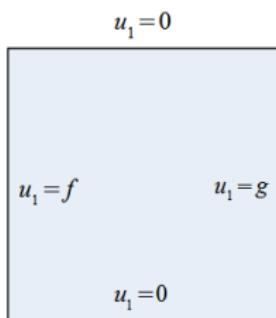
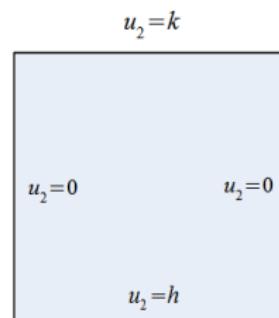
Dirichlet problem in a rectangular domain

$$\Delta u(x, y) = 0, \quad 0 < x < b, \quad 0 < y < d, \quad (144)$$

$$u(x, 0) = h(x), \quad u(x, d) = k(x), \quad 0 \leq x \leq b, \quad (145)$$

$$u(0, y) = f(y), \quad u(b, y) = g(y), \quad 0 \leq y \leq d. \quad (146)$$

- We want to write solution of the Laplace equation as a series using the eigenfunctions of the associated Sturm–Liouville problem.
- We look for the solution in the form $u = u_1 + u_2$ where u_1 and u_2 satisfy homogeneous boundary conditions on the opposite sides the rectangle.



By separating the variables in the equation for u_1 we obtain

$$u_1(x, y) = \sum_{n=1}^{\infty} \left[A_n \operatorname{sh} \left(\frac{n\pi}{d} x \right) + B_n \operatorname{sh} \left(\frac{n\pi}{d} (x - b) \right) \right] \sin \left(\frac{n\pi}{d} y \right), \quad (147)$$

$$A_n = \frac{2}{d \operatorname{sh} \left(\frac{n\pi b}{d} \right)} \int_0^d g(y) \sin \left(\frac{n\pi}{d} y \right) dy, \quad (148)$$

$$B_n = -\frac{2}{d \operatorname{sh} \left(\frac{n\pi b}{d} \right)} \int_0^d f(y) \sin \left(\frac{n\pi}{d} y \right) dy. \quad (149)$$

Similarly, we find

$$u_2(x, y) = \sum_{n=1}^{\infty} \left[C_n \operatorname{sh} \left(\frac{n\pi}{b} y \right) + D_n \operatorname{sh} \left(\frac{n\pi}{b} (y - d) \right) \right] \sin \left(\frac{n\pi}{b} x \right), \quad (150)$$

$$C_n = \frac{2}{b \operatorname{sh} \left(\frac{n\pi d}{b} \right)} \int_0^b k(x) \sin \left(\frac{n\pi}{b} x \right) dx, \quad (151)$$

$$D_n = -\frac{2}{b \operatorname{sh} \left(\frac{n\pi d}{b} \right)} \int_0^b h(x) \sin \left(\frac{\pi}{b} x \right) dx. \quad (152)$$

Harmonic polynomials

If the functions f , g , h and k do not vanish at the vertices of the rectangle $\Omega = (0, b) \times (0, d)$, then the Dirichlet problem can be solved by adding harmonic polynomials to the boundary conditions.

Initial problem

$$\nabla^2 u(x, y) = 0, \quad (x, y) \in \Omega, \quad (153)$$

$$u(x, y) = G(x, y), \quad (x, y) \in \partial\Omega, \quad G \in C(\partial\Omega). \quad (154)$$

Modified problem

$$\nabla^2 \left(u(x, y) - P_2(x, y) \right) = 0, \quad (x, y) \in \Omega, \quad (155)$$

$$u(x, y) - P_2(x, y) = G(x, y) - P_2(x, y), \quad (x, y) \in \partial\Omega \quad (156)$$

where

$$P_2(x, y) = a_1(x^2 - y^2) + a_2xy + a_3x + a_4y + a_5, \quad a_i \in \mathbb{R}. \quad (157)$$

Harmonic polynomials

If the functions f, g, h and k do not vanish at the vertices of the rectangle $\Omega = (0, b) \times (0, d)$, then the Dirichlet problem can be solved by adding harmonic polynomials to the boundary conditions.

Initial problem

$$\nabla^2 u(x, y) = 0, \quad (x, y) \in \Omega, \quad (153)$$

$$u(x, y) = G(x, y), \quad (x, y) \in \partial\Omega, \quad G \in C(\partial\Omega). \quad (154)$$

Modified problem

$$\nabla^2 \left(u(x, y) - P_2(x, y) \right) = 0, \quad (x, y) \in \Omega, \quad (155)$$

$$u(x, y) - P_2(x, y) = G(x, y) - P_2(x, y), \quad (x, y) \in \partial\Omega \quad (156)$$

where

$$P_2(x, y) = a_1(x^2 - y^2) + a_2xy + a_3x + a_4y + a_5, \quad a_i \in \mathbb{R}. \quad (157)$$

Harmonic polynomials

If the functions f , g , h and k do not vanish at the vertices of the rectangle $\Omega = (0, b) \times (0, d)$, then the Dirichlet problem can be solved by adding harmonic polynomials to the boundary conditions.

Initial problem

$$\nabla^2 u(x, y) = 0, \quad (x, y) \in \Omega, \quad (153)$$

$$u(x, y) = G(x, y), \quad (x, y) \in \partial\Omega, \quad G \in C(\partial\Omega). \quad (154)$$

Modified problem

$$\nabla^2 \left(u(x, y) - P_2(x, y) \right) = 0, \quad (x, y) \in \Omega, \quad (155)$$

$$u(x, y) - P_2(x, y) = G(x, y) - P_2(x, y), \quad (x, y) \in \partial\Omega \quad (156)$$

where

$$P_2(x, y) = a_1(x^2 - y^2) + a_2xy + a_3x + a_4y + a_5, \quad a_i \in \mathbb{R}. \quad (157)$$

Note that $P_2(x, y)$ is a *harmonic polynomial* because

$$\nabla^2 P_2(x, y) = 0 \quad \text{for any choice of the coefficients } a_i \in \mathbb{R}. \quad (158)$$

Define

$$v(x, y) = u(x, y) - P_2(x, y), \quad \tilde{G}(x, y) = G(x, y) - P_2(x, y). \quad (159)$$

Dirichlet problem for v :

$$\nabla^2 v(x, y) = 0, \quad (x, y) \in \Omega, \quad (160)$$

$$v(x, y) = \tilde{G}(x, y), \quad (x, y) \in \partial\Omega. \quad (161)$$

The polynomial P_2 can be chosen such that $\tilde{G}(x, y) = G(x, y) - P_2(x, y)$ vanishes at the vertices of the rectangle Ω :

$$G(0, 0) - P_2(0, 0) = 0, \quad (162)$$

$$G(b, 0) - P_2(b, 0) = 0, \quad (163)$$

$$G(0, d) - P_2(0, d) = 0, \quad (164)$$

$$G(b, d) - P_2(b, d) = 0. \quad (165)$$

Note that $P_2(x, y)$ is a *harmonic polynomial* because

$$\nabla^2 P_2(x, y) = 0 \quad \text{for any choice of the coefficients } a_i \in \mathbb{R}. \quad (158)$$

Define

$$v(x, y) = u(x, y) - P_2(x, y), \quad \tilde{G}(x, y) = G(x, y) - P_2(x, y). \quad (159)$$

Dirichlet problem for v :

$$\nabla^2 v(x, y) = 0, \quad (x, y) \in \Omega, \quad (160)$$

$$v(x, y) = \tilde{G}(x, y), \quad (x, y) \in \partial\Omega. \quad (161)$$

The polynomial P_2 can be chosen such that $\tilde{G}(x, y) = G(x, y) - P_2(x, y)$ vanishes at the vertices of the rectangle Ω :

$$G(0, 0) - P_2(0, 0) = 0, \quad (162)$$

$$G(b, 0) - P_2(b, 0) = 0, \quad (163)$$

$$G(0, d) - P_2(0, d) = 0, \quad (164)$$

$$G(b, d) - P_2(b, d) = 0. \quad (165)$$

Note that $P_2(x, y)$ is a *harmonic polynomial* because

$$\nabla^2 P_2(x, y) = 0 \quad \text{for any choice of the coefficients } a_i \in \mathbb{R}. \quad (158)$$

Define

$$v(x, y) = u(x, y) - P_2(x, y), \quad \tilde{G}(x, y) = G(x, y) - P_2(x, y). \quad (159)$$

Dirichlet problem for v :

$$\nabla^2 v(x, y) = 0, \quad (x, y) \in \Omega, \quad (160)$$

$$v(x, y) = \tilde{G}(x, y), \quad (x, y) \in \partial\Omega. \quad (161)$$

The polynomial P_2 can be chosen such that $\tilde{G}(x, y) = G(x, y) - P_2(x, y)$ vanishes at the vertices of the rectangle Ω :

$$G(0, 0) - P_2(0, 0) = 0, \quad (162)$$

$$G(b, 0) - P_2(b, 0) = 0, \quad (163)$$

$$G(0, d) - P_2(0, d) = 0, \quad (164)$$

$$G(b, d) - P_2(b, d) = 0. \quad (165)$$

Note that $P_2(x, y)$ is a *harmonic polynomial* because

$$\nabla^2 P_2(x, y) = 0 \quad \text{for any choice of the coefficients } a_i \in \mathbb{R}. \quad (158)$$

Define

$$v(x, y) = u(x, y) - P_2(x, y), \quad \tilde{G}(x, y) = G(x, y) - P_2(x, y). \quad (159)$$

Dirichlet problem for v :

$$\nabla^2 v(x, y) = 0, \quad (x, y) \in \Omega, \quad (160)$$

$$v(x, y) = \tilde{G}(x, y), \quad (x, y) \in \partial\Omega. \quad (161)$$

The polynomial P_2 can be chosen such that $\tilde{G}(x, y) = G(x, y) - P_2(x, y)$ vanishes at the vertices of the rectangle Ω :

$$G(0, 0) - P_2(0, 0) = 0, \quad (162)$$

$$G(b, 0) - P_2(b, 0) = 0, \quad (163)$$

$$G(0, d) - P_2(0, d) = 0, \quad (164)$$

$$G(b, d) - P_2(b, d) = 0. \quad (165)$$

The boundary conditions for v are continuous on $\partial\Omega$, hence the Laplace equation for v can be solved by the method of separation of variables.

Solution of the initial problem: $u(x, y) = v(x, y) + P_2(x, y)$.

- Explain why the solution $u(x, y)$ does not depend on the choice of the polynomial $P_2(x, y)$.

The boundary conditions for v are continuous on $\partial\Omega$, hence the Laplace equation for v can be solved by the method of separation of variables.

Solution of the initial problem: $u(x, y) = v(x, y) + P_2(x, y)$.

- Explain why the solution $u(x, y)$ does not depend on the choice of the polynomial $P_2(x, y)$.