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A general second order PDE in two independent variables is given by

Augz + 2Bugy + Cuyy + Dug + Euy + Fu =G.

1)

The functions u, A, B,C, D, E, F, G depend on the variables (z,y) € Q C R2.
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A general second order PDE in two independent variables is given by

Augz + 2Bugy + Cuyy + Dug + Euy + Fu =G.
The functions u, A, B,C, D, E, F, G depend on the variables (z,y) € Q C R2.
Operator form of the equation:

Llul=G, L=A
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A general second order PDE in two independent variables is given by

Augz + 2Bugy + Cuyy + Dug + Euy + Fu =G.
The functions u, A, B,C, D, E, F, G depend on the variables (z,y) € Q C R2.
Operator form of the equation:

Llul=G, L=A

1)
9? o? 9?2 1o}
—+2B——+C— +D—
Ox2 + Ozdy + Oy? +
The principal part of L:

17}
E—+F
ox + oy +

9? 9?2

Lo =AW+QB

82
0zdy +

)

ay?’

3)
«40>» «Fr «E» < Q>
U PDE

it
-



A general second order PDE in two independent variables is given by

Augy + 2Bugy + Cuyy + Dug + Euy + Fu=G.
Operator form of the equation:

The functions u, A, B,C, D, E, F, G depend on the variables (z,y) € Q C R2.
Llul=G, L=A

1)
0? 0? 0? 0 0
—+2B——+C—+D—+E—+F 2
6a:2+ 8m6y+ 8y2+ 8w+ By+ )
The principal part of L:
0? 0? 0?
Ly=A—+2B———+(C—.
0 02 + dzxdy + Oy?
To each equation (1) we associate the discriminant A(z,y):

3)
A(:L',y) = BQ(:Z),y) —A(x,y)C(x,y) (4)
Qualitative properties of solutons of Eq. (1) depend on the sign of A(z,y).
A40O>r AF>r «=)>» «=)» Q™
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Definition

Second order equation L{u] = G is called
hyperbolic at the point (z,y) if A(z,y) > 0,
parabolic at the point (z,y) if A(z,y) =0,
elliptic at the point (z,y) if A(z,y) < 0.

If the equation L{u] = G is hyperbolic (parabolic, elliptic) at every point in the
domain €, then we say that the equation is hyperbolic (parabolic, elliptic) in Q.

PDE



Definition

Second order equation L{u] = G is called
hyperbolic at the point (z,y) if A(z,y) > 0,
parabolic at the point (z,y) if A(z,y) =0,
elliptic at the point (z,y) if A(z,y) < 0.

If the equation L{u] = G is hyperbolic (parabolic, elliptic) at every point in the
domain €, then we say that the equation is hyperbolic (parabolic, elliptic) in Q.

Examples

Classify the following equations:
utt — gy =0,
ut — kugge =0,
Uz + Uyy = 0,

A Yuzz + Uyy = 0.

PDE



The type of equation is invariant with respect to a regular transformation of variables
in the equation.

PDE



The type of equation is invariant with respect to a regular transformation of variables
in the equation.

Lemma

Consider a second order equation
Auge + 2Bugzy + Cuyy + Dug + Euy + Fu=G. (5)

If « = a(z,y), 8= PB(x,y) is a regular transformation of variables, then the sign of
the discriminant A = B2 — AC is invariant with respect to the transformation

(@,9) = (a, B).

PDE



The type of equation is invariant with respect to a regular transformation of variables

in the equation.

Lemma
Consider a second order equation

Auge + 2Bugzy + Cuyy + Dug + Euy + Fu=G. (5)

If « = a(z,y), 8= PB(x,y) is a regular transformation of variables, then the sign of
the discriminant A = B2 — AC is invariant with respect to the transformation

(@,9) = (a, B).

By introducing new variables, every equation of second order can be transformed into

a canonical form.
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The type of equation is invariant with respect to a regular transformation of variables
in the equation.

Lemma
Consider a second order equation
Auge + 2Bugzy + Cuyy + Dug + Euy + Fu=G. (5)

If « = a(z,y), 8= PB(x,y) is a regular transformation of variables, then the sign of
the discriminant A = B2 — AC is invariant with respect to the transformation

(@,9) = (a, B).

By introducing new variables, every equation of second order can be transformed into

a canonical form.

Transformed coefficients in new variables:

A= Aai + 2Bamay + Ca§7 (6)
B = A + B(awBy + ayBa) + Cory By, ()
C = AB2 + 2BB.By + CB2. (8)

PDE



The canonical form of a parabolic equation is

Uz

(11)
= QA
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The canonical form of a hyperbolic equation is
Uzy + L1[u] = G
with

where L; is a differential operator of first order. This canonical form is equivalent

(9)

Waa — WEB + Ll[w] =G
where the variables o, 3 are given by a =z +y, =2 — y.

(10)
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The canonical form of a hyperbolic equation is
Uzy + L1[u] = G
with

where L; is a differential operator of first order. This canonical form is equivalent

(9)

Waa — WEB + Ll[w] =G
where the variables o, 3 are given by a =z +y, =2 — y.
The canonical form of a parabolic equation is

(10)

Uze + L1[u] = G.

(11)
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Canonical forms

Definition
The canonical form of a hyperbolic equation is
Ugy + L1[u] = G (9)

where Ly is a differential operator of first order. This canonical form is equivalent
with
Waa —’LUBB—l-Ll[’LU] =G (10)

where the variables «, 8 are given by a = x4y, B =2 — y.

The canonical form of a parabolic equation is

H The canonical form an elliptic equation is

PDE
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(13)

Suppose
Augy + 2Bugy + Cuyy + Dug + Euy + Fu =G
is a hyperbolic equation in the domain © C R2. Then there exist variables

a = o(z,y), B = B(z,y) in which the equation (13) has the canonical form

Wap + L1 [w] =G
where w(a, 8) = u(z(a, 8),y(a, B)) and Ly is a differential operator of first order.

(14)
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Suppose

Augy + 2Bugy + Cuyy + Dug + Euy + Fu =G
is a hyperbolic equation in the domain © C R2. Then there exist variables

= (13)
a = o(z,y), B = B(z,y) in which the equation (13) has the canonical form
Wap + L1 [w]

G
where w(a, 8) = u(z(a, 8),y(a, B)) and Ly is a differential operator of first order

(14)
Determine the canonical form and find a general solution of the equation
duge + SUgy + Uyy + Uz + uy = 2. (15)
«O>» «Fr «E» < A
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Suppose
Augy + 2Bugy + Cuyy + Dug + Buy + Fu=G
B = B(z,y) in which the equation (16) has the canonical form

is a parabolic equation in the domain © C R2. Then there exist variables o = a(z, y),

(16)

Waa + L1[w] =G
where w(a, 8) = u(z(e, B),y(c, B)) and Ly is a differential operator of first order.

17)
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Suppose

Augy + 2Bugy + Cuyy + Dug + Euy + Fu =G

(16)

Waa + L1[w] =G
where w(a, 8) = u(z(e, B),y(c, B)) and Ly is a differential operator of first order.

(17)
Determine the canonical form and find a general solution of of the equation
22 ugy — 2TYuzy + yzuyy + zug + yuy =0
in the half-plane z > 0.

is a parabolic equation in the domain © C R2. Then there exist variables o = a(z, y),
B = B(z,y) in which the equation (16) has the canonical form



-




(19)

Suppose
Augy + 2Bugy + Cuyy + Dug + Euy + Fu =G
is an elliptic equation in the region © C R2. Then there exist variables a = a(x, ),
B = B(z,y) in which the equation (19) has the canonical form

Waa + wgg + Ll[w] =G
where w(a, 8) = u(z(e, B),y(c, B)) and Ly is a first order differential operator.

(20)
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Suppose

Augy + 2Bugy + Cuyy + Dug + Euy + Fu =G

(19)

is an elliptic equation in the region Q C R2. Then there exist variables a = a(z, y)
B = B(z,y) in which the equation (19) has the canonical form

Waa + wgg + Ll[w] =G
where w(a, 8) = u(z(e, B),y(c, B)) and Ly is a first order differential operator

(20)
Determine the canonical form of the equation
Upy + Ugy + Uyy + Uz = 0. (21)
«O>» «Fr «E» < A
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The heat equation
Ut — kuggy = 0,

O0<zxz<L,t>0.
describes the temperature u(z,t) in a thin heat conducing rod. The rod is insulated
everywhere except possibly at the end points t =0 i x = L.
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The heat equation
Ut — kuggy = 0,

O0<zxz<L,t>0.
describes the temperature u(z,t) in a thin heat conducing rod. The rod is insulated
everywhere except possibly at the end points t =0 i x = L.
Dirichlet boundary conditions:

(22)

ut — kugy =0, O<z<L,t>0, (23)
u(z,0) = f(z), 0<z<IL, (24)

u(0,t) = a(t), u(L,t)=20b(t), t>0.

(25)
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The heat equation
Ut — kuggy = 0,

O0<zxz<L,t>0.
describes the temperature u(z,t) in a thin heat conducing rod. The rod is insulated
everywhere except possibly at the end points t =0 i x = L.

Dirichlet boundary conditions:

(22)

ut — kugy = 0,

u(x,O) = f(z)a
u(0,t) = a(t),

0<xz<L,t>0,
0<z<L,
u(L,t) = b(¢),
Neumann boundary conditions:

(23)
(24)
t>0.

(25)

ugz(0,t) =b(t), t>0. (26)
ugz(xo,t) describes heat flow at the point zg

«40>» «Fr «E» < > Q>
U RDE

uz(0,t) = a(?),



If w1 and uo are C? solutions of the problem
ut — ktgy = 0,
u(a:,O) = f(x)a

0<z<L,t>0,
0<z<L,

w(0,6) = a(t), w(L,t)=b(t), t>0,

then u1 = us.

«40>» «Fr «E» < Q>

(27)
(28)
(29)
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Theorem (Uniqueness of solution)

If u; and us are C2 solutions of the problem

ut — kugg = 0, O0<z<L,t>0, (27)
u(z,0) = f(z), 0<z<U, (28)
w(0,0) = a(t), u(L,®)=b(t), >0, (20)

then u1 = uo.

Definition
The parabolic border of the rectangle D = [0, L] X [0, T] is the union of its base and
the vertical sides of the rectangle,

0pD ={(0,t) |0<t<T}uU{(2,0)|0<z<L}U{(L,t)|0<t<T}

PDE



Suppose u is a C? solution of the heat equation
ut — kugge = 0,
Let T > 0 and let D = [0, L] x [0,T]. Then

0<z<L,t>0.

(30)
) = )t
(a:I,I%)aé{D u(z,t) = u(zo,to)
at some point (zo,tg) € 9pD.

«40>» «Fr «E» < > Q>
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Suppose u is a C? solution of the heat equation
ut — kugge = 0,
Let T > 0 and let D = [0, L] x [0,T]. Then

0<z<L,t>0.

(30)
) = )t
(a:I,I%)aé{D u(z,t) = u(zo,to)
at some point (zo,tg) € 9pD.

(31)
Every C? solution of the heat equation attains a minimum on the parabolic border of
the rectangle [0, L] x [0, T].
«40O> «Fr «=)>» «=)» = Q>
U RDE



Theorem (Stability of solutions)

Suppose u1 and us C? are solutions of the initial-boundary value problems

8114 82ui
—k =0, O L, t>0 32
ot Ox2 ’ STS 5 >0 (32)
ui(z,0) = fi(z), 0<z<L, (33)
w; (0,t) = a;(t), wi(L,t)=0b;(t), t>0 (34)
fori=1,2. Let T > 0. If
s, 1f1(@) — (@) <=, (35)
OIgntaSXT la1(t) — a2(t)| < e, OISntaSXT [b1(t) —ba2(?)| <e (36)
for some € > 0, then
max_|ui(z,t) —u2(z,t)| < e (37)

(z,t)eD

where D = [0, L] x [0, T].

PDE
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Consider the heat equation with Dirichlet boundary condtions
ut — kuzz = 07

u(a:,O) = f(z)a

0<z<L, t>0, (38)
0<z<L, (39)
u(0,t) = u(L,t) =0, ¢>0. (40)
Compatibility of the initial and boundary conditions: f(0) = f(L) = 0.

it
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Consider the heat equation with Dirichlet boundary condtions
ut — kuzz = 07

u(a:,O) = f(z)a

0<z<L, t>0, (38)
0<z<L, (39)
u(0,t) = u(L,t) =0, ¢>0. (40)
Compatibility of the initial and boundary conditions: f(0) = f(L) =0
We seek solution in the separated form u(z,t) = P(z)Q(t).

it
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Consider the heat equation with Dirichlet boundary condtions

ut — kugy = 0,

0<z<L, t>0, (38)
u(z,0) = f(z), 0<z<L, (39)
u(0,t) = u(L,t) =0, ¢>0. (40)

Compatibility of the initial and boundary conditions: f(0) = f(L) =0

We seek solution in the separated form u(z,t) = P(z)Q(t).
The solution is obtained in the form of an infinite series

u(z,t) = Z Pr(2)Qn(t). (41)
n=1

«40>» «Fr «E» < > Q>



Theorem (Existence of solution)
Suppose the function f: [0, L] — R satisfies the following conditions:
f is continuous and picewise C'! on [0, L],

f(0) = f(L) = 0.

Then the function

L
u(z, t) ZB e FCLT )tsm(LzL’ , Bn:%/o f(ac)sin(n—zx)dz

is a classical solution of the initial-boundary value problem

ut — kugg = 0, O0<z<L, t>0,
u(e,0) = f(z), 0<z<L,
u(0,t) = u(L,t) =0, t>0.

PDE

(42)

(43)
(44)
(45)



Example Determine the solution of the heat equation

Ut — Ugx = 07

O<z<mt>0
u(0,t) = u(L,t) =0,

x?
u(z,0) =

(46)

(47)
%

(48)

PDE




Example Determine the solution of the heat equation

Ut — Ugx = 07

O<z<mt>0
u(0,t) = u(L,t) =0,

(46)
(47)
x, 0<z< %
u(z,0) = - (48)
T —x, 5 <z<m

—@m-1%t gy ((2m — 1)z)

(49)
PDE

(=)




Neumann boundary conditions

ut — kge =0, 0<z<L,t>0,
uz(0,t) = uz(L,t) =0, t>0,
u(z,0) = f(z), - L<z<L

Compatibility of initial and boundary conditions: f'(0) =0, f/(L) =

Solution:

u(z,t) = 20 Z Ane” ROt o (n%@"),

An:Z/O f(x) cos (%az)dz, n > 0.

PDE

0.

(50)
(51)
(52)

(53)

(54)



Periodic boundary conditions

ut — kuge =0, —L<x<L,t>0, (55)
u(z,0) = f(z), —L<z<L, (56)
U(—L,t) = u(th)7 u.’E(_L7t) = um(th)7 t Z 0. (57)
Solution:
u(z,t) = Ao + f: G {A cos (Er> + By sin (Ex)] (58)
’ 2 " L " L
1 L

Ap = 7/ f(x) cos (Ea:)da:, n >0, (59)

L) . L

B, = %/fL f@)sin (Fa)de, n>1. (60)

PDE
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ut — kuge = F(x,t),

u(x’o) = f(:l:),

0<z<L,t>0,
0<z<L,
u(0,t) = u(L,t) =0, ¢>0.

(61)
(62)

F(z,t) models an internal heat source in the rod.

«40r 4F>r «=)r « =) = Q>
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ut — kuge = F(x,t),

u(x’o) = f(:l:),

0<z<L,t>0,
0<z<L,
u(0,t) = u(L,t) =0, ¢>0.

(61)
(62)

F(z,t) models an internal heat source in the rod.

(63)

In the homogeneous case the solution is given by
> nm nm )2
u(z,t) = Z By (t) sin (—m), Bn(t) = By, e ()7,
n=1 L

(64)
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ut — kuge = F(x,t),

u(z,0) = f(z),

0<z<L,t>0,
0<z<L,
u(0,t) = u(L,t) =0, ¢>0.

(61)
(62)

F(z,t) models an internal heat source in the rod.

(63)

In the homogeneous case the solution is given by
> nm nm )2
(z,1) ZT;Bn(t)sin (Tm>, Bn(t) = By, e k()

(64)

o]
u(z,t) = ZTn(t) sin (%m) (65)
n=1
«40O> «Fr «=)>» «=)» = Q>
U RDE

We seek solution by the method of variation of parameters:



Example Solve the nonhomogeneous equation

Ut — Ugy = € ° sin(3z), 0<zx<m, t>0,
u(0,t) = u(m,t) =0, t>0,
u(z,0) = zsin(x),

(66)

0<z<m.

(67)
(68)

PDE




Example Solve the nonhomogeneous equation

Ut — Ugy = e 'sin(3z), 0<z < m, t>0, (66)
u(0,t) = u(m,t) =0, t>0, (67)
u(z,0) = zsin(x), 0<z<m. (68)

1 16
u(z,t) = geft sin(x) + g(eft — e %) sin(3z) — - Z Meqm% sin(2nx)
n=1
or @ czr oz, (69) o

PDE
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mechanics or propagation of electromagnetic and sound waves.

The one—dimensional wave eqation

The wave equation describes period motion such as oscillations in continuum

Uty — c2um =0

(70)

describes oscillations of an elastic wire under the following assumptions:
m dissipative effects (such as internal friction) are negligible,

m displacement u(z,t) from the equilibrium position is perpendicular to the z—axis,
m no external forces act on the wire.

«O> «Fr 4 > > A
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The wave equation

The wave equation describes period motion such as oscillations in continuum
mechanics or propagation of electromagnetic and sound waves.
The one—dimensional wave eqation
2 _
Ut — C Uge = 0 (70)
describes oscillations of an elastic wire under the following assumptions:
m dissipative effects (such as internal friction) are negligible,
m displacement u(z,t) from the equilibrium position is perpendicular to the z—axis,
m no external forces act on the wire.
D’Alambert solution for homogeneous wave equation
Ut — gy =0, xTER, ¢>0, (71)
u(x70) :f(x)v ut(:c,O) =g(l‘), z €R, (72)

f(x) initial amplitude, g(z) initial velocity of the point x.

PDE



The general solution of the wave equation is a superposition of two traveling waves:

u(z,t) = A(z + ct) + Bz — ct). (73)

(a) Initial profile f(x) (b) Function u(x, t) as a superposition of

two traveling waves.

Slika:

PDE



Theorem

Let f € C?(R) and g € C'(R). Then the wave equation

ut — uge =0, zER, t>0, (74)
U(Z‘,O) = f(m)z ui(xzo) = g(CE), T € R7 (75)
has a unique solution
1 1 x+ct
ue,t) = 3 [fe+ e+ fa—et)] + 5 [ g(e)s (76)
2 2c T —ct

which is in every finite interval 0 < ¢ < T stable with respect to the initial condtions
(75).

PDE



D’Alambert soluton for nonhomogenous wave equation

upt — gy = F(z,t), zE€R, t>0, (77)
u(x70) :f(x)v ut(xvo) :g(x)v z €R. (78)

F(z,t) models an external force acting on the wire

PDE



D’Alambert soluton for nonhomogenous wave equation

Ut — CPUgy = F(z,t),

u(z,0) = f(z), u(z,0)=g(x),

F(z,t) models an external force acting on the wire

Introduce the variable y = ¢t and define w(z,y) = u(x,y/c). Then w satisfies

Wrx — Wyy = F*(x) y)’
w(z,0) = f(z),

wy(z,0) = g*(x),

i} 1
F (xyy):_C?F(‘r’y)’

PDE

z € R,
z € R.

t>0,

(77)
(78)

(79)
(80)

(81)



By applying the Green's theorem to the triangle in the picture, we can find the value

of w at the point (zo, yo).

Py = (o, y0)

y=z— (x0— ) y = —x+ (xo+ yo)

By

Py = (z9 — y0,0) Py = (20 + y0,0)

PDE



By applying the Green's theorem to the triangle in the picture, we can find the value

of w at the point (zo, yo).

Py = (o, y0)

y=z— (x0— ) y = —x+ (xo+ yo)

Py = (z9 — y0,0) Py = (20 + y0,0)

z0+Yo

N | =

w(ao.0) = 5 [Feotwo)tfwowo)l+3 [ g @hae' =3 [[ o y)astay'

0—Y%0

PDE



Ut — C Uga = F(z,1),
with initial conditions

Oscillations of an elastic wire of length L are described by the wave equation
2

O<z<L,

t>0,
u(z,0) = f(z),

(82)
’U/t(w, O) = g(m)y

0<z< L.

«40>» «Fr «E» < > Q>
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Ut — C Uga = F(z,1),
with initial conditions

Oscillations of an elastic wire of length L are described by the wave equation
2

O<z<L,

t >0, (82)
u(w70) = f(m)7 ut(w70) = g(a:), 0<z<L (83)
u(0,t) = u(L,t) =0,

t>0.

(84)
«40>» «Fr «E» < > Q>
U RDE

m If the endpoints are fixed, then u(x,t) satisfies Dirichletove boundary conditions



Oscillations of an elastic wire of length L are described by the wave equation
utt — Cuze = F(x,1),
with initial conditions

O<z<L,

t>0,

(82)
u(z,0) = f(z), ut(z,0)=g(z), 0<z<L (83)
u(0,t) = u(L,t) =0,

m If the endpoints are fixed, then wu(z,t) satisfies Dirichletove boundary conditions
t > 0.

(84)

up(0,8) = ug(Lyt) =0, ¢ > 0. (85)
«O> «Fr 4 > > A
U RDE

m If the end points freely oscillate, then u(z,t) satisfies Neumann conditions
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Let u1 and uz be C? solutions of the wave equation (82) with initial conditions (83)
and Dirichlet boundary conditions (84). Then u; = us.
«A40r «4F»r «=)» <« > Q™
U RDE



Theorem (Uniqueness of solution)

Let u1 and uz be C? solutions of the wave equation (82) with initial conditions (83)
and Dirichlet boundary conditions (84). Then u; = us.

Remark

The same proof applies to the wave equation with Neumann boundary conditions.

PDE



Dirichlet boundary conditions
2

Ugt — CUge =0,

u(z,0) = f(=),

O0<z<L, t>0, (86)
ut(z,0) =g(z), 0<z<L, (87)
u(0,t) = u(L,t) =0, t>0. (88)
Compatibility of initial and boundary conditions
f(0)=f(L)=0, ¢(0)=g(L)=0.

(89)

«40>» «Fr «E» < Q>
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Dirichlet boundary conditions
2

Ugt — CUge =0,

u(z,0) = f(=),

ui(z,0) = g(=),
u(0,t) = u(L,t) =0,

0<z<L,
Compatibility of initial and boundary conditions

t>0, (86)
0<z<L, (87)
t > 0. (88)

f(0)=f(L)=0, g¢(0)=g(L)=0.
By the method of separation of variables u(z,t) = P(z)Q(t) we obtain a sequence of
solutions

(89)

called n—th order harmonics.

Un(z,t) = Pn(z)Qn(t) = [an cos (nTrrct) + by, sin (@t)] sin (—Wz)

T
90
I 7 (90)
«40>» «Fr «E» < Q>
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Second harmonic
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Theorem (Egzistence)

Let f € C4([0, L]) and g € C3([0, L]). Assume that f and g satisfy the following
conditions

f£(0) = f(L) =0, f'(0) = f"(L) =0,

g(0) = g(L) = 0.

Then
o0
nme . /n7
u(z, t) Z:: [an cos < ) + by, sin (Tt)] sin (Tac), (91)
2/ f(z)s'n(mr )d b 2 ( )sn( )d:c (92)
an = — in ( —x ) dz, = — x) si ,
"L 0 L " nme g
is a classical solution of the wave equation with Dirichlet boundary conditions
Ut — gy =0, 0O<z<L, t>0, (93)
u(z,0) = f(z), wui(z,0)=g(z), 0<z<L, (94)
u(0,t) = u(L,t) =0, t>0. (95)

PDE



Remark

If f and g od not satisfy the conditions in the theorem, the formal solution may not

satisfy the wave equation.

Example

Yog, 0<x < o,
fa)y=q @

U0 2= T zo <z <L,
g(z) =0,

PDE



Remark
If f and g od not satisfy the conditions in the theorem, the formal solution may not
satisfy the wave equation.

Example
g, 0 <z < o,
fl@) =47 (96)
uo;oiL, o<z <L
g(z) =0, (97)
212 <1 nmwro nmc nmw
X ron () eos () sin (Tw) (o8
u(z,t) = 7 2oL —70) g 5 cos (——t)sin{ —=z (98)

The function u is well defined, but ug, and u¢: diverge!

PDE



Neumann boundary condtions

gt — gy =0, 0<a <L,
u(zzo):f($)7 ut(:E’O):g(:C)v OS:DSL,
uz(0,t) =ux(L,t) =0, t>0.

Compatibility of initial and boundary conditions

() =f(L)=0, ¢'(0)=g(L)=0.

PDE
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Neumann boundary condtions

gt — gy =0, 0<a <L,

u(a:,()):f(x), ut(z70):g(z)7 0<z<IL,

uz(0,t) =ux(L,t) =0, t>0.
Compatibility of initial and boundary conditions

() =f(L)=0, ¢'(0)=g(L)=0.

Solution:

u(z,t) = 40 7 20t + bot f: [an cos ( ) + by sin (?t)] cos <%$),

where ay, and b,, are determined from the boundary conditions:

w0=2 [C@in an=3 [ @ cos (o),

2 [k 2 L nmw
Z/) g(z)dz, bn:a : g(z) cos <T:v>d:p

bo

PDE
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(102)

(103)

(104)
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Neumann boundary conditions
utr — Cuge = F(x,t),

O<z<L, t>0,
'U,(Cl:,O) = f(z)a ut(xvo) =g($),
F(z,t) models an external force acting on the wire.

0<z< L.

(106)
(107)

um(07 t) = 'U':E(Lat) =0,

t > 0.

(108)

«40>» «Fr «E» < > Q>



Neumann boundary conditions
utr — Cuge = F(x,t),

0<z<L,
'U,(Cl:,O) = f(.’t), ut(xvo) =g($),
F(z,t) models an external force acting on the wire.

t>0, (106)
0<z<L. (107)
uz(0,t) = ug(L,t) =0, t>0. (108)
We assume the solution in the form
1 > nm
u(z,t) = 5Qo(t) + nzzlen(t) cos (Tz)
for some unknown functions Qn(t), n > 0.

(109)

«40>» «Fr «E» < > Q>



Neumann boundary conditions
utr — Cuge = F(x,t),

O0<z<L, t>0, (106)
u(z,0) = f(z), wut(z,0)=g(z), 0<z<L.
F(z,t) models an external force acting on the wire.
uz(ov t) = 'U':E(Lat) = 07
We assume the solution in the form

(107)

t > 0.

equation we find

(108)
u(z,t) = %Qo(t) + Z Qn(t) cos (n%z)
n=1

(109)

nmc
1

T)an(t)] cos (%m) = F(z,t). (110)
«4O0>» «Fr «E» < 4 a
U RDE

for some unknown functions Qn (t), n > 0. By substituting u(z,t) into the wave
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If F(z,t) satisfies the conditions
Fp(0,t) = Fy(L,t) =0, t>0, (111)

then F(z,t) can be written in the form

F(z,t) = %Co(t) + i": Chn(t) cos (%x), 0<z<L. (112)

n=1

The wave equation yields

Q0 (t) = Co(t), (113)
Qn(t) + (%)QQn(t) =Cn(t), n>1 (114)
Solution:
Qo(t) = ao + bot + QF (1), (115)
Qn(t) = an cos (%t) + by sin (%t) +Qb(1). (116)

PDE



Solution of the nonhomogeneous equation:

u(z,t) :uh(xvt)+up(x7t) (117)
where
bot > nme nmwe nmw
up(z,t) = 0 + bot + an cos (——t) +bpsin (—t)|cos(—=x), (118)
= 5 oo (550 i (755) o (1)
up(,t) = QB0 + S QB cos (), (119)
n=1

PDE



The Laplace equation is an elliptic equation of the form

Ugz + Uyy = 0, (557 y) €N
Q C R? is a bounded domain (open, connected, bounded set)

O is a union of simple, closed, piecewise smooth curves

(120)
0?2 02
2 _
Vit

ay?

Laplace operator

(121)

«Or «Fr <« > > a
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The Laplace equation is an elliptic equation of the form

Uge + Uyy = 0,

(z,y) € Q
Q C R? is a bounded domain (open, connected, bounded set)

(120)
O is a union of simple, closed, piecewise smooth curves
v? = ”

32
T o oy
Applications of Laplace equation

Laplace operator

(121)

m Distrubution of electric potential in a domain free of charge.

m Stationary distribution of temperature in a heat conducting body.

«O> «Fr 4 > > A
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The Laplace equation is an elliptic equation of the form

Uge + Uyy = 0,

(z,y) € Q
Q C R? is a bounded domain (open, connected, bounded set)

(120)
O is a union of simple, closed, piecewise smooth curves
v? = ”

32
T 022 + Ay?
Applications of Laplace equation

Laplace operator

m Distrubution of electric potential in a domain free of charge.

(121)
m Stationary distribution of temperature in a heat conducting body.
A function u € C?(Q) satisfying the Laplace equation in the domain Q C R? is called
a harmonic function in Q.
«40O> «Fr «=)>» «=)» = Q>
U RDE



A nonhomogeneous Laplace equation is called the Poisson equation:
Q) bounded domain

Uze + Uyy = f(z,9),

(z,y) € Q.

«Or 4«Fr o« > > a
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A nonhomogeneous Laplace equation is called the Poisson equation:
Q bounded domain

Uze + Uyy = f(z,9),

(z,y) € Q. (122)
m Dirichlet boundary condition
u(z,y) = g(z,y),

(z,y) € 00

(123)

«A40> «Fr» «E»r» « > Q>



A nonhomogeneous Laplace equation is called the Poisson equation:
Q bounded domain

Uze + Uyy = f(z,9),

(z,y) € Q.
m Dirichlet boundary condition

(122)

u(z,y) = g(z,y),

(z,y) € O
m Neumann boundary condtion

(123)

ou
F(xay):g(xﬁy% (x7y) € 0Q
n
ou
on

=V -7 directional derivative,
7

(124)
(125)
unit normal vector at the point (z,y) € 9Q pointing outwards. (126)
«40O> «Fr «=)>» «=)» = Q>
U RDE



In studying the Laplace equation we need the Gauss theorem.

Theorem (Gauss)

Let Q C R? be a bounded domain whose boundary 92 is a union of simple, closed
piecewise shooth curves. Let 7i be a unit normal vector on the boundary 92 pointing
outwards. If F' is a vector field of class C! in Q, then

ﬁ.ﬁds:// (V- F)dzdy (127)
o0 Q

where OS2 is positively oriented.

PDE



Lemma

Let © be a bounded domain in R2. If the Neumann problem

Uza +Uyy = f(,y), (z,9) €Q,

ou
T @y) = g(e), (o) €09,
7T

has a solution, then f and g satisfy the consistency condition

/éBdis://ngdxdy.

PDE

(128)

(129)

(130)



Lemma

Let © be a bounded domain in R2. If the Neumann problem

Uza +Uyy = f(,y), (z,9) €Q,

ou
T @y) = g(e), (o) €09,
7T

has a solution, then f and g satisfy the consistency condition

/éBdis://ngdxdy.

m Note that for the Laplace equation we have
f=0 = gds =0.
fle)

m Thus, a harmonic function u satisfies the condition
o
/ —Qids =0.
80 O

PDE

(128)

(129)

(130)

(131)

(132)



Theorem (Weak maximum principle)

If u € C%2(2) N C(Q) is a harmonic function in a bounded domain Q C R2, then

maxu = u(z’,y’) (133)
Q

at some point (2/,y’) € 0Q. In other words, the function u attains its maximum in Q
at a boundary point (z’,y’) € 0.
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Theorem (Weak maximum principle)

If u € C%2(2) N C(Q) is a harmonic function in a bounded domain Q C R2, then

maxu = u(z’,y’) (133)
Q

at some point (2/,y’) € 0Q. In other words, the function u attains its maximum in Q

at a boundary point (z’,y’) € 0.

Theorem (Weak maximum principle

If w € C2(2) N C(Q) is a harmonic function in a bounded domain © C R?, then
minu = u(z’,y") (134)
Q

at some point (z/,y’) € 9.

PDE



Theorem (Weak maximum principle)

If u € C%2(2) N C(Q) is a harmonic function in a bounded domain Q C R2, then

maxu = u(z’,y’) (133)
Q

at some point (2/,y’) € 0Q. In other words, the function u attains its maximum in Q
at a boundary point (z’,y’) € 0.

Theorem (Weak maximum principle

If w € C2(2) N C(Q) is a harmonic function in a bounded domain © C R?, then

minu = u(z’,y") (134)
Q
at some point (z/,y’) € 9.
For a harmonic function we have
max u = maxu, min v = min u. (135)
Q a9 Q o9

PDE



If u € C?(2) N C(Q) is a harmonic function in a bounded domain  C R? and
u(z,y) = 0 for all (z,y) € 99, then u = 0.
«A40> «Fr» «E»r» « Q>
U RDE
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If u € C?(2) N C(Q) is a harmonic function in a bounded domain  C R? and
u(z,y) = 0 for all (z,y) € 99, then uw = 0.
Assume Q is a bounded domain in R2. Then there exists at most one solution
u € C2(2) N C(Q) of the Dirichlet problem
Au(z,y) = f(z,y),

(z,y) € Q,
u(z,y) = g(z,y),

(136)
(z,y) € 0. (137)

«40>» «Fr «E» < > Q>



Stability of solutions of the Dirichlet problem

Let Q be a bounded domain in RZ. Assume ui,us € C2(Q) N C(Q) are two solutions

of the Poisson equation

Aui(z,y) = f(z,y), Aus(z,y) = f(z,y), (z,9) €Q, (138)

satisfying the boundary conditions

u(z,y) = g1(2,y) w2(z,y) =g2(z,9), (2,y) € 0L, (139)
where g1, g2 € C(0Q). If

max g1 — 92| <&, then oS = uz| < e. (140)

PDE



Theorem (Mean value principle)

Let u be a harmonic function in the domain Q (which may not be bounded), and let

K (z0,y0) C 2 be a closed disk of radius > 0 centered at (zg,y0) € 2. Then

1
u(xo,yo) = 2nr o uds (141)

where C is a circle of radius r > 0 centered at (g, y0).

PDE



Theorem (Mean value principle)

Let u be a harmonic function in the domain Q (which may not be bounded), and let

K (z0,y0) C 2 be a closed disk of radius > 0 centered at (zg,y0) € 2. Then

1
u(xo,yo) = 2nr o uds (141)

where C is a circle of radius r > 0 centered at (g, y0).

Theorem

Assume the function u € C2(Q) satisfies the Mean value principle at every point in

the domain 2. Then w is a harmonic function in 2.

PDE



Theorem (Mean value principle)

Let u be a harmonic function in the domain Q (which may not be bounded), and let

K (z0,y0) C 2 be a closed disk of radius > 0 centered at (zg,y0) € 2. Then

1
u(xo,yo) = 2nr o uds (141)

where C is a circle of radius r > 0 centered at (g, y0).

Theorem

Assume the function u € C2(Q) satisfies the Mean value principle at every point in

the domain 2. Then w is a harmonic function in 2.

Theorem (Strong maximum principle)

Assume w is a harmonic function in the domain Q (which may not be bounded). If u
attains a minimum or maximum value at an interior point of 2, then w is a constant
function.

PDE



The method of separation of variables for the Laplace equation yileds solution in the

oo

form of a series u = En=1 un where u, are harmonic functions in a domain €.

12N G4



The method of separation of variables for the Laplace equation yileds solution in the

form of a series u = Y7 | un where u, are harmonic functions in a domain Q.

The exact form of the solution depends on
m the geometry of 2,
m boundary conditions on 99.
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The method of separation of variables for the Laplace equation yileds solution in the

oo
n=1

form of a series u = > un where u, are harmonic functions in a domain €.

The exact form of the solution depends on
m the geometry of 2,
m boundary conditions on 99.

Problem: Under which conditions does the formal solution u =} 72 ; uy, represent a
harmonic function in Q7

12N G4



Separation of variables for Laplace equation

The method of separation of variables for the Laplace equation yileds solution in the

oo

form of a series u = anl un where u, are harmonic functions in a domain €.

The exact form of the solution depends on
m the geometry of §,

m boundary conditions on 9.

Problem: Under which conditions does the formal solution w = Y02 ; un represent a

harmonic function in Q7

Theorem

Assume € is a bounded domain in R2. Let u = Z;’le un be a formal solution of the
Dirichlet problem

Au(z,y) =0, (z,y) € Q, (142)

u(@,y) =g(z,y), (2,y) €09, (143)

where g € C(89) and u,, € C?(Q) N C(Q) are harmonic functions in Q for all n € N.
If the series >->° | un converges uniformly to g on 8, the >°>° | u, converges

uniformly in Q, i u = Y22, uy is a classical solution of (142)—(143).

PDE



Dirichlet problem in a rectangular domain

Au(z,y) =0, 0<z<b 0<y<d, (144)

u(@,0) = h(z), ule,d) = k(z), 0<z<b, (145)

u(0,y) = f(y), wu(by) =g(y), 0<y<d (146)
u, =0 u,=k

u=f n=& =0 u,=0

PDE



Dirichlet problem in a rectangular domain

Au(z,y) =0, 0<z<b 0<y<d, (144)
u(z,0) = h(z), u(z,d)=k(z), 0<z<b, (145)
u(0,y) = f(y), w(by)=g), 0<y<d (146)

m We want to write solution of the Laplace equation as a series using the

eingenfunctions of the associated Sturm—Liouville problem.

PDE



Dirichlet problem in a rectangular domain

Au(z,y) =0, 0<z<b 0<y<d, (144)
u(z,0) = h(z), u(z,d)=k(z), 0<z<b, (145)
u(0,y) = f(y), wu(by) =g(y), 0<y<d (146)

m We want to write solution of the Laplace equation as a series using the

eingenfunctions of the associated Sturm—Liouville problem.

m We look for the solution in the form u = w1 + ug where u1 and ug satisfy

homogeneous boundary conditions on the opposite sides the rectagnle.

u,=0 u,=k

PDE



By separating the variatibles in the equation for u; we obtain

ui(z,y) = i [Ansh (%f) + Bpsh (%@ - b))] sin (%y) s (147)
n=1
2 d . nm
(g o 2 ) o
2 d . nm
ey e CE) o

PDE



Similarly, we find

u2(z, 2 [Cnsh (72;) + Dpsh ( > (y — d))] sin (n%m) ,

b
Cn = bsh(Z'”rd)/o k(z) sin (%1) dz,

b
Dy = _bsh(Q”;:d)/o h(x) sin (%x) dz.

PDE
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If the functions f, g, h and k do not vanish at the vertices of the rectangle
polynomials to the boundary conditions.

Q = (0,b) x (0,d), then the Dirichlet problem can be solved by adding harmonic

«Or 4«Fr o« > > a
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If the functions f, g, h and k do not vanish at the vertices of the rectangle
polynomials to the boundary conditions.
Initial problem

Q = (0,b) x (0,d), then the Dirichlet problem can be solved by adding harmonic

V2u(z,y) =0, (z,y)€Q, (153)
u(z,y) = G(z,y), (z,y) €09, G eC(OQ). (154)
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If the functions f, g, h and k do not vanish at the vertices of the rectangle
polynomials to the boundary conditions.
Initial problem

Q = (0,b) x (0,d), then the Dirichlet problem can be solved by adding harmonic

Viu(z,y) =0, (z,9) €, (153)
u(z,y) = G(z,y), (z,y)€0Q, GecC(ON). (154)
Modified problem
v? (u(w,y) - Pz(x,y)) =0, (z,y)€qQ,
u(z,y) — Po(z,y) = G(z,y) — Pa(z,y),
where

(155)
(z,y) € 00 (156)
Py(z,y) = a1 (m2 - y2) + asxy + asr + asy +as, a; € R. (157)
«40O> «Fr «=)>» «=)» = Q>
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Note that Pa>(z,y) is a harmonic polynomial because

V2Ps(z,y) =0 for any choice of the coefficients a; € R. (158)
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Note that Pa>(z,y) is a harmonic polynomial because
V2Ps(z,y) =0 for any choice of the coefficients a; € R. (158)

Define
’U(:E,y) :’U,(:L‘,y)fpg(x,y), é(xvy) :G(Q%y)*P?(xvy)' (159)

PDE



Note that Pa>(z,y) is a harmonic polynomial because
V2Py(x,y) =0 for any choice of the coefficients a; € R.

Define

’U(:E,y) = u(z,y) - PQ(x» y)v é(xvy) = G(I7y) - PQ(xvy)'

Dirichlet problem for v:

V2u(z,y) =0, (z,y) €,
v(z,y) = G(z,y), (z,y) € Q.

PDE
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Note that Pa>(z,y) is a harmonic polynomial because
V2Ps(z,y) =0 for any choice of the coefficients a; € R. (158)
Define
o(z,y) = u(z,y) — Pa(z,y), Glz,y) = G(z,y) - Pa(z,y). (159)
Dirichlet problem for v:

V2u(z,y) =0, (z,y) €, (160)
v(z,y) = é(x,y), (z,y) € 00 (161)

The polynomial P> can be chosen such that é(x, y) = G(z,y) — Pa(z,y) vanishes at

the vertices of the rectangle Q:

G(0,0) — P(0,0) =0, (162)
G(b,0) — P2(b,0) =0, (163)
G(0,d) — Py(0,d) = 0, (164)
G(b,d) — Py(b,d) = 0. (165)

PDE



The boundary conditions for v are continuous on 952, hence the Laplace equation for v

can be solved by the method of separation of variables.

Solution of the initial problem: u(z,y) = v(z,y) + Pa2(x,y).

PDE



The boundary conditions for v are continuous on 952, hence the Laplace equation for v

can be solved by the method of separation of variables.

Solution of the initial problem: u(z,y) = v(z,y) + Pa2(x,y).

m Explain why the solution u(z,y) does not depend on the choice of the polynomial
Pa(z,y).
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