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Poglavlje 1

Uvodna razmatranja

1.1 Osnovni pojmovi

Parcijalne diferencijalne jednadzbe (PDJ) opisuju relacije izmedu nepoznate funkcije
u 1 njezinih parcijalnih derivacija. Ove jednadzbe su vrlo vazne u fizici i tehnici
jer modeliraju razlicite pojave u prirodi. U novije vrijeme parcijalne diferencijalne
jednadzbe nalaze primjene u biologiji, kemiji, racunalnim znanostima i ekonomiji.
Neka je u(x) = u(xy, za, ..., x,) funkcija n nezavisnih varijabli xq, xs, ..., z,. Par-

cijalne derivacija ozna¢avamo sa

ou 0%*u

! (9132 ’ it 8%281’] ’

(1.1)

Ug

Definicija 1.1 KaZemo da je funkcija u klase C* na Q, i pisemo u € C*(Q), ako u

ima neprekidne parcijalne derivacije reda k na €.

Ako je u € C*(Q), onda redoslijed u kojem se parcijalne derivacije rac¢unaju nije
vazan. Primijetimo da u € C*(Q) povlaci u € C*¥71(Q). Skup neprekidnih funkcija

na {2 oznacavamo sa C°().

Definicija 1.2 Parcijalna diferencijalna jednadzba je jednadzba oblika
F(x1, o @y Uy Ugy s ooy Uy, s Uy Uy gy - - -) = 0 (1.2)

gdje je u = u(xq, xa, . .., x,) nepoznata funkcija u nezavisnim varijablama xy1, s, ..., Tp.
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Red parcijalne diferencijalne jednadzbe je red najvise derivacije koja se javlja u jed-
nadzbi. Parcijalne diferencijalna jednadzbe obi¢no promatramo na otvorenom pove-

zanom skupu 2 C R™.

Definicija 1.3 Rjesenje parcijalne diferencijalne jednadzbe (1.2) reda k > 0 na skupu
Q C R je funkcija u € C*(Q) koja zadovoljava jednadzbu (1.2) u svakoj tocki skupa
Q.

Ova rjesenja nazivamo klasicna ili jaka rjeSenja. U primjenama su od interesa i tzv.

distribucijska i slaba rjesenja koja ovdje neé¢emo razmatrati.

Primjer 1.1 Jednadzba
Upge — Uyy = 0 (13)

je parcijalna diferencijalna jednadzba drugog reda. Lako se provjeri da su funkcije
uw(x,y) = (z +y)? i u(z,y) = sin(x — y) rjesenja jednadzbe (1.3) na skupu Q = R2.
Primjer 1.2 Kortewe—de Vriesova jednadzba

U + Ugpy — OuU, = 0 (1.4)

modelira valove na vodi u plitkom kanalu. Provjerite da funkcija

u(z,t) = gsch2 [?(1‘ —ct— :L'o)}, c>0, 20 € R (1.5)

zadovoljava jednadzbu (1.5) gdje je sch(x) = 2/(e” + e~*) hiperbolni sekans na skupu

Q =R2. Ova funkcija opisuje solitonski val koji putuje bez disperzije brzinom c > 0.

Parcijalne diferencijalne jednadzbe mozemo grubo klasificirati prema sljede¢im svoj-

stvima.

e Red jednadzbe

Osnovna podjela PDJ je prema redu jednadzbe. Opcenito se moze kazati da

Sto je red jednadzbe vedi to je jednadzbu teze rijesiti.

e Linearne i nelinearne jednadzbe
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(a) Jednadzba (1.2) je linearna ako je F' linearna funkcija u varijablama u
i svim njezinim parcijalnim derivacijama. U tom slucaju koeficijenti koji

mnoze u i njezine derivacije ovise samo o nezavisnim varijablama x4, ..., z,.
(b) Jednadza je nelinearna ako nije linearna.

(c) Jednazba (1.2) je kvazi-linearna ako je F' linearna u svim parcijalnim de-

rivacijama od u najviseg reda.
Na primjer, Eulerova jednadzba
TUy +Yuy =nu, n €N, (1.6)
je linearna jednadzba prvog reda jer je linearna u varijablama w, i u,. Jednadzba
Uy Uy + U, = sin(y) (1.7)

je kvazi-linearna jednadzba drugog reda jer je linearna u najvisoj derivaciji .. Jed-
nadzba

ugu?, + ruu, = sin(y) (1.8)

je nelinearna jer ¢lan w2, nije linearan. Navedimo jos nekoliko primjera:

UlUgy + Uy =Y, kvazilinearna jednadzba drugog reda, (1.9)
(uz)? + (u,)? = 1, nelinearna jednadzba prvog reda, (1.10)
Uy Uy + T Uy = sin(y), kvazilinearna jednadzba treceg reda, (1.11)
Us + Ugpr — Ouu, =0, kvazilinearna jednadzba treceg reda. (1.12)

1.2 Linearne jednadzbe i princip superpozicije

Posebno ¢e nas zanimati linearne parcijalne diferencijalne jednadzbe drugog reda jer
ovaj tip jednadzbi ima vazne primjene u prirodnim i tehnickim znanostima. Klasiéne
jednadzbe matematicke fizike kao sto su valna jednadzba, jednadzba provodenja to-

pline, Poissonova i Schrodingerova jednadzba su linearne jednadzbe drugog reda. Li-

nearna jednadzba drugog reda u n nezavisnih varijabli z1, x», ..., z, ima opéi oblik
1,j=1 i=1



POGLAVLJE 1. UVODNA RAZMATRANJA 6

gdje su A;;, B;, F'i G funkcije varijabli 1, 2,...,2,. Ako je u klasi¢no rjeSenje
jednadzbe (1.13), onda je Uy, = Uy, pa se jednadzba (1.13) moze svesti na oblik
tako da je A;; = Aj;. Diferencijalnoj jednadzbi (1.13) mozemo pridruziti diferencijalni
operator

L= iAija—2+iBii+F (1.14)

byt O0x;0x; — ox;

gdje je F' operator mnozenja funkcijom F. Tada jednadzbu mozemo zapisati u kom-
paktnom obliku L[u] = G.

Definicija 1.4 Jednadzba Liu] = G je homogena ako je G = 0. U protivnom kaZemo

da je jednadzba nehomogena.

Operator L je linearan jer vrijedi
Lloiuy + agug] = ap Llug] + aoLfus], Vai,as € R. (1.15)

Linearne jednadzbe imaju vazno svojstvo koje nazivamo princip superpozicije. Ako

su up 1 ug rjesenja jednadzbi
Liui| = Gy, Llug] = Ga, (1.16)
onda je linearna kombinacija u = aju; + asug, a; € R, rjeSenje jednadzbe
Lu] = ai L{uy] + asLjug] = an Gy + asGhs. (1.17)

U posebnom sluc¢aju ako su uy,us rjeSenja homogene jednadzbe L[u] = 0, onda je
svaka linearna kombinacija u = aju; + agus rjeSenje iste jednadzbe jer je L{aju; +
asus] = 0. Ovaj princip je naro¢ito vazan u rjesavanju parcijalnih diferencijalnih
jednadzbi metodom separacije varijabli jer se opce rjesenje moze napisati kao line-
arna kombinacija nekih posebnih rjesenja. Ovu metodu ¢emo detaljnije razmatrati u

sljede¢im poglavljima.
Primjer 1.3 Promotrimo jednadzbu



POGLAVLJE 1. UVODNA RAZMATRANJA 7

Lako se provjeri da su funkcije u,(x,t) = sin(nt) cos(nz) rjesenja jednadzbe za svaki

n € N. Stoga je svaka linearna kombinacija

u(z,t) = ch sin(nt) cos(nzx), ¢, € R, (1.19)

n=1

takoder rjesenje jednadzbe (1.18).
Primjer 1.4 Odredite rjesenje jednadzbe

Upy — Uy = 187 + 8y (1.20)
koristeci princip superpozicije. Promotrimo dvije jednadzbe

Ugy — Uy = 187, (1.21)
Ugy — Uy = 8Y. (1.22)

Rjesenja ovih jednadzbi potrazZimo u obliku uy = uy(z) i ug = us(y), redom. Tada je

uf(x) = 18x 1 —ub(y) = 8y? pa integracijom dobivamo
u(r) =32 +ar +b, ux(y) = —4y* +c (1.23)
gdje su a,b,c € R konstante integracije. Prema principu superpozicije, funkcija
u(z,y) = uy(7) + us(y) = 32° — 4y + ax + d, (1.24)

gdje je d = b+ ¢, daje rjesenje jednadzbe (1.20).

1.3 Klasi¢ne jednadzbe matematicke fizike

Fundamentalni zakoni u prirodnim znanostima se ¢esto formuliraju u obliku parci-
jalnih diferencijalnih jednadzbi. Kada neka fizikalna velicina v = u(x,y, z,t) ovisi o
prostornim ili vremenskih promjenama od wu, onda funkcija u zadovoljava parcijalnu
diferencijalnu jednadzbu. U veéini slucajeva to su linearne jednadzbe drugog reda
koje ovise o prostornim varijablama x,y i z i vremenskoj varijabli . Navedimo neke

vazne jednadzbe matematicke fizike.
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(1)

Valna jednadzba. Valna gibanja u razli¢itim medijima su opisana valnom jed-

nadzbom
Uy — V% =0 (1.25)
gdje je
0? 0? 0?
2~ 4 2 1.26
v ox? + Oy? + 0722 (1.26)

Laplaceov operator. Na primjer, ako je wu(z,y,z,t) tlak zraka u tocki (z,y, 2)
u trenutku ¢ i ¢ je brzina zvuka, onda jednadzba (1.25) opisuje Sirenje zvuénih
valova. Ista jednadzba opisuje Sirenje elektromagnetskih valova kada u predstavlja

skalarnu komponentu elektricnog ili magnetskog polja, a ¢ je brzina svjetlosti.

Jednadzba provodenja topline. Neka je u(z,y, z,t) temperatura homogenog
toplinski vodljivog tijela koji nema izvora topline. Tada funkcija u zadovoljava

jednadzbu provodenja topline
uy — kVu =0 (1.27)

gdje je konstanta k& > 0 toplinska vodljivost materijala. Ovu jednadzbu takoder

nazivamo difuzijska jednadzba jer opisuje difuzijske procese u tvarima.

Laplaceova jednadzba. Ako je temperatura u toplinski vodljivom tijelu staci-
onarna, onda je u; = 0 pa se jednadzba provodenja topline svodi na Laplaceovu
jednadzbu

V2u = 0. (1.28)

Ova jednadzba takoder opisuje distribuciju elektricnog potencijala u u prostoru

bez naboja.

Navedene jednadzbe predstavljaju tzv. kanonske ili standardne oblike parcijalnih

diferencijalnih jednadzbi drugog reda koje ¢emo detaljno proucavati u sljede¢im po-

glavljima. Navedimo jos nekoliko jednadzbi drugog reda koje imaju vazne primjene

u fiziei.

(4)

Poissonova jednadzba
V2u:p(:1:,y,z), (129>



POGLAVLJE 1. UVODNA RAZMATRANJA 9

(5) Helmholtzova jednadzba

V2u + Au = 0, (1.30)
(6) Schroédingerova jednadzba
h2

—%V%ﬁ + V(z,y, 2) = ihay. (1.31)

1.4 Elementarne tehnike

U jednostavnim sluc¢ajevima parcijalne diferencijalne jednadzbe se mogu rijesiti di-
rektnom integracijom ili uvodenjem novih varijabli. Ako jednadzba opisuje ponaSanje
nekog fizikalnog sustava koji ima odredenu simetriju, na primjer ako je sustav inva-
rijantan na rotacije ili neku drugu transformaciju, onda se koristenjem simetrija jed-
nadzba moze pojednostavniti. Prisjetimo se da rjesenja obicnih diferencijalnih jed-
nadzbi ovise o proizvoljnim konstantama integracije. Sli¢no, opce rjesenje parcijalne
diferencijalne jednadzbe ovisi o proizvoljnim funkcijama koje se dobiju u postupku
integracije. Sljede¢i primjeri ilustriraju ova svojstva parcijalnih diferencijalnih jed-

nadzbi.
Primjer 1.5 Odredite rjesenje jednadzbe
Uy = 2 (1.32)
za funkciju u = u(x,y). Integracijom po varijabli y dobivamo
) — /Qdy — 2y + f(2). (1.33)
Ponavljanjem postupka nalazimo
(o) = [@u+ f@)dy =52 + uf(@) + gl2) (1.34)

gdje su f(z) i g(x) proizvoljne funkcije. S obzirom da je funcija u klasiéno rjeSenje
jednadzbe (1.32), f i g su funkcije klase C*.

Primjer 1.6 Odredite opce rjesenje PDJ

Uy — Uy = 0. (1.35)
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Uvedimo nove varijable o =z +y i f =2 —y. Tada je

Ou Ouda OudB Ou Ou

e e 1.36
9z 9ads  080s  da  p’ (1.36)
Oou Ouda OudB Ou Ou
e Mt s it 1.37
oy 000y 050y 0a 0B (1.37)
Oduzimangjem dobivamo
Uy — Uy = 2ug = 0. (1.38)
U novim varijablama jednadzba ima jednostavnigi oblik
Usg = 0. (139)
Integracijom jednadzbe dobivamo
u=f(a) = flz+y) (1.40)

gdje je f(a) proizvolina C funkcija. Na primjer, svaka od funkcija e®™+Y), sin(n(z -+
y)) i cos(n(x +y)), n € N, je rjesenje jednadzbe.

Primjer 1.7 Odredite opce rjesenje problema
Ugy + cu =0, (1.41)

gdje je u = u(x,t), za c > 0, c =0 ic < 0. Obzirom da funkcija u(x,t) ovisi
o varijablama x i t, jednadzbu (1.41) moZemo promatriati kao obiénu diferencijalnu
jednadzbu u varijabli x koja ovisi o parametru t. Ako je ¢ > 0, opce rjesenje je dano

u(x,t) = Cy(t) sin(v/cx) + Cy(t) cos(v/cx) (1.42)

gdje su Cy(t) i Co(t) proizvoljne funkcije klase C*. Slicno, za ¢ = 0 imamo
u(z,t) = C1(t)x + Co(t), (1.43)
dok je za c < 0 rjesenje dano sa

u(x,t) = Cy(t)eVId® 4 Cy(t)e Vide, (1.44)
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Primjer 1.8 Odredite opcée rjesenje jednadzbe
Uy = u’ (1.45)

za funkciju v = u(z,y). Kao u prethodnom primjeru, jednadzbu (1.45) mozZemo
promatrati kao obicnu diferencijalnu jednadzbu u variyjabli x s parametrom y. Separi-

ranjem jednadzbe dobivamo u=2du = dx iz éega slijedi —u~" = x + f(y). Dakle,

1

ST W) (1.46)

u(z,y) = —
gdje je f(y) proizvolina funkcija klase C*.

Sljedec¢i primjer ilustrira kako se simetrija problema moze koristiti za svodenje parci-

jalne diferencijalne jednadzbe na jednostavniji oblik.
Primjer 1.9 Odredite sferno simetri¢no rjesenje Laplaceove jednadzbe
Ugy + Uyy + Uz = 0. (1.47)

Trazeno rjesenge je invarijantno na grupu rotacija SO(3) pa ovisi samo o udaljenosti

tocke (z,y, z) od ishodista. Stoga u(x,y) trazimo u obliku

u=f(r), r=+a%+y>+ 22 (1.48)

Sada je
or x
/ o e
w = F 5 = f1r)7, (1.49)
her = (10 4 P02 (D) (150
T Ox r oxr ' r '
T\ 2 1 22
=rmE) 1o -5). (1.51)
Zbog simerije funkcije u, preostale derivacije su dane analognim izrazima,
o (V) 1y
wy = ') () + 1 (5 -%). (1.52)

we= () 4o (E-5), (153

roors



POGLAVLJE 1. UVODNA RAZMATRANJA 12
Zabrajanjem jednadzbi (1.51)-(1.53) dobivamo
2
Uy + Uyy + Uz = f7(r) + ;f’(r) = 0. (1.54)

Uvedimo supstituciju g(r) = f'(r). Tada je ¢'(r) + 2r~'g(r) = 0 sto povlaci g(r) =
Cr=2. Sada je
C
f(r)= /g(r)dr = + K (1.55)
gdje su C, K € R proizvoljne konstante integracije. Dakle, sferno simetricno rjesenje

Laplaceove jednadzbe je dano sa

C

U<J],y72):— /—$2+y2+22

1.5 Pocetni i rubni uvjeti

+ K. (1.56)

Iz prethodnih razmatranja je ocigledno da parcijalne diferencijalne jednadzbe mogu
imati beskona¢no mnogo rjesenja koja ovise o proizvoljnim funkcijama. Ako jed-
nadzba modelira fizikalnu pojavu, onda je potrebno imati jedinstveno rjesenje kako
bismo mogli predvidjeti ponasanje sustava. Stoga parcijalne diferencijalne jednadzbe
obi¢no promatramo zajedno sa zadanim rubnim i/ili poc¢etnim uvjetima koji rjesenje
¢ine jedinstvenim. Na konkretnim primjerima ¢emo ilustrirati parcijalne diferenci-
jalne jednadzbe s pripadaju¢im rubnim i pocetnim uvjetima i objasniti njihovo fizi-
kalno znacenje.

Promotrimo jednodimenzionalnu valnu jednadzbu
Uy — gy =0, 0<az<L,t>0. (1.57)

gdje funkcija wu(z,t) predstavlja amplitudu titranja u toc¢ki z u trenutku ¢. Ova
jednadzba vrijedi pod pretpostavkom da nema disipativnih efekata i da se svaka tocka
giba okomito na os x. Titranje zice je dinamicki problem koji zahtijeva poznavanje
pocetnog polozaja i poCetne brzine zice u svakoj tocki = € [0, L]. Stoga trazimo da

funkcija u zadvoljava pocetne uvjete
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gdje su f(z) pocetna amplituda, a g(x) pocetna brzina u tocki x. RjeSenje valne
jednadzbe takoder ovisi o rubnim uvjetima na krajevima zice. Ako je zica ucévrséena

u tockama x = 0 i x = L, onda u zadovoljava Dirichletove rubne uvjete
u(0,t) =u(L,t) =0, t>0. (1.60)

Ako krajevi zice slobodno titraju okomito na os z, onda derivacija amplitude is¢ezava

ux=01ix=L pau tom slucaju funkcija u zadovoljava Neumannove rubne uvjete
uz(0,t) = ug(L,t) =0, t>0. (1.61)

Nadalje, ako je zica savijena u kruznicu tako da se tocka x = 0 preklapa s tockom

x = L, onda funkcija u zadovoljava periodicke uvjete
u(0,t) = u(L,t), (1.62)
ug(0,t) = ux(L,t), t>0. (1.63)

Rubni uvjeti takoder mogu biti kombinirani, na primjer v moze zadovoljavati Diric-

hletov uvjet u jednom kraju, a Neumannov uvjet u drugom kraju intervala.

Promotrimo sada Laplaceovu jednadzbu
Upy + Uy =0, (z,y) € 1, (1.64)

na podruéju  C R? koje je omedenom jednostavnom, zatvorenom, po dijelovima
glatkom krivuljom 0f2. Ako je poznata vrijednost funkcije u na rubu podrucja 052,

onda u zadovoljava Dirichletov rubni uvjet
u(z,y) = h(z,y), (z,y) € O (1.65)

Ako je zadana normalna derivacija na krivulju 0€2, onda u zadovoljava Neumannov

rubni uvjet

ou
%(xuy) = h(&?,y), (l',y) € aQ? (166)
gdje je 71 jedinicni vektor normale na 0f) usmjeren prema van, a
0
8—2 = Vu 7 (1.67)

je usmjerena derivacija u smjeru vektora 7. U narednim poglavljima ¢emo vidjeti
da za svaki od navedenih rubnih i/ili pocetnih uvjeta postoji jedinstveno rjesenje

parcijalne diferencijalne jednadzbe.
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1.6 Stabilnost rjesenja

U realnim problemima se pocetni i rubni uvjeti obi¢no odreduju mjerenjima pa te
veli¢ine nisu poznate s potpunom to¢noscéu. Pogreska u pocetnim ili rubnim uvjetima
tada uzrokuje pogresku u rjesenju jednadzbe koja ne mora biti mala. Nadalje, parci-
jalne diferencijalne jednadzbe na slozenim domenama se Cesto rjesavaju numerickim
metodama pa diskretizacija jednadzbe utjece na tocnost rjesenja. Jedno od osnovnih
teorijskih pitanja jest da li je matematicki problem, koji se sastoji od parcijalne dife-
rencijalne jednadzbe zajedno s pocetnim ili rubnim uvjetima, dobro postavljen. Ovo
pitanje je formulirao francuski matematicar Jacques Hadamard (1865-1963). Prema

njegovoj definiciji problem je dobro postavljen ako zadovoljava sljedec¢e uvjete:
(1) egzistencija: problem ima rjeSenje,
(2) jedinstvenost: rjesenje je jedinstveno za zadane pocetne i/ili rubne uvjete,

(3) stabilnost: rjeSenje kontinuirano ovisi o parametrima jednadzbe i rubnim ili

pocetnim uvjetima.

Kazemo da je parcijalna diferencijalna jednadzba stabilna ako male perturbacije
pocetnih ili rubnih uvjeta uzrokuju male promjene u rjeSenju. U tom slucaju ce
dobiveno rjesenje biti dobra aproksimacija egzatknog rjesenja. Klasicne jednadzbe
matematicke fizike opisane u poglavlju 1.3 su dobro postavljeni problemi, dok se u
tehnici ¢esto susre¢emo s jednadzbama koje nisu stabilne. Iustrirajmo ove ideje na
sljede¢im primjerima.

Laplaceova jednadzba

Objasnimo kako se formulira stabilnost Laplaceove jednadzbe na domeni Q C R2,
Ugg + Uy =0, (2,y) € Q, (1.68)
s Dirichletovim rubnim uvjetom

u(z,y) = f(z,y), (z,y) € 0. (1.69)

Neka su u; i ug rjesenja Laplaceove jednadzbe koja zadovoljavaju rubne uvjete u; (x,y) =

filz,y) 1 ug(z,y) = fox,y) za (x,y) € 0. Kazemo da rjesenje kontinuirano ovisi o
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rubnom uvjetu (1.69) ako za svaki € > 0 postoji 6 > 0 takav da

sup |fi(z,y) — folz,y)| <0 = sup |uy(z,y) —uz(z,y)| <, (1.70)
(z,y)€02 (z,y)€Q

gdje je Q = QUIN zatvarac skupa €. Rjesenja koja ispunjavaju ovaj uvijet se nazivaju
stabilna rjesenja. Drugim rijeCima, rjeSenje u je stabilno ako mala promjena rubnog

uvjeta na krivulji 02 uzrokuje malu promjenu rjesenja na skupu 2.

Hadamardov primjer

Sljedeci primjer ilustrira da za pogresno postavljene rubne uvjete rjesenje Laplace-
ove jednadzbe ne mora biti stabilno. U tom slucaju kazemo da problem nije dobro

postavljen. Promotrimo jednadzbu
Upy + Uy =0, (7,y) € R? (1.71)

s rubnim uvjetima na pravcu y = 0:
u(w,0) = f(2), u,(z,0) = g(x). (1.72)

Neka je v(x,y) rjesenje iste jednadzbe uz modificirane rubne uvjete
L.
v(z,0) = f(x), vy(x,0) = g(z)+ —sin(nx). (1.73)
n
Ocigledno je da se za dovoljno veliki n > 0 razlika u rubnim uvjetima moze napraviti
proizvoljno malom jer je

sup (|v(m, 0) — u(z,0)] + |vy(z,0) — uy(z, O)|> ! sup | sin(nz)| < % (1.74)

z€R N zer

Medutim, razlika u pripadnim rjesenjima na domeni R? je velika bez obzira na vrijed-
nost parametra n. Definirajmo funkciju w = v — u. Tada w zadovoljava Laplaceovu
jednadzbu

Wy + Wyy = 0 (1.75)

s rubnim uvjetima

w(z,0) =0, wy(z,0)= %sin(nx). (1.76)
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Slika 1.1: Graf funkcije w(z,y) = sh(ny) sin(nz) za n = 2.

T n

Lako se provjeri da je rjeSenje problema (1.75)-(1.76) dano s
1 .
w(x,y) = = sh(ny) sin(nz). (1.77)

Funkcija sh(ny) nije ogranicena na R jer |sh(yn)| — oo kada y — +oo. Stoga za

svaki z € R takav da je sin(nz) # 0 vrijedi da
lw(xz,y)| - 00 kada y — +oo. (1.78)

Ovo pokazuje da funkcija w = v — u nije ograni¢ena na R2. Graf funkcije w prikazan
je naslici (1.1). Zakljuéujemo da, iako se razlika u pocetnim uvjetima moze napraviti
proizvoljno malom za dovoljno veliki n > 0, pripadna rjeSenja se znatno razlikuju

kada je |y| dovoljno velik. Stoga problem (1.71)-(1.72) nije dobro postavljen.
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Obrnuta jednadzba provodenja topline

Promotrimo sada jednazbu

U+ Uy =0, —00 < x <00, t>0, (1.79)
u(z,0) = 1. (1.80)

Ova jednadzba se dobiva tako da u jednadzbi provodenja topline u; —u,, = 0 varijablu

t zamijenimo varijablom —¢. Neka je v(z, ) rjeSenje jednadzbe (1.79) uz pocetni uvjet
1
v(z,0) =14 —sin(nz). (1.81)
n
Lako se provjeri da su rjesenja u(x,t) i v(x,t) dana sa

1
w(z, t) =1, v(z,t) =1+ =" sin(nz). (1.82)
n

Razliku u pocetnim uvjetima mozemo ucini proizvoljno malom jer je

1 1
sup |u(z,0) — v(z,0)| = —sup |sin(nz)| < —. (1.83)
z€R N zeRr n
Medutim, razlika rjeSenja w = v — u nije ograni¢ena na R? jer
1
lw(z,t)] = — e"!|sin(nz)| — 0o kada t — oo (1.84)
n

za svaki x takav da je sin(nz) # 0. Dakle, obrnuta jednadzba provodenja topline

zajedno s rubnim uvjetom (1.80) nije dobro postavljen problem.

1.7 Zadaci
1. Pokazite da jednadzba u,, + u, = 0 ima opce rjeSenje
uw(z,y) = D(x)e™¥ + E(y). (1.85)
Uputa: koristite supstituciju v = u,.

2. Odredite konstante a i b tako da funkcija u(x,y) = f(ax + by) bude rjesenje
jednadzbe
uy + 3u, = 0. (1.86)
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3. Rijesite jednadzbu

(s + Uyy = 5638_2:11.
Uputa: pretpostavite rjesenje u obliku u(x,y) = Cea®*t,

4. Rijesite sustav jednadzbi

Uy = 3x2y + v,

Uy = z? + 1.
5. Pokazite da jednadzba

U +ug, =0, 0<axz<L, t>0,
u(0,t) =u(L,t) =0, t>0,
u(z,0) = f(z), 0<xz<L,

nije dobro postavljen problem. Uputa: provjerite da je

1
vp(z,t) = Eenzt sin (n_zx)

18

(1.87)

(1.90)
(1.91)
(1.92)

(1.93)

rjesenje problema vy +v,, = 0, v(0,t) = v(L,t) = 0, v(x,0) = (1/n)sin(nmz/L).



Poglavlje

Fourierov red

2.1 Razvoj funkcije u Fourierov red

Fourierova analiza se bavi razvojem funkcija u trigonometrijske redove. Joseph Fo-
urier (1768-1830), francuski matematicar i inZenjer, je uveo trigonometrijske redove
kao metodu rjesavanja parcijalnih diferencijalnih jednadzbi koje modeliraju valna gi-
banja i prijenos topline u tvarima. Danas Fourierova analiza ima veliku vaznost u
primjenama na razli¢ite probleme u fizici i tehnici. Takoder, veliki dio moderne ana-
lize je rezultat pokusaja da se Foureirovi redovi formuliraju na strogim matematickim
osnovama. U ovom poglavlju izlozit ¢emo neke rezultate iz teorije Fourierovih redova
koji su nam potrebni za daljnje proucavanje materije.

Neka je f: [—L,L] — R funkcija definirana na simetri¢cnom intervalu [—L, L].

Zanima nas moze li se f prikazati u obliku trigonometrijskog reda

— 30 + i [an cos ) + b,, sin (mlrlx)} . (2.1)

n=1

Ovdje je potrebno odgovoriti na sljedeca pitanja.
(1) Je li prikaz funkcije pomocu reda (2.1) mogué¢?
(2) Na koji nacin mozemo odrediti koeficijente a,, i b,?

(3) Kakva je konvergencija reda (2.1): po to¢kama, uniformna ili u nekom drugom

smislu?

19
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Na drugo pitanje mozemo odgovoriti ako prepostavimo da red (2.1) konvergira uni-

formno na [—L, L]. Ovdje koristimo ¢injenicu da funkcije

1, sin(?), cos (”—7), n=1,2,3,... (2.2)

zadovoljavaju relacije ortogonalnosti

[ (e [ (a0 e
[ (Y s (" e = L 2.9
[ con (" cos (M55 Vo = L 25)
[ (7))

gdje je d0,,, Kroneckerov simbol definiran sa
0, 2#j7,
L, 1=y,

de =0, n,m>1 (2.6)

Jednakosti (2.3)—(2.6) se lako pokazu upotrebom trigonometrijskog identiteta za pre-
tvorbu umnoska u zbroj trigonometrijskih funkcija. Integracijom jednadnakosti (2.1)

dobivamo

L L o0 L L
/Lf(x)dx: %/de—l—; [an/LCOS (%x)dm—l—bn/Lsin (%x)dx] = aoL

(2.8)

1 L
=7 /L f(z)dx (2.9)

(ovdje smo zamijenili sumu i integral jer po pretpostavci red (2.1) konvergira unifor-

Sto povlaci

mno). MnoZenjem jednakosti (2.1) sa cos(mmz /L) i primjenom relacije ortogonalnosti
(2.6) dobivamo

/ f(z cos = —/ cos
mr m L onm mm
+ Z {an/ cos T:c) CoS (Tx) dx + b, /L sin (Tx) cos (Tx)dx

= ayL. (2.10)
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Dakle,
1 [f mm
Uy = — f(z)cos (—=x)dz, m>1. (2.11)
L), L
Na slicam nacin se pokaze da je

by, = %/_I; f(z)sin (%x)da:, m > 1. (2.12)

Primijetimo da je konstantni ¢lan u redu (2.1) definiran ako ag/2 kako bi se izrazi za

ap 1 a,, mogli napisati u kompaktnom obliku

1 L
Ay = —/ f(z) cos (mx)dx, m > 0. (2.13)
LJ_ ;. L
Ova pocetna razmatranja motiviraju sljede¢u definiciju.

Definicija 2.1 (Fourierov red) Trigonometrijski red

% + Z [an cos (?) + b, sin (?) ] (2.14)
n=1
gdje su
1 /L
= Z/Lf(q;) cos (?)dm, n=01,2... (2.15)
1 [t nww
by = Z/Lf(g:) sin (T)dx’ n=1,2,3,... (2.16)

se naziva Fourierov red funkcije f na intervalu [—L, L]. Koeficienti a,, i b, se nazivaju

Fourierovi koeficijenti.

Prije nego prouc¢imo vazno pitanje konvergencije Fourierovog reda, promotrimo ne-
koliko jednostavnih primjera. Fourierov red funkcije f oznacavamo sa f jer, kao sto
¢emo uskoro vidjeti, suma reda ne mora biti jednaka vrijednosti funkcije u danoj
tocki.

Pri racunanju Fourierovih koeficijenata korisno je uociti da vrijede sljedeca pravila:

(i) ako je f:[—L, L] — R neparna funkcija, onda je

/LL f(x)dx =0, (2.17)
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(ii) ako je f: [—L,L] — R parna funkcija, onda je
L L
/ f(x)dx = 2/ f(x)dx. (2.18)
-L 0

Primjer 2.1 Odredimo Fourierov red funkcije f(x) = x na intervalu [—L, L.

Funkcija x cos(nmx/L) je neparna pa je

1 /L
an:—/ xcos<n—zx)d:c:0, n > 0. (2.19)

1 [t 2 [*
b, = 7 /Lxsin (n_z:z)dx = z/o x sin (n—;j:p)dx (2.20)
L
2 Lx nmwx L2 nmwx
= z {__mr Ccos (—) + <_n7r> Sin <T>} 0 (2-21)
2L
= ___ > 1. 2.22
— cos(nm), n> (2.22)

Kako je cos(nm) = (—1)", imamo

2L
_mr

by (—1)" (2.23)

Dakle, Fourierov red funkcije f(z) = 2 ima oblik

f@) = % i(—l)”“% sin (?)

n=1

- % [Sin (W—;) - %sin (2%:6) + %sin (3%1:) . } (2.24)

Slika 2.1 prikazuje parcijalne sume reda s N = 5 i N = 15 ¢lanova. Primijetimo

da suma Fourierovog reda u tockama x = =£L nije jednaka vrijednosti funkcije. U

tockama x € (—L, L) Fourierov red konvergira ka f(z) $to se moze naslutiti iz slike 2.1

(b). Medutim, konvergencija je “sporija” §to je tocka z blize rubovima intervala £ L.

Zanimljivo je primijetiti sljedeéu ¢injenicu. Za L = 7 izraz (2.24) ima jednostavniji
oblik

flz) = 2(sin(aj) - %sin(Zaz) + %sin(&’t) — ) (2.25)
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101
101

05 051

_ost -05-

(a) N=5 (b) N =15

Slika 2.1: Razvoj funkcije f(x) = x u Fourierov red.

Ako uvrstimo z = 7/2, onda je f(m/2) = /2 pa dobivamo Gregoryev red

s 1 1 1
—=l—-c-4 =4 == 2.26
4 3 + 5 7 + 9 ( )
pomoc¢u kojeg racunamo aproksimacije broja 7. H

Primjer 2.2 Odredimo Fourierov red funkcije f(x) = x? — 1 na intervalu [—1,1].

Koeficijenti a,, su dani sa

' 4

ag = / (2 = V)do = —=, (2.27)

1 3
1

1 1
a/n:/ (372—1)cos(n7r:c)da::/ z° cos(nm:)da:—/ cos(nmx)dx

1 -1 -1

= (n71r)3 [ann cos(nmx) + ((nmx)® —2) sin(nm:)} 11 - % sin(nmx) 11
_— cos(nm) = A=D" n
= T 0 = Ty 2L (2.28)

Funkcija (z? — 1) sin(nmz) je neparna pa je

1
b, = / (2 — 1)sin(nmz)dr =0, n>1. (2.29)

1
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(a) N=2 (b) N=6

Slika 2.2: Razvoj funkcije f(z) = x* — 1 u Fourierov red.

Stoga je Fourierov red funkcije f ima oblik

fla) = -

+ 2 Z (=1 cos(nmz)

n2

N
[\

n=1

% (— cos(mz) + icos(ch) — écos(?)m:) + - ) (2.30)

wWlin Wl
+

Paricijalne sume reda s N =2 i N = 6 ¢lanova su prikazane na slici 2.2. Primijetimo
da ovaj red konvergira brze od reda u prethodnom primjeru jer se dobra aproksima-
cija funkcije postize sa samo N = 6 ¢lanova. Takoder, slika 2.2 (b) sugerira da red

konvergira podjednako brzo na cijelom intervalu [—1,1]. B

Navedeni primjeri pokazuju da razvoj funkcije u Fourierov red ima smisla. Iz primjera
takoder uocavamo da suma Fourierovog reda ne mora biti jednaka vrijednosti funkcije
u svim tockama. Stoga je potrebno poblize prouciti uvjete pod kojima i na koji nacin

Fourierov red konvergira ka zadanoj funkciji.

2.2 Konvergencija Fourierovog reda

Fourierov reda je potpuno odreden integralom funkcije f na intervalu [—L, L]. Ako
vrijednost funkcije promijenimo u jednoj tocki, vrijednost integrala se ne mijenja pa

Fourierov red ostaje isti. Stoga ne mozemo ocekivati da Fourierov red konvergira
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ka f u svakoj tocki. Ovo jednostavno zapazanje sugerira da je problem konvergen-
cije Fourierovog reda vrlo slozen. Moze se pokazati da postoji neprekidna funkcija
¢iji Fourierov red divergira u svim racionalnim tockama, dok je Kolmogorov je oko
1930. godine pokazao da postoji integrabilna funkcija (u Lebesgueovom smislu) ¢iji
Fourierov red divergira svugdje. Mi ¢emo se ovdje ograniciti na funkcije koje su po
dijelovima neprekidne i proucavati svojstva Fourierovih redova takvih funkcija. One
One ¢ine dovoljno siroku klasu funkcija za primjenu Fourierovih redova na razlicite

probleme.

Definicija 2.2 KaZemo da je funkcija f po dijelovima neprekidna na [a,b] ako

(i) je definirana i neprekidna osim najvise u konaéno mnogo tocaka

a<r1<Toy<...<x, <Dh,

(i1) u tockama prekida xy # a,b postoje jednostrani limesi

flag) = lim f(z), f(a))= lim f(z), (2.31)

Tr—T CL'*)ZUJ'»
k k
(111) u rubnim tockama postoje limesi lim, .+ f(x) i lim, - f(x).

Uoc¢imo da po dijelovima neprekidna funkcija ne mora biti definirana u tockama
prekida. Ako je f(xy) definirano, onda f(z) ne mora biti jednako lijevom ili desnom

limes u z;. U tockama xj funkcija f ima prekid prve vrste, a razlika

B = flay) — flzy) (2.32)
predstavlja skok vrijednosti funkcije u tocki prekida. Ako je Br = 0, onda funkcija ima

uklonjivi prekid u tocki xj. Jedan od sredisnjih rezultata o konvergenciji Fourierovog

reda se odnosi na fukcije koje su po dijelovima C' na intervalu [a, b].

Definicija 2.3 KaZemo da je funkcija f po dijelovima C' na intervalu [a,b] ako su

f i f" po dijelovima neprekidne na [a,b].

Prema ovoj definiciji, f je po dijelovima C' na [a, b] ako funkcije f i f’ imaju najvise
kona¢no mnogo tocaka prekida i u tim tockama imaju prekid prve vrste. Kod takve
funkcije razlikujemo tocke prekida prve vrste u kojima je f(z;) # f(x}) i totke u
kojima funkcija ima siljkak jer je f(z;) = f(z})), ali je f'(z}) # f'(z}). Hustrirajmo

ove pojmove na sljede¢em primjeru.
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Slika 2.3: Funkcija (2.33) je po dijelovima C* na [—1,1].

Primjer 2.3 Zadana je funkcija

-1, 1<z <0,
flz) =142, z =0, (2.33)
22, 0<az<l1.

Funkcije f je neprekidna na otvorenom skupu (—1,0) U (0,1). Ima prekid prve vrste
uwx =0 jerje f(07) =—114 f(07) =0. U rubnim tockama vrijedi f(—1%) = —1 4
f(17) = 1. Derwacija f' je dana sa

, 0, —-1<z<0,
f(x) = (2.34)
2z, O0<zxz <1,
dok u tockama © = —1,0 i 1 nije definirana. U tocki x =0 imamo f'(07) = f/(0%) =
0, a u rubnim tocakama je f'(—17) =014 f'(17) = 2. Dakle, f i f' ispunjavaju uvjete
iz Definicije 2.2 pa je f po dijelovima C* na intervalu [—1,1].
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Grubo govoredi, po dijelovima C' funkcije imaju kona¢no mnogo prekida prve vrste
i kona¢no mnogo $siljaka u kojima funkcija nije derivabilna. U ovom sluc¢aju moze se

pokazati sljededi rezultat koji navodimo bez dokaza.

Teorem 2.1 (Dirichletov teorem) Neka je f po dijelovima C* funkcija na [—L, L]

i neka je f Fourierov red funkcije f. Onda vrijedi

(i) f(zo) = f(xo) ako je f neprekidna u tocki xo € (—L, L),

(i) f(xo) = 3[f(xd) + f(zg)] ako f ima prekid u tocki vy € (—L, L),
(iii) f(£L) = 3[f(=L") + F(L7)].

Prema ovom teoremu, ako f ima prekid u zo, onda je f (o) jednako srednjoj vri-
jednosti jednostranih limesa u xy. Suma Fourierovog reda u rubnim tockama 4L se
takoder moze interpretirati kao srednja vrijednost jednostranih limesa ako interval

[—L, L] savijemo u kruznicu i identificiramo tocke —L i L.

[ustrirajmo Dirichletov teorem na primjeru step funkcije

0, -1 <2z <0,
f(z) = (2.35)
1, 0<zx< 1.

prikazane na slici 2.4. Funkcija f je o€igledno po dijelovima C! na intervalu [—1, 1].

Fourierovi koeficijenti su dani sa

1
ag = / de =1, (2.36)
0

1 .
Ay = / cos(nmzx)dr = sin(nr) =0, n>1, (2.37)
0 nm
b 1 0, n = 2k,
b, = / sin(nrz)de = —(1— (=1)") = (2.38)
0 nm 2 n=2k+1
Stoga je
f()—1+2§: L g ((2k + V)mz)) (2.39)
) =5 7Tk202k—|—1sm 7r)). :
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1.0-;%*«,494%0-
08 :
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0.2
oy ~05 "AVA 05 10

Slika 2.4: Fourierov red step funkcije (2.35).

Suma reda (2.39) u x = 0 je jednaka f(O) = 1/2. S druge strane, f(07) = 0 i
f(0F) =1 paje

1

f(0) = 5 LF(07)+ (07)] (2.40)

u skladu s Dirichletovim teoremom. Takoder, na rubovima intervala imamo

flan) = S [A(-1%) + £(10)] (241)

jer je f(#x1) = 1/2. Pokazimo da red ne konvergira uniformno na [—1,1]. Razlog
tome je prekid funkcije u tocki z = 0. Oznac¢imo sa Sy(z) N-tu parcijalnu sumu
Fourierovog reda (2.39),

SN(CL’) == +

SER®

> 2k1+ - sin ((2k + 1)7)). (2.42)
k=1

| =

Funkcija Sy(z) je neprekidna i Sy(0) = 1/2 pa za € = 1/4 postoji 0 > 0 takav da

1 1
e — 0| <d :>‘&ﬂ@—— <7 (2.43)

Posebno, za 0 < z < 0 iz (2.43) slijedi

i<SM@<

=1 W

(2.44)
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S druge strane, f(z) =1za 0 <z < ¢ pa imamo

3

1
[Sn(2) = f(2)] > f(2) = Sn(z) >1 -7 = 7. (2.45)
Odavde zaklju¢ujemo da je
1
1< |Sy(z) = f(x)] zasve O0<z<d, N>1, (2.46)
sto povlaci
1
sup |Sn(z) — f(x)] >~ =zasvaki N > 1. (2.47)
ze[—1,1] 4

Dakle, konvergencija reda nije uniformna na skupu [—1, 1].
Primjer 2.4 Odredimo Fourierov red funkcije f(x) = |x| na intervalu [—m, .

Ova funkcija je po dijelovima C' na [—m, 7] i neprekidna na [—m,7]. Za Fourierove

koeficijente nalazimo

1 [ 2 [T
ag = —/ |z|de = —/ xdx =T, (2.48)
s 7 Jo

—Tr

K 2 ™
Ay, = —/ |z| cos(nz)dx = —/ x cos(nx)dx
m 7 Jo

y — /7r wdw]

2 [x sin(nx) "

T n

0

2 cos(nz) 2(-1)" -1
0

Kako je f(x) = |z| parna funkcija, to je

1 (7 .
b, = —/ |z| sin(nz)dz =0, n>1. (2.50)

7T —T

Fla) = 5+ 23 = costo
— g - %chos ((2n+ 1)x). (2.51)
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30r
25+
20+
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Slika 2.5: Razvoj funkcije f(z) = |z| u Fourierov red.

(vidi sliku 2.5). Obzirom da je f neprekidna na [—7, 7], prema Dirichletovom teoremu
je f(x) = f(z) za svaki z € [—m,x]. Primijetimo da je f(0) = f(0) = 0 pa iz relacije

(2.51) dobivamo sumu reda

71.2

d 1
Z CESRES (2.52)

n=0

2.2.1 Uniformna konvergencija

U mnogim primjenama Fourierovih redova pozeljno je da red uniformno konvergira.
Vaznost uniformne konvergencije ¢emo posebno vidjeti kod rjesavanja parcijalnih dife-
rencijalnih jednadzbi metodom separacije varijabli. Uo¢imo na primjeru step funkcije
(2.35) da je neprekidnost nuzan uvjet za uniformnu konvergenciju Fourierovog reda.
U ovom poglavlju ¢emo dokazati da uz neke dodatne uvjete na funkciju f Fouri-
erov red konvergira uniformno ka f. Za dokaz ove tvrdnje potrebni su nam sljedeéi

rezultati.

Propozicija 2.1 (Cauchy—Schwartzova nejednakost) Neka su z;, w; kompleksni

brojevi za 1 < i <n. Tada je

ol < S kSl (25
=1 =1
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Dokaz. Definirajmo a =Y | z;w;. Tada za svaki realni broj A imamo

0< Z |2 — Aaw,|* = Z( — daw;)(z; — Aaw;)

=1

= Z 2iZi — A Z aw;z; — A\ Xn: Z;aw; + Aaa Zn: W;W;
=1 i=1 i=1 i=1

= i |2if* = 2Mlal* + A*|a/? i Jwi?. (2.54)
i=1 i=1

Izraz (2.54) je kvadratni polinom p(A) u varijabli A za koji vrijedi p(\) > 0. Stoga

diskriminanta polinoma

A= (~2JaPy (ra\ Zm\?) (ZH) (2.55)

mora zadovoljavati A < 0. Ako je a = 0, onda je uvjet trivijalno zadovoljen. Ako je

a # 0, onda dijeljenjem s |a|* # 0 iz uvjeta A < 0 dobivamo

al? <3 [z wil?, (2.56)
=1 =1

odnosno

PR N DN D R (2.57)
=1 =1 =1

Cauchy—-Schwartzova nejednakost je mozda najvaznija nejednakost u matematickoj

analizi. Posebno je vazna njezina generalizacija na unitarne prostore.

Teorem 2.2 (Besselova nejednakost) Neka je f: [—L,L] — R po dijelovima ne-
prekidna funkcija i neka su
ap = — f(x) cos ( )dx, n >0, (2.58)

/f sin T)dx, n>1, (2.59)
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Fourierouvi koeficijenti funkcije f. Tada vrijedi
—ao + Z (a2 + b2) / f(z (2.60)
Dokaz. Neka je
nmwr
. b, ( )) 2.61
—I—Z(a cos( )+ sin 7 (2.61)

N-ta parcijalna suma Fouerirovog reda. Kvadriranjem dobivamo

og/_LL(f() Sy(x dx—/ f(z da:—2/ F(z)Sn( )dx+/_ Sy(x)? da.

(2.62)
Iz definicije Fourierovih koeficijenata izravnim ra¢unom dobivamo
1

/_L f(z)Sn(x)dx = /_L f(z) 500 + i\[: <an cos <n_7lrjx) + b, sin (n_zx))] dx

:—ao/ f(z dx+2{an/ f(z cos dm+b/ f(z mn(nzx)dx}
—L@ﬁ+§]¢+@»
n=1

(2.63)

Nadalje, relacije ortogonalnosti (2.3)-(2.6) povlace da je
L L
/LSN(x)2dx:/ (x) —a0+z<ancos( ) + by, sin <nzx>)] dx

1 L nwx L . /nTT
— 50 /_L SN($)d$+; |:an /_L Sn(z)cos (T)dx—l—bn /_L Sn(z)sin <T)dl}
1 N
=L{5a5+) (a;+07)).
(2% ; ¢ )

Sada supstitucijom izraza (2.63) i (2.64)

(2.64)

u (2.62) dobivamo

0< /_LL f(z)?dx — L (%ag + i(ai + bi)) (2.65)
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odnosno
aO + Z a2 +b?2) / f(z (2.66)

Nejednakost (2.66) vrijedi za svaki N > 1 pa zakljucujemo da je

—ao + Z a2 +b2) / flx (2.67)

Kazemo da je funkcija kvadratno integrabilna na intervalu [a, b] ako je

/ f(z)?dr < co. (2.68)

Za kvadratno integrabilne funkcije se moze pokazati da vrijedi Parsevalova jednakost

—ao—l—z a2 +b2) = / flx (2.69)

Po dijelovima neprekidne funkcije su kvadratno integrabilne pa takve funkcije zadov-
ljavaju jednakost (2.69). Dokaz Parsevalove jednakosti prelazi okvire ovog teksta jer
zahtijeva poznavanje teorije Hilbertovih prostora. Ova jednakost je ¢esto korisna za

sumiranje redova realnih brojeva, kako ilustrira sljede¢i primjer.

n=1

Primjer 2.5 Odredite sumu reda > o # Prisjetimo se da funkcija f(z) = =z,

€ [—L, L], u primjeru 2.1 ima Fourierove koeficijente a,, = 0 za svakin >0 i

2L
b, = —(—1)"*! > 1 2.70
(=), ozl (2.70)

Stoga iz relacije (2.69) dobivamo

=20\ 1 [t 2
=) == =217 2.71
Z (mr) L/_ vde 3 (2.71)

n=1

Sto povlaci
=1 2
n=1

Izravna posljedica Besselove nejednakosti je
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Teorem 2.3 (Riemann-Lebesgueova lema) Neka je f: [—L,L] — R po dijelo-

vima neprekidna funkcija. Onda za Fourierove koeficijente vrijeds

1 L

nlggo @ =7 nhi& » f(z) cos <?) =0, (2.73)
1 L

'rzll—>r£lo b, = 7 7}1—{20 » f(z)sin (n_z:z:) =0. (2.74)

e}

Dokaz. Besselova nejednakost implicira da Y (a2 + b2) konvergira pa iz nuznog

uvjeta za konvergenciju reda slijedi lim,, .o, a2 = lim,, o, b2 = 0. Stoga je lim,, o @, =
lim,, oo b, =0. W

Sada mozemo dozati nas glavni rezultat.

Teorem 2.4 (Teorem o uniformnoj konvergenciji) Neka je f neprekidna i po
dijelovima C funkcija na [—L, L] takva da je f(—L) = f(L). Onda Fourierov red

konvergira uniformno ka f na skupu [—L, L].

Dokaz. Neka je
N
Qo nm . (nm
Sy(z) = ) + nE_l [an Cos (Tx> + b, sin (Txﬂ (2.75)

N-ta parcijalna suma Fourierovog reda funkcije f. Prema Dirichletovom teoremu je

lim Sy(z) = f(x) zasvaki x € [—L,L] (2.76)

N—oo

jer je f neprekidna i po dijelovima C! na [—L, L]. Sada je

|f(z) — Sn(x)| = ‘ i [an Ccos <n%a:) + b, sin (n—;.r)] ’
n=N+1
- nm . /nT
< n;ﬂ ay, COS <Ta:) + b, sin (Ta:> ‘

< > (lan| + |ba]) zasvaki x € [~L,L]. (2.77)

n=N-+1
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Ako pokazemo da su redovi 7 |a,| 1 Y ", |b,| konvergentni, onda ¢e uniformna
konvergencija slijediti iz nejednakosti (2.77). Koeficijente a, mozemo parcijalnom

integracijom prikazati u obliku

1 mr
z/ flz COS 5 )dx (2.78)
1 : g L
_ = il n _ () sin (M8
=7 f(x) sm( x) ) /_Lf (x)mr sm( 7 x) (2.79)
L
—— ——A >1 2.
mrL/ f(x sm )da: — A, 21, (2.80)
gdje je
/ f'(z sm )dm. (2.81)
Sli¢no, koristeéi uvjet f(—L) = ) dobivamo
L
— — = > .
—7 / f'(x) cos x) dx = B n>1 (2.82)
gdje je

1 (-
Z/L f'(x) cos (n—gx>dx (2.83)
Dakle, Fourierovi koeficijenti za f i f’ zadovoljavaju
L L
la,| = —|An| i |b,| = —|Bn|, n > 1. (2.84)

Pokazimo sada da redovi o7 | L|A,| i Y7 L|B,| konvergiraju. Primijetimo da je

=1 [ =1 (1w - s-1) =0 (285)
Stoga Besselova nejednakost za funkciju f’ povlaci
> (A2+B)) <+ / )’da < oo. (2.86)
n=1

Prema Cauchy—Schwartzovoj nejednakosti, za svaki N € N vrijedi

N 0
ST YA (2.87)
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. . 2 .o .
jer je >0, -5 = % Slitno dobivamo

(2.88)

za svaki N > 1. Nejednakosti (2.87) i (2.88) impliciraju da redovi > 7 l|a,| i
> o2, |by| konvergiraju. Stoga iz (2.77) slijedi

lim sup |f(z)— Sny(z)] < lim an| + b,]) = 0. 289
dim sup 1) = S(a) < Jim 3 (fnl + ) (2.89)

Time je dokazano da Fourierov red konvergira uniformno ka f na [-L,L]. B

Grubo govorec¢i, Teorem o uniformnoj konvergenciji vrijedi za neprekidne funkcije
koje imaju najvise konac¢an broj Siljaka u intervalu [—L, L] u kojima prva derivacija

ne postoji. Primjer takve funkcije je f(z) = |x| koja ima $iljak u tocki x = 0.

Posebno vazan aspekt u teoriji Fourierovih redova je odnos izmedu glatkoce funkcije
i brzine kojom Fourierovi koeficijenti teze k nuli. U dokazu teorema 2.4 pretpostavka
da je f' po dijelovima neprekidna povlaci da redovi Y 2 a, i > - b, apsolutno
konvergiraju $to znaci da |a,| 1 |b,| teze k nuli brze od 1/n. Poznavajuéi ocjenu za
gornju medu koeficijenata |a,| i |b,| mozemo procijeniti koliko ¢lanova Fourierovog

reda je potrebno da bi postigli odredenu tocnost u aproksimaciji funkcije.

Propozicija 2.2 Neka je f € C*|—L, L] takva da je f(—L) = f(L) i f'(—L) = f'(L).

Neka je M = max,cp—r,1 | ["(x)]. Onda Fourierovi koeficijenti imagu gornje mede

1 [ nwL 2L2M

ool = | [ sloyeos (" )] < 220 (290)
1 [f . /n7x 2L2M

'b”':'z/Lf (@)sin (777 )de| < T3 mz L (291)
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Dokaz. Parcijalnom integracijom dobivamo

= %/_LL f(z) cos <nLLx>da7
[ (P e ()]
:_% F(x)si (?)dm. (2.92)

Iz uvjeta f'(—L) = f'(L) slijedi da je

mrx B nmx\ |2=L L 9 nmx
/ f'(z sm )dx _Ef( x) cos (T) . E f (x )cos( 7 )dx
L ” nmx
- j‘( )cos( - )dx (2.93)
pa supstitucijom (2.93) u (2.92) dobivamo
L L nmwx
an =~ /_Lf (x) cos <T>das (2.94)

Slicno se pokazuje da uvjet f(—L) = f(L) povlaci

/_LL 1" () sin (?)dw (2.95)

Sada iz jednadzbi (2.94) i (2.95) zaklju¢ujemo da su gornje mede za |a,| i |b,| dane

by = —

n2m?

Sa
L L nwx 2L>M
ol < iz | |)eos (") e < S (2.96)
L L nwT 202 M
< — " 1 —_ ‘ < .
bul < = /L f (x)sm( - ) de < —— (2.97)

gdje je M = maxye—r g |f"(z)]. W

Ove ocjene za Fourierove koeficijente su korisne ako a,, i b, nisu eksplicitno poznati,
na primjer ako se rac¢unaju numerickim metodama. Onda se iz relacija (2.96) i (2.97)
moze dobiti gruba procjena koliko je ¢lanova Fourierovog reda potrebno za aproksima-

ciju funkcije unutar zadane tocnosti. Razlika izmedju funkcije f(x) i N-te parcijalne
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Slika 2.6: Suma reda Y2 . =5

sume Fourierovog reda Sy(z) je omedena sa

‘ f: (an cos <n%a:> + b, sin (%m) ‘

|f(z) = Sn(z)] <
n=N-+1
= ALPM N1
n=N+1 g n=N+1

za sve x € [—L, L]. Primijetimo da je suma reda Z;‘;NH # manja od povrsine ispod

krivulje y = 5, N < 2 < oo (vidi sliku 2.6). Stoga je

=1 > dx 1
< P 2.
Z n2 — /N xr2 N ( 99)

n=N-+1

pa iz (2.98) dobivamo ocjenu

sup |f(x) - Sw(a)| < LM

. 2.100
x€[—L,L] TN ( )

Ako zelimo da je pogreska aproksimacije manja od € > 0, onda N treba uzeti tako da
je
A4I2M

m2€

N >

(2.101)



POGLAVLJE 2. FOURIEROV RED 39

Ovu metodu procjene broja N nazivamo integralna metoda jer je u relaciji (2.99)
suma reda majorizirana integralom. Mnogo finije procjene broja N se mogu dobiti
ako se Fourierovi koeficijenti eksplicitno izracunaju i onda primijeni integralna metoda

u majorizaciji reda. Ilustrirajmo ovaj postupak na sljede¢em primjeru.

Primjer 2.6 Procijenite koliko ¢lanova Fourierovog reda je potrebno za aproksima-

ciju funkcije f(z) = 2* —x, x € [-1,1], s pogreskom manjom od € = 0.01.

Funkcija f(z) = 23 — x je naparna pa je a, = 0 za svaki n > 0. Koeficijenti b, su

dani sa .
12
b, = /_1(333 — z) sin(nrz)dr = (_1>n(n7r)3' (2.102)
Stoga je Fourierov red jednak
. 12 o (—1)"
(x) = s 2 ( n3) sin(nmzx). (2.103)

Prema teoremu 2.4, red (2.103) konvergira uniformno ka f i vrijedi

12 N (—1)m 12 &K (=)™ . 12 X1
‘f(x) g 3 sin(nmx)| = g Z Tsm(mm) SF Z e
n=1 n=N+1 n=N+1

(2.104)
za svaki x € [—1,1]. Suma reda > >, 1/n’ je manja od povrsine ispod krivulje

y=1/2% N <z < oo, stoga je

Z /—dx— N7 (2.105)

n= N+1

Sada iz (2.104) dobivamo ocjenu
‘ N

Ako zelimo da je pogreska aproksimacije manja od € = 0.01, onda N treba uzeti takav
da je 6/(m®*N?) < 0.01, odnosno

6
N —— =~ 44. 2.107
- V 73 -0.01 ( )

’I’L

6
N2’

< (2.106)

sin(nmz)
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Dakle, dovoljno je uzeti N = 5 ¢lanova reda. Za usporedbu odredimo N iz relacije

(2.101). Maksimalna vrijednost druge derivacije je dana sa

M = max |6z| =6, (2.108)
—1<2<1
pa uvjet (2.101) povlaci
4-6
N>——— 2431 2.1
>7T2-0.01 3.17, (2.109)

odnosno N = 244. Ocigledno je prva procjena mnogo bolja od procjene dobivene
relacijom (2.101). W



Poglavlje 3

Kvazi—linearne jednadzbe prvog

reda

U ovom poglavlju razmatramo opce rjeSenje kvazi-linearne jednadzbe prvog reda
P(ZL’,y,U)Ux+Q(l',y,U)Uy = R(I,y,U) (31)

Pretpostavimo da su P, @ i R funkcije klase C* na domeni Q C R? koje ne is¢ezavaju
istodobno ni u jednoj tocki (z,y,u) € Q. RjeSenje jednadzbe (3.1) je funkcija
u = u(z,y) klase C' na domeni Qy C R? takva da je (z,y, u(x,y)) € Q za svaku tocku
(x,y) € Qp. Drugim rije¢ima, funkcije P(z,y, u(z,v)), Q(z,y,u(x,y)) i R(z,y, u(x,y))
su dobro definirane na domeni Q. Rjesenje u = u(z,y) se moze promatrati kao nivo—

ploha funkcije f(x,y) = u(z,y) — u,

§={(@y.u) | fz.y.u) =0}, (3.2)

koju nazivamo integralna ploha jednadzbe (3.1). Vektor Vf = u,e) + u,er — €3 je
okomit na plohu S u svakoj tocki (z,y,u) € S gdje je Vf # 0. Primijetimo da se

jednadzba (3.1) moze napisati kao skalarni umnozak vektora
(P€1 -+ ng + R€3> . (uxa + uyéé — 53) =0 (33)

sto povlaci da je vektor F = P& + Q& + Ré; okomit na Vf ako je Vf # 0. Za-
kljucujemo da F mora biti tangencijalni vektor na integralnu plohu S u svakoj tocki
gdje je Vf # 0. Pravac koji odreduje vektor F naziva se Mongeova os i ima kljuénu

ulogu u rjesavanju jednadzbe (3.1).

41
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Definicija 3.1 KaZemo da je v C S karakteristicna krivulja ako je u svakoj tocki
(z,y,u) € v tangencijalni vektor od v jednak ﬁ(x, y,u) = P(z,y,u)é1 +Q(x,y,u)éy+
R(.T, Y, U)€3

Ako je v definirana parametarskim jednadzbama
vioox=uz(t), y=yt), u=ut), tel, (3.4)

onda je
2 (t) = P(z,y,u), ¥ () =Q(x,y,u), u(t)=R(z,y,u). (3.5)

Jednadzbe (3.5) nazivaju se karakteristicne jednadzbe kvazi-linearne jednadzbe (3.1).
Karaktersticne jednadzbe mozemo zapisati u neparametarskom obliku
d d d
a_ ey _ (3.6)
P @ R
Pronalazenje opéeg rjesenja jednadzbe (3.1) se svodi na rjesavanje karakteristiénih
jednadzbi (3.5), odnosno (3.6). Ova metoda se naziva Lagrangeova metoda karakte-
ristika. Rjesenja jednadzbi (3.6) opéenito mozemo zapisati u obliku ¢(x,y,u) = C za
neki C' € R. Kazemo da su ¢(z,y,u) = C; i ¥(z,y,u) = Cy funkcinalno nezavisna
rjeSenja ako je

Vo x Vb £ 0. (3.7)

Teorem 3.1 (Metoda karakteristika) Neka su ¢(z,y,u) = Cy i Y(x,y,u) = Cy
dva funkctionalno nezavisna rjeSenja karakteristicnih jednadzbi (3.6) u domeni Q C
R3 u kojoj su definirane funkcije P, Q i R. Opée rjesenje jednadzbe (3.1) je dano sa
f(¢,%) =0 gdje je f proizvoljna funkcija klase C*.

Dokaz. Neka je v C S karakteristi¢na krivulja s parametrizacijom = = x(t), y = y(¢),
u=u(t), t € I. Tada je ¢(x(t),y(t),u(t)) = C; pa vrijedi

d
d—f — G2 (t) + by o/ () + Surl () = Py + Qby + Ry = 0. (3.8)
Slicno, iz ¥(xz(t), y(t),u(t)) = Cy dobivamo
W py, + 06, + Riby = 0. (3.9)

dt
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Kako su ¢ i ¥ funkcionalno nezavisni, to je

bz Pu

; Pz Dy
Vo Py

Vo Py

-

Vo xVip =1 by Pu —

Vy Pu

-

+k £0. (3.10)

Bez gubitka opcenitosti pretpostavimo da je ¢y, — ¢y, # 0. Tada koristeci jed-

nadzbe (3.8) i (3.9) funkcije P i Q mozemo izraziti pomocu R,

bu Dy ¢z Pu

p— _pl¥ Yl Q:_RM, (3.11)
¢1‘ ¢y ¢9€ ¢y
% wy wx %

S druge strane, deriviranjem izraza f(¢,1) = 0 dobivamo

of Of (06 0oou\ Of (00 Ovou\
%—%(%‘F%%)'f‘@(%'f‘%%)—o, (3.12)
0 _0f (90 doon\ | 0f (00 ovon _
a_y‘a¢(ay auay)+a¢(ay+auay)‘o’ (3.13)

gdje smo uzeli u obzir da varijabla u ovisi o x i y. Sustav jednadzbi (3.12)—(3.13) ima

netrivijalna rjesenja za 0f/d¢ i df /0y samo ako je

Gt utls Yo+ hutle| _ o (3.14)
¢y+¢uuy %Jr%uy
Uvijet (3.14) se moze zapisati u obliku
T R O I (P

Sada iz jednadzbi (3.11) i (3.15) slijedi da u zadovoljava diferencijalnu jednadzbu
Pu, + Qu, = R. (3.16)

|
Primijetimo da se do istog rezultata dolazi ako pretpostavimo da je bilo koja deter-

minanta u jednadzbi (3.10) razli¢ita od nule.
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Primjer 3.1 Odredite opée rjesenje kvazi-linearne jednadzbe
z*uy, + yPu, = (z + y)u. (3.17)
Karakteristi¢ne krivulje su odredene jednadzbama
2t =2% yt)=v: (@)= (z+yu. (3.18)

Integracijom prve dvije jednadzbe u (3.18) dobivamo

1 1
r = ——- = —
t+ Oy’ Y t+ Co

gdje su C i C; konstante integracije. Supstitucijom (3.19) u treéu jednadzbu u (3.18)

(3.19)

slijedi da funkcija u zadovoljava

1mﬂ:—( ! ! )w (3.20)

_l’_
t+C;  t+ O

Integracijom jednadzbe (3.20) dobivamo
Ky
t) =
U = G enET O
za neku konstantu Kj. Sada iz jednadzbi (3.19) i (3.21) mozemo odrediti funkcije ¢

i 9 koje su konstantne duz karakteristicnih krivulja. Primijetimo da je

(3.21)

1 1
= 3.22
t+ Ot Y (3.22)
pa iz jednadzbe (3.21) slijedi
LK. (3.23)
Ty
Nadalje, jednadzba (3.19) implicira
1 1
=0y - O = K. (3.24)
r oy
Ako definiramo funkcije
u y—x
= — = 3.25
o) = 2o v = (3.25)
onda iz (3.23) i (3.24) slijedi da je ¢ = K; i ¢ = K, duz karakteristi¢nih krivulja.
Stoga je opce rjeSenje dano sa
f<i,y_x) —0 (3.26)
ry xy

gdje je f proizvoljna C* funkcija. W



Poglavlje 4

Jednadzbe drugog reda u dvije

nezavisne varijable

U ovom poglavlju proucavamo linearne jednadzbe drugog reda u dvije nezavisne va-
rijable. Ove jednadzbe se mogu klasificirati na tri tipa: hiperbolicke, parabolicke i
elipticke jednadzbe. Fundamentalne jednadzbe matematicke fizike, valna, difuzijska
i Laplaceove jednadzba su vazni primjeri ovih tipova jednadzbi. Rjesenja istog tipa
imaju slicna kvalitativna svojstva, a svaki tip jednadzbe se moze transformacijom

varijabli svesti na tzv. kanonski oblik koji je jednostavniji za proucavanje.

Opca linearna jednadzba drugog reda u dvije nezavisne varijable ima oblik
Augy + 2Buyy + Cuyy + Duy + Euy + Fu=G (4.1)

gdje su u, A, B,C,D, E, F,G funkcije varijabli z,y u zadanom podru¢ju Q C R2.
Pretpostavljamo da funkcije A, B i C ne is¢ezavaju istovremeno u Qi da je u € C*(Q).

Jednadzbu (4.1) mozemo zapisati u operatorskom obliku L{u] = G gdje je

0? 0? 0? 0 0
L=A 2B —+D—+FE—+F. 4.2
Ox? + 0x0y + C@yz + ox + dy + (42)
Operator
2 2 2
Lo=a2 yop % Lo (4.3)

ox? 0xdy oy?

naziva se glavni dio operatora L. Operatoru Ly pridruzena je diskriminanta

45
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Pokazat ¢emo da je predznak diskriminante A invarijantan obzirom na regularnu
transformaciju varijabli, odnosno da ne ovisi o koordinatnom sustavu u kojem pro-
matramo jednadzbu. Ovo sugerira da jednadzbe drugog reda mozemo Kklasificirati

prema predznaku diskriminante A.

Definicija 4.1 Kazemo da je jednadzba (4.1)
(a) hiperbolicka u tocki (x,y) ako je A(z,y) >0,
(b) parabolicka u tocki (x,y) ako je A(x,y) =0,
(c) elipticka u tocki (x,y) ako je A(x,y) < 0.

Ako je jednadzba (4.1) hiperbolicka (parabolicka, elipticka) u svakoj tocki podrucja
2, onda kazemo da je ona hiperbolicka (parabolicka, elipticka) u €. Klasifikacija

jednadzbi na spomenute tipove je motivirana krivuljama drugog reda jer jednadzba
Az® +2Bry + Cy* + Dz + Ey+ F =0 (4.5)
predstavlja hiperbolu, parabolu, odnosno elipsu ovisno o tome je li diskriminanta
A = B? — AC pozitivna, nula ili negativna.
Valna jednadzba
Ut — Py = 0 (4.6)
je hiperbolicka u R? jer je A = ¢ > 0 (A = —c*,B = 0,C = 1). Jednadzba

provodenja topline
Uy — ke =0, k>0, (4.7)

je parabolicka u R? jer je A =0 (A = —k, B = C = 0) dok je Laplaceova jednadzba
Ugg + Uyy = 0 (4.8)

je elipticka u R? jer je A = —1 <0 (A= C =1,B =0). Tricomijeva jednadzba
YUgy + Uyy =0 (4.9)

ima diskriminantu A = —y (A =1y, B =0,C = 1). Jednadzba je elipticka u polurav-

nini y > 0, hiperbolicka u poluravnini y < 0 i parabolicka na pravcu y = 0.
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Zanima nas kako se jednadzba (4.1) transformira uvodenjem novih varijabli
a=a(zy), B=05(xy), (z,y)€
Pretpostavit ¢emo da su a, 5 € C?(Q) i da je Jacobijan transformacija

Oy Qy
B By

U tom slucaju postoji inverzna transformacija

=0, —oyB, #0 V(x,y) € (L

a transformirana funkcija w(a, 8) = u(z(a, 8), y(a, B)) je klase C2.
Lema 4.1 Neka je

Augy + 2Bugy + Cuyy + Duy + Euy + Fu=G

47

(4.10)

(4.11)

(4.12)

(4.13)

linearna jednadzba drugog reda. Neka je o = o(z,y), = B(x,y) reqularna transfor-

macija varijabli. Tada je predznak diskriminante A = B% — AC invarijantan obzirom

na transformaciju (z,y) — (a, 3).

Lema 4.1 pokazuje da je predznak diskriminante A(z,y) intrinziéno svojstvo jed-

nadzbe (4.13) jer funkcije u(z,y) i w(a, B) zadovoljavaju jednadzbu istog tipa.

Dokaz. Funkcije u i w povezane su relacijom u(z,y) = w(a(z,y), f(x,y)). Primje-

nom pravila za derivaciju kompozicije dobivamo

Uy = Wo Oy + Wg By,
Uy = Wo Oy + W3 By,
Upy = Wog ozi + 2wap oy By + Wgg 5323 + Wq gy + W3 Bas,
= Waa O Oy + Wag(ay By + 0y By) + wag Br By + Wa Ay + w3 Bay,

Uyy = Waa 0%2/ + 2wap iy By + wpp 55 + Wa ayy + wg Byy.

Suptitucijom ovih izraza u (4.13) slijedi da funkcija w zadovoljava transformiranu

jednadzbu

Llw] = Awae + 2Bwas + Cwgs + Dw, + Bwg + Fw = G

(4.19)
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gdje je
Ala, B) = AaZ + 2Ba, oy + C’ozz, (4.20)
B(a, B) = Aa, B, + Blay B, + o, 8:) + Cay, By, (4.21)
Cla,B) = AB: 4+ 2Bp, 8, + CB.. (4.22)

Ostale koeficijente ne trebamo eksplicitno izracunati jer tip jednadzbe ovisi samo o

koeficijentima A, Bi C. Jednadzbe (4.20)-(4.22) se mogu zapisati u matricnom obliku

A B . A B v DOs
S N o Pl (4.23)
B C Bz By B C) \ay By

Racunanjem determinante lijeve i desne strane jednadzbe (4.23) dobivamo

AC — B* = (AC — B?)(a, B, — oy 3.)%, (4.24)

odnosno

A=AJ? (4.25)

gdje je J = a8, — a5, Jacobijan transformacije. Kako je (z,y) — (o, #) regularna
transformacija, to je J # 0 pa zakljuéujemo da diskriminante A i A imaju isti pred-
znak ili su obje nula. Ovo implicira da funkcije u i w zadovoljavaju jednadzbu istog
tipa. W

Uvodenjem novih varijabli jednadzba (4.1) se moze transformirati u jednostavniji, tzv.
kanonski oblik. Proucavanjem kanonskih oblika dobivamo laksi uvid u opca svojstva
jednadzbe (4.1). Ako nam je poznato rjesenje w(a, 3) kanonskog oblika jednadzbe,
onda je rjeSenje pocetne jednadzbe dano sa u(z,y) = w(a(z,y), f(z,y)). Razlikujemo

sljedece kanonske oblike jednadzbi drugog reda.
Definicija 4.2 (1) Kanonski oblik hiperbolicke jednadzbe je
Upy + Ly[u] = G (4.26)

gdje je Ly diferencijalni operator prvog reda. Ovaj kanonski oblik je ekvivalentan
sa
Waa — Wap + Lh[w] =G (4.27)

gdje su varijable o, B dane transformacijom a =x+vy, f=x — y.
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(2) Kanonski oblik parabolicke jednadzbe je

Uze + Ln[u] = G. (4.28)

(8) Kanonski oblik elipticke jednadzbe je
Uz + Uy + Lru] = G. (4.29)

Primijetimo da su fundamentalne jednadzbe matematicke fizike, valna, difuzijska i
Laplaceova jednadzba glavni dijelovi hiperbolicke, parabolicke i elipticke jednadzbe,
redom. U sljede¢em poglavlju proucavamo transformacije varijabli kojima se jed-

nadzbe svode na kanonske oblike.

4.1 Kanonski oblik hiperbolickih jednadzbi

Teorem 4.1 Neka je
Augy + 2Buyy + Cuyy + Duy + Euy + Fu=G (4.30)

hiperbolicka jednadzba u podrucju Q C R2. Onda postoje varijable o = a(z,y), f =
B(x,y) u kojima jednadzba (4.30) ima kanonski oblik

Wap + Ly[w] = G (4.31)
gdje je w(a, B) = u(xz(a, B),y(«, B)) i Ly je diferencijalni operator prvog reda.

Dokaz. Akoje A = C =0, ondaje A = B2 > ( pa se u ovom slu¢aju jednadzba svodi
na kanonski oblik dijeljenjem s 2B # 0. Pretpostavimo sada bez gubitka opéenitosti
da je A # 0 u podrucju €. Ako je C' # 0, mozemo zamijeniti uloge = i y. Jednadzbu
¢emo svesti na kanonski oblik ako odredimo varijable a = a(z,y), 8 = ((z,y) takve

da je
A= Aa? + 2Ba,ay, + C’oz; =0, (4.32)
C = A3 +2B3,6, + OB = 0. (4.33)

Kvadratna jednadzba
AN +2BA+C =0 (4.34)
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ima dva razli¢ita realna rjesenja A\i(z,y) i Aao(x,y) u €,

—-B+VB?2—- AC
A Y

jer je A = B? — AC' > 0. Neka su a(z,y) i f(z,y) netrivijalna rjesenja jednadzbi

Al = (4.35)

prvog reda

Ay = A1 (CU) y)aw (436)
Be = Xa(z,y) By (4.37)
Jednadzbe (4.36) i (4.37) nazivamo karakteristicne jednadzbe. Supstitucijom ovih
jednadzbi u izraze za koeficijente A i C' dobivamo
= (AN +2BX + C)al = 0, (4.38)

A
C = (AX; +2BXy + ()3, = 0. (4.39)

Dakle, jednadzba (4.30) u novim varijablama ima oblik

2Bw,p + Li[w] = G (4.40)
gdje je L diferencijalni operator prvog reda. Prema lemi 4.1 transformirana diskri-
minanta zadovoljava A = B? > 0, stoga jednadzbu (4.40) mozemo podijeliti s 2B # 0
¢ime dobivamo kanonski oblik (4.31).

Ostaje nam provjeriti je li transformacija a = a(x,y), 6 = [(z,y) regularna.

Supstitucijom jednadzbi (4.36) i (4.37) u Jacobijan transformacije dobivamo

Ay oy
)\Zﬁy By
Ovdje je Ay — Ag # 0 jer su A; i Ay razli¢ita rjeSenja jednadzbe (4.34). Kako je «

= (>\1 - )‘Q)Q/yﬁzr (441)

netrivijalno rjesenje karakteristicne jednadzbe, to je ay, # 0 jer u protivnom iz (4.36)
slijedi da je a; = o, = 0, odnosno o = konst. Slicno zakljuc¢ujemo da je 3, # 0.
Stoga je J # 0 pa netrivijalna rjesenja karakteristi¢nih jednadzbi daju regularnu tran-

sformaciju varijabli. W

Ako su A1 i Ay konstante, onda karakteristicne jednadzbe imaju jednostavna rjesenja

a(z,y) = a(Mx +y) 1 6(z,y) = b(Ax + y) gdje su a,b € R proizvoljni.
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Primjer 4.1 Odredite kanonski oblik i opée rjesenje jednadzbe
Qyy + DUgy + Uy + Uy + Uy = 2. (4.42)

Imamo A =4, B=5/21C =1iA =9/4 > 0 pa je jednadzba hiperbolicka u
R2. Kvadratna jednadzba AM* 4+ 2B) + C' = 0 ima dva realna korijena \; = —1/4 i

Ay = —1. Karakteristicne jednadzbe su dane sa
1
Q= =y, Be = =By, (4.43)
odakle slijedi
1
a= —Zx—l—y, B =—-x+y. (4.44)

Neka je w(a, 5) = u(m(a, ﬁ),y(a,ﬁ)). Onda je

1

Us = =7 Wa — Wp, (4.45)
Uy = Wy + Wg, (4.46)
= ! + ! + (4 47)
Ugy = 16waa 2waﬁ Wepga, .
Uyy = Waa + Qwag + wgg, (4.48)
1 )
Uzy = _Zwaa - Zwaﬁ — Wpp (449)

pa supstitucijom izraza (4.45)—(4.49) u jednadzbu (4.42) dobivamo kanonski oblik

jednadzbe
L, -8 (4.50)
Wap = =Wq — —. .
773 9
Funkcija v = w, zadovoljava jednadzbu prvog reda vg — %v = —g. Opce rjesenje je

dano sa v(«, §) = B(a)eéﬁ + £ gdje konstanta integracije B ovisi o varijabli «. Sada

je
U}(Oé’ ﬁ) - /U(aa 6)d0& - /B(Oé)dOé 6%/8 + gOJ + C. (451)
Dakle, opce rjesenje jednadze (4.42) ima oblik
1 1 2 8
u(z,y) = w( - 1" +y,—z+y)=f(- i +y)e%(_’f+y) — 37 + §y+ C  (4.52)

gdje je f proizvoljna C? funkcija.
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Ako uvedemo varijable { = a+0, n = a—f i funkciju @(&,n) = w(a(&,n), B(E,n)),
onda je ekvivalentni kanonski oblik jednadzbe (4.42) dan sa

_ _ 1 1_ 8
Weg — Wy = ¢ + 30— g (4.53)

4.2 Kanonski oblik parabolickih jednadzbi

Teorem 4.2 Neka je
Augy + 2Bugy + Cuyy + Duy + Euy + Fu=G (4.54)

parabolicka jednadzba u podrucju Q@ C R%  Onda postoje varijable a = a(x,y), § =
B(x,y) u kojima jednadzba (4.54) ima kanonski oblik

Waa + L1[w] = G (4.55)
gdje je w(a, B) = u(x(a, 5),y(a,ﬁ)) i Ly je diferencijalni operator prvog reda.

Dokaz. Kako A, B i C nisu svi nula, pretpostavka A = B? — AC = 0 povlaéi da
je A# 01ili C' # 0. Bez gubitka opcéenitosti pretpostavimo da je A # 0 u 2. Ako je
C # 0, dokaz se modificira na ocigledni nacin. Prema lemi 4.1, potrebno je odrediti

varijable a = a(z,y), 8 = fB(x,y) takve da je

B = Aa, B, + B(a, By + oy 8,) + Coy, B, = 0, (4.56)
C = AB2+2B3, 8, + CB. = 0. (4.57)

Zbog uvieta A = B? — AC = 0, jednadzba AN? + 2B\ + C' = 0 ima jedno realno
rjesenje u 2,

B(z,y)

Alz,y)

Neka je [ netrivijalno rjesenje karakteristicne jednadzbe

Az,y) = — (4.58)
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Supstitucijom jednadzbe (4.59) u (4.56) i (4.57) dobivamo
1
= (AN + B)a, By + (BA+ C)oy B, = 1

B (AC — B*) a3, = 0, (4.60)
C= (AN +2BX+(C)3; =0. (4.61)

Za oz, y) mozemo uzeti proizvoljnu funkciju za koju Jacobijan transformacije (x,y) —

(o, B) ne iscezava. Ako odaberemo o = x, onda je

Qp  Qy
Be By

jer je [ netrivijalno rjesenje karakteristicne jednadzbe. Sada za koeficijente imamo

J = — 8,40 (4.62)

A= Aal +2Bogoy, + Cal = A#0 (4.63)

i B=C =0 pa je transformirana jednadzba dana sa Aw,, + Li[w] = G. Dijeljenjem
s A # 0 dobivamo kanonski oblik (4.55). W

Primjer 4.2 Odredite kanonski oblik jednadzbe
T2 Uy, — 2xyug, + y2uyy + zu, +yu, =0 (4.64)
i pronadite opcée riesenje jednadzbe u poluravnini Q = {(z,y) | x > 0}.

Jednadzba je parabolicka u R? jer je A = 22, B = —axy i C = y? §to povlaci A =
B? — AC = (—ay)? — 2%y* = 0. Prema prethodnom teoremu treba odrediti rjesenje
karakteristicne jednadzbe

By

Br = A3y, gdjeje A= s (4.65)

Jedno rjesenje je dano sa [ = xy, stoga transformaicija variabli glasi o = z, 3 = xy.
Transformacija je regularna u poluravnini €2 jer je Jacobijan transformacije J = 3, =
x > 0 u Q. Definirajmo w(«o, §) = u(z(a, 5),y(e, 5)). Onda je

. 2 4.66
e = w5 - (4.66)
u, = waa, (4.67)
&4 A
zzx — Waa 2 af — (_> 5 4.68
Uu w + 2w 3 o + wﬂ@ o ( )
Uzy = Wt + wgg B+ wg, (4.69)
Uy, = Wep Q7. (4.70)
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Supstitucijom ovih izraza u jednadzbu (4.64) dobivamo

A Way + qw, = 0. (4.71)

Integracijom jednadzbe nalazimo

Wq = af(ﬁ), (4.72)

pa je funkcija w dana sa

w= [ wada = 78 nla] + (3 (4.73)

gdje su f i g proizvoljne C? funkcije. Dakle, opée rjesenje jednadzbe (4.64) u polu-

ravnini z > 0 je funkcija

u(z,y) = f(zy)In(z) + g(zy). (4.74)

4.3 Kanonski oblik eliptickih jednadzbi

Odredivanje varijabli u kojima elipticka jednadzba ima kanonski oblik je u opéem
slucaju slozenije nego za hiperbolicke ili parabolicke jednadzbe (vidi [P.R. Garabe-
dian, Partial Diferential Equations, John Wiley and Sons, New York, 1964]). Me dutim,
ako su koeficijenti uz druge derivacije konstantni, onda je procedura za svodenje na

kanonski oblik slicna hiperbolickom slucaju.
Teorem 4.3 Neka je
Augy + 2Buyy + Cuyy + Duy + Euy + Fu=G (4.75)

elipticka jednadzba uw podrucju @ C R2. Onda postoje varijable o = a(x,y), B =
B(x,y) u kojima jednadzba (4.75) ima kanonski oblik

gdje je w(a, B) = u(a:(a, 5),3/(04,6)) i Ly je diferencijalni operator prvog reda.
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Dokaz. Dokaz provodimo u slu¢aju kada su koeficijenti A, B i C' konstantni. Iz
uvjeta A = B2 — AC < 0 slijedi da je A # 01 C # 0. Koeficijenti glavnog dijela

jednadzbe se transformiraju prema pravilu

A= Aa? +2Ba, oy + Coz;, (4.77)
B = Aa, B, + Bla, B, + o, 8:) + Cay, By, (4.78)
C = AB:+2Bp, 8, + CB;. (4.79)

Zelimo odrediti varijable a = a(z,y) i 8 = B(z,y) takve daje A=C #0iB=0. U

tom slucaju « i 8 zadovoljavaju jednadzbe A — C' =01 B = 0, odnosno

Ala? — B3 + 2B (a0 — B.0y) + C(Oéz — ﬁ;) =0, (4.80)
Ao, By + Blowfy + ayf8s:) + Coy 8, = 0. (4.81)

Sustav jednadzbi (4.80)—(4.81) je ekvivalentan sa
A¢L +2Boo¢y + Chl =0 (4.82)

gdje je ¢ kompleksna funkcija ¢ = o + i3. Jednadizba AN? + 2B\ + C = 0 ima dva

kompleksno—konjugirana rjesenja

—B+iVAC — B? —B—ivAC — B?
/\1 - y /\2 == (483)
A A
jer je AC — B? > 0. Neka je ¢ netrivijalno rjeSenje karakteristicne jednadzbe
Or = MOy (4.84)
Onda je
AQ% 4 2Bdyy + Co2 = (AN} +2BA; + C)¢r = 0 (4.85)

Sto znaéi da su za ovaj izbor funkcije ¢ vrijedi A = C'i B = 0. Definirajmo a = —B/A
ib=+AC — B?/A tako da je \y = a+1ib. Jednadzba (4.84) ima rjeSenje ¢ = \jz+y

odakle slijedi da je trazena transformacija dana sa
a = Re(¢) =ax+y, [(=Im(s)=bx. (4.86)
Tranformacija je regularna u R? jer je

a 1
b 0

ay  Qy

Ba By

J = = —b#£0. (4.87)
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Za koeficijente A i C' imamo

AC — B?

A=Ad®>+2Ba+C=A e

= AV, C = AV, (4.88)

stoga je transformirana jednadzba dana sa Ab’w., + Ab*wss + Li[w] = G. Sada
dijeljenjem s Ab* # 0 dobivamo kanonski oblik (4.76). W

Napomenimo da se elipticka jednadzba moze svesti na kanonski oblik i ako za ¢
odaberemo ¢, = A2¢,. U tom slucaju jednadzbe se razlikuju samo u diferencijalnom

operatoru Ly, ali rjeSenje u(z,y) ima isti oblik.
Primjer 4.3 Oredite kanonski oblik jednadzbe
Uy + Uy + Uyy + Uy = 0. (4.89)

Koeficijenti glavnog dijela jednadzbe su A = 1, B = 1/2 1 C = 1. Jednadzba je
elipticka u R? jer je
3
A=DB>—AC = -5 <0 (4.90)
Rjesenja jednadzbe AN? + 2B+ C =0 su

—14+4V3

Mo = 5 (4.91)
pa prema jednadzbi (4.86) transformirane varijable imaju oblik
1 3
a=—x+vy, [= £x (4.92)
2 2
Odavde dobivamo
1 3
z — — 7 Wq I s 4.
u W + 5 Ws (4.93)
1 V3 3
Upz = Zwaa - 721)0[5 + Zwﬁﬁ7 (494)
1 3
Uy = —5Waa + %waﬁ, (4.95)

Uyy = w/gﬁ. (496)
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Supstitucijom izraza (4.93)—(4.95) u jednadzbu (4.89) nalazimo

3 3 1 V3

—Waa + ~Wg — =Wa + ——wg =0, (4.97)

4 4 2 2
odnosno
+ 2 + 2 0 (4.98)
Waa + Wgg — —Wq + —=wg = 0. )
BB 3 \/g B
Ako umjesto A; odaberemo rjesenje \y = —% — i\/Tg, onda su transformirane varijable
dane sa V3
1 3
a=——zr+vy, [=-——u. (4.99)
2 2
Pripadni kanonski oblik je u tom slucaju
+ 2 2 0 (4.100)
Waa + Wgg — =Wy — —=wg = 0. :
Bs 3 \/g B

Uoc¢imo da je glavni dio kanonskog oblika jedinstven, ali preostali dio ovisi o izboru

korijena A ili As.

Zadaci
1. Neka je u rjesenje jednadzbe
Uz + 2Ugy + Uyy = 0. (4.101)
Napisite jednadzbu u koordinatama s = x, t = x — y i odredite opce rjesenje.

2. Jednadzbu
Uzg — 2Ugy + Dty = 0 (4.102)

napisite u koordinatama s = z + y, t = 2z, i odredite opce rjesenje jednadzbe.
3. Klasificirajte sljedeé¢e jednadzbe:

TP Uy — YUy + Uy — 4u =0, (4.103)
TY Uy + Aty — (2% + y*)uy, —u = 0. (4.104)
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4. Za svaku od sljede¢ih jednadzbi odredite podrucja u ravnini gdje su jednadzbe

hiperbolicke, parabolicke ili elipticke:

20y + 4yy + 3uy, —u =0, (4.105)
Ugy + 28Uy + Uy + sin(zy)u = 5, (4.106)
YlUgy — 2Ugy + € Uyy + 22u, —u = 0. (4.107)

5. Reducirajte na kanonski oblik sljede¢e jednadzbe:

Uy — Uyy = 0, (4.108)
QUpy + Ugy + YUy, =0, y>1, (4.109)
TP Uy — 20Y Uy + Y Uyy = 0, (4.110)
T Uy — 4y =0, x> 0. (4.111)



Poglavlje 5
Jednadzba provodenja topline

Jednadzba provodenja topline ili difuzijska jednadzba opisuje distribuciju tempera-
ture u toplinski vodljivom tijelu. To je najvazniji primjer diferencijane jednadzbe
parabolickog tipa. Prvi dio poglavlja posvecen je proucavanju kvalitativnih svojstava
rjeSenja jednadzbe, principa maksimuma i stabilnosti rjesenja obzirom na pocetne i
rubne uvjete. U drugom dijelu poglavlja ¢emo konstruirati rjesenje difuzijske jednadze

metodom separacije varijabli i Fourierovih redova.

5.1 Princip maksimuma i jedinstvenost rjesenja
Promotrimo jednadzbu provodenja topline na kona¢nom intervalu:
u —kug, =0, 0<ax<L,t>0. (5.1)

Funkcija u(x,t) opisuje temperaturu u tankom, homogenom, toplinski vodljivom
Stapu u tocki x u trenutku t. Pretpostavljamo da je Stap izoliran osim eventualno na
krajevima x = 0 i x = L i da nema izvora koji griju ili hlade stap. Konstanta k& > 0
ovisi o materijalu tijela i naziva se toplinska vodljivost. Fizikalna intuicija sugerira
da je raspodjela temperature poznata ako je poznata pocetna temperatura u(x,0)

i temperatura na krajevima stapa u(0,t) i u(L,t). Ovo nas vodi na razmatranje

29
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pocetno-rubnog problema s Dirichletovim uvjetima

Uy — kg, = 0, O<a<L,t>0, (5.2)
u(,0) = £(x), V<<l 53)
uw(0,t) = a(t), wu(L,t)=>5b(t), t>0. (5.4)

U daljnjem teksu pretpostavljamo da su f, a i b neprekidne funkcije. Kompatibilnost
pocetnih i rubnih uvjeta implicira da je f(0) = a(0) i f(L) = b(0). Ako je umjesto
temperature na krajevima Stapa poznat njezin gradijent, onda funkcija u zadovoljava

Neumannove uvjete
u(0,t) = a(t), wug,(0,t) ="0b(t), t=>0. (5.5)

U tom slucaju funkcije f, a i b zadovoljavaju uvjete kompatilnosti f'(0) = a(0) i
/(L) = b(0). Funkcija u je definirana na domeni (vidi sliku 5.1)

Q={(z,t)|0<a <L, t>0}, (5.6)
a rubni i pocetni uvjeti su zadani na rubu domene
0N ={(z,0) | a <z <b}U{(0,t) |t >0} U{(L,t)|t>}. (5.7)

Nas zadatak je odrediti funkciju u € C*(Q) N C(Q) koja zadovoljava jednadzbu (5.2)

s pocetnim i rubnim uvjetima (5.3)—(5.4).

Teorem 5.1 (Jedinstvenost rjesenja) Ako su uy i uy C? rjesenja problema (5.2)—

(5.4), onda je uy = us.

Dokaz. Neka je w = u; — uy. Funkcija w zadovoljava jednadzbu

wy — kwg, = 0, O<xz<L,t>0, (5.8)
w(z,0) =0, 0<z<IL, (5.9)
w(0,t) =w(L,t) =0, t>0. (5.10)

Definirajmo pomoé¢nu funkciju

() = — /OL w?(z, )da. (5.11)
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Slika 5.1: Domena za jednadzbu provodenja topline.

61

Kako je (w?); = 2w w; neprekidna funkcija, prema Leibnizovom pravilu J(¢) mozemo

derivirati pod znakom integrala pa dobivamo

J’(t)—l/L82d—1/L d—/L d
Tok ), Ty ), e T ) e GF

jer je wy = kw,,. Parcijalnom integracijom slijedi

e=L Lo, Lo,
— wydr = — w; dx
=0 0 0

gdje smo uzeli u obzir da je w(0,t) = w(L,t) = 0. Dakle,

L
/ W Wyy dT = W Wy,
0

L
J'(t) = —/ w? dr <0,
0

(5.12)

(5.13)

(5.14)

sto povlaci da J(t) nije strogo rastuca funkcija. Nadalje, poc¢etni uvjet w(z,0) = 0
implicira J(0) = 0. Sada uvjeti J(0) = 01 J'(t) < 0 zajedno povlace da je J(t) <0
za svaki t > 0. Medjutim, iz definicije (5.11) imamo J(t) > 0, $to implicira da je

1 [r
J(t)—%/o w?dr =0

(5.15)
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za svaki t > 0. Kako je w? > 0, ovo povlaéi w = 0, odnosno u; = u,. B

Primijetimo da prema istom dokazu Neumannov problem takoder ima jedinstveno
rjesenje jer slobodni ¢lan u jednadzbi (5.13) iscezava kada je w,(0,t) = w,(L,t) = 0.
Sada ¢emo dokazati zanimljivi rezultat prema kojem u svakom konacnom vremenskom
intervalu [0, T rjesenje homogene jednadzbe (5.1) ima maksimum na parabolickom
rubu pravokutnika D = [0, L] x [0, 77,

0D ={(0,t) |0<t<T}U{(2,0)|0<z<L}U{(L,t)|0<t<T}.  (5.16)
Parbolicki rub 9,D je unija stranica z =0,t =012z = L.
Teorem 5.2 (Princip maksimuma) Neka je funkcija u C? rjesenje jednadzbe
U — kg, =0, 0<z<L,t>0. (5.17)

Neka je T > 0 i neka je D zatvoreni pravokutnik [0, L] x [0,T]. Tada funkcija u ima

maksimum po D na parabolickom rubu 0,D, odnosno

t) = t 5.18
max (1) = uleo. ) (5.18)

za neku tocku (xg,ty) € 0,D.
Dokaz. Neka je M = max, )ep u(w,t). Kako je u neprekidna na D, postoji tocka

(xo,t0) € D takva da je M = u(zo,t). Pretpostavimo da funkcija nema maksimum

na parabolickom rubu, odnosno (xg,ty) € D \ 9,D. Onda je

=M — 5.19
(xir)l?a’iD“(x’ ) 3 (5.19)

za neki € > 0. Uvedimo pomoé¢nu funkciju

v(z,t) = ulx,t) + %(z — x0)%. (5.20)

Za tocke parabolickog ruba vrijedi |x — x¢| < L pa jednakost (5.19) povlaci

v(x,t) < wu(z,t)+ g <M — %, (z,t) € 9,D. (5.21)
S druge strane,
’U(.Clﬁo,to) = U(.Cljo,to) =M>M — é (522)

2
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pa zakljucujemo da max, sep v(, t) nije dosegnut na parabolickom rubu 9,D. Dakle,

(m)aXDv(:L’,t) =v(x1,t;) unekoj tocki (x1,t;) € D\ 9,D. (5.23)
x,t)E

U tocki (z1,t;) funkcija v zadovoljava nuzni uvjet za postojanje maksimuma:
ve(z1,t1) =0, vge(z1,61) <0 akoje 0<t; <T, (5.24)
ili
v(x1,t1) >0, vpp(zy,t1) <0 akoje ¢ =T. (5.25)
U oba slucaja vrijedi
Ut(fEl,tl) - kaI(ZL‘htl) Z 0. (526)

Medutim, iz definicije funkcije v imamo
vt(xl,tl) — k?’l]zz(l‘htl) = Ut(l’l,tl) — k:um(xl,tl) —— <0 (527)

jer je uy(x1,t1) — kg (21, t1) = 01 ke > 0, 8to vodi na kontradikciju s relacijom (5.26).
Zakljucujemo da funkcija v ima maksimum po skupu D u nekoj tocki parabolickog
ruba 0,D. W

Fizikalna interpretacija ovog principa je sljede¢a. Temperatura u unutrasnjosti Stapa
(u tocki & € (0,L)) je u svakom trenutku 0 < ¢ < 7 manja od maksimalne pocetne
temperature ili maksimalne temperature na rubovima stapa. U geometrijskim termi-
nima, ploha u = u(z,t) ima maksimalnu visinu na jednoj od stranica x = 0, x = L
ili t = 0 pravokutnika [0, L] x [0, T.

Korolar 5.1 (Princip minimuma) Ako funkcija u zadovoljava pretpostavke iz te-

orema 5.2, onda w ima minimum u nekoj tocki parabolickog ruba 0,D.

Dokaz. Funkcija w = —u zadovoljava jednadzbu provodenja u teoremu 5.2 pa w ima
maksimum u nekoj tocki (zo,%p) € 9,D. Ovo povlaci da v = —w ima minimum u
(.To, to) [ |

Principi maksimuma i minimuma imaju za posljedicu stabilnost rjesenja jednadzbe
provodenja. Preciznije, u svakom konacnom vremenskom intervalu [0,7] mala pro-

mjena u pocetnim ili rubnim uvjetima rezultira malom promjenom u rjeSenju. Ovaj
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rezultat je vazan jer u primijenjenim problemima pocetni i rubni uvjeti nisu uvijek

egzaktno poznati.

Teorem 5.3 (Stabilnost rjesenja) Neka su u; i uy C? rjesenja pocetno—rubnih

problema
8Ui _ k62uz
ot 0x?

=0, O0<z<L, t>0,

za 1 =1,2. Neka je T >0 i neka je D =[0,L] x [0,T]. Ako je

Zax |fi(x) = fa(z)| <e,

foax Jai(t) —ax(t)] <e,  max [bi(t) — ba(t)] <e

za neki e > 0, onda je

t) — t)] <e.
s [ (1) — . 1)| < <

(5.31)

(5.32)

(5.33)

Dokaz. Funkcija v = u; — us zadovoljava jednadzbu v; — kv,, = 0 i na parabolickom

rubu od D vrijedi

0(z,0)] = [fi(z) = fo(z)]| <&, 0<z <L,
al(t)_CLZ(t)| <ég, 0§t<Ta
Ovo povlaci da je
lv(z,t)| <e, (x,t) €0,D,
odnosno
—e <wv(z,t) <e, (x,t) €0,D.

Prema principu maksimuma i minimuma imamo

—e < min v(z,t) i max v(z,t) <e
(z,t)eD (z,t)eD
Sto implicira

t) — t)| = 1) <e.
(ggeXDWﬂrv?) us(,1)] <£3?EXD|U(9”’ )| <e

(5.34)
(5.35)
(5.36)

(5.37)

(5.38)

(5.39)

(5.40)
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5.2 Separacija varijabli za homogenu jednadzbu

U ovom poglavlju ¢emo odrediti rjesenje jednadzbe provodenja topline metodom sepa-
racije varijabli i Fourierovih redova. Ovom metodom se rjesenje dobiva u obliku reda
po vlastitim funkcijama pridruzenog Sturm-Liouvilleovog problema. Pokazat ¢emo
da uz odredene pretpostavke na pocetne uvjete dobiveni red konvergira i predstavlja
klasi¢no rjesenje jednadzbe. Promotrimo za pocetak rubni problem s Dirichletovim

uvjetima.
Dirichletovi rubni uvjeti
Odredimo rjesenje jednadzbe provodenja
Uy — kug, =0, 0<ax<L, t>0, (5.41)
s pocetnim i rubnim uvjetima

u(z,0) = f(z), 0<z<IL, (5.42)

u(0,t) =u(L,t) =0, t>0. (5.43)

Kompatibilnost uvjeta (5.42) i (5.43) implicira da je f(0) = f(L) = 0. RjeSenje ¢emo

potraziti u separiranom obliku

u(z,t) = P(x)Q(t). (5.44)
Supstitucijom jednadzbe (5.44) u (5.41) dobivamo
Qt . Pxx
0 P (5.45)

Kako su x i t nezavisne varijable, iz (5.45) slijedi da su obje strane jednadzbe kons-

tantne. Stoga je

Qt _an:__
o= = (5.46)

za neki A € R. Konstantu A nazivamo separacijska konstanta, a negativni predznak

je odabran radi konvencije. Dakle, funkcije P i ) su rjesenja obi¢nih diferencijalnih
jednadzbi

Po.+AP=0, 0<ux<lL, (5.47)
Q:+kXQ =0, t>0. (5.48)
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Rubni uvjeti
u(0,1) = PO)Q() =0, u(L.t) = P(L)Q(H) =0 (5.49)
povlace da je P(0) = P(L) = 0. Rubni problem za funkciju P,

Py + AP =0, (5.50)
P(0) = P(L) =0, (5.51)

naziva se Sturm-Liouvilleov problem pridruzen jednadzbi (5.41)—(5.43). Ako jed-
nadzba (5.50) s rubnim uvjetom (5.51) ima netrivijalno rjesenje P # 0 za neki A € R,
onda se P naziva vlastita funkcija, a A vlastita vrijednost Sturm-Liouvilleovog pro-
blema. Prvi korak u rjesavanju jednadzbe provodenja je odrediti vlastite funkcije i
vlastite vrijednosti ovog problema. Obzirom da priroda rjeSenja ovisi o predznaku
konstante A, posebno ¢emo razmatrati slucajeve A < 0, A = 0i A > 0. Uvedimo
oznaku A\ = £c2, ¢ > 0.

Sluéaj A = —c? < 0. Opce rjesenje jednadzbe (5.50) je dano sa
P(z) = Ae™ + Be™“". (5.52)
Rubni uvjeti impliciraju da A i B zadovoljavaju sustav jednadzbi

P(0)=A+B=0, (5.53)
P(L) = Aet + Be ™k = 0. (5.54)

Determinanta matrice ovog sustava je

40 (5.55)

pa sustav ima samo trivijalno rjesenje A = B = 0. Stoga A < 0 nije vlastita vrijed-

nost Sturm-Liouvilleovog problema.

Slucéaj A = 0. U ovom slu¢aju imamo

P(x) = A+ Bz (5.56)
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Sto daje

P(0)=A =0, (5.57)
P(L)=A+ BL=0. (5.58)

Ocigledno je A = B = 0 pa slijedi da A = 0 nije vlastita vrijednost problema (5.50)—
(5.51).

Slucaj A = ¢® > 0. Opce rjesenje jednadzbe (5.50) je linearna kombinacija
P(z) = Acos(cz) + Bsin(cz). (5.59)

Iz rubnih uvjeta dobivamo

P(0)=A=0, (5.60)
P(L) = Acos(cL) + Bsin(cL) = 0. (5.61)

Ovaj sustav ima netrivijalno rjesenje B # 0 samo ako konstanta ¢ zadovoljava
sin(cL) = 0. (5.62)

Jednadzba ima diskretna rjesenja

¢, = % n=+1,42 ... (5.63)

pa su vlastite vrijednosti Sturm—Liouvilleovog problema dane sa

Ay = (”%)2 n> 1. (5.64)

Svakoj vrijednosti A, pripada vlastita funkcija

Py(z) = B, sin (%x) n>1. (5.65)

Zakljucujemo da Sturm-Liouvilleov problem (5.50)—(5.51) ima beskona¢no mnogo

rjesenja (5.65) s pripadnim vlastitim vrijednostima (5.64).

Za svaku vlastitu vrijednost A, funkcija ) zadovoljava pripadnu jednadzbu

Qi + kX Q=0 (5.66)
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koja ima eksponencijalno rjesenje
Qn(t) = e_k(LLﬂ)Qt, n>1. (5.67)
Ovom metodom dobivamo niz separiranih rjesenja
Un(z,t) = Qu(t)Py(x) = Bne_k(%)zt sin <n%x>, n>1 (5.68)

koji zadovoljavaju rubne uvjete u, (0,t) = u,(L,t) = 0. Prema principu superpozicije,

svaka linearna kombinacija

u(z,t) = iun(x,t) = i Bne_k(nfﬂ)zt sin (%x) (5.69)

je takoder rjesenje jednadzbe provodenja sa svojstvom da je u(0,t) = u(L,t) = 0.
U pocetnom trenutku ¢ = 0 imamo u(z,0) = f(z). Ako se zadana funkcija f moze

napisati kao linearna kombinacija

N
nm
=Y Busin (1), 0<a<L. .
f(z) ; sin 0<z< (5.70)
onda je funkcija (5.69) rjeSenje naseg problema (5.41)—(5.43).

Primjer 5.1 Odredite rjesenje problema

Up — 2Uyy = 0, O<z<m t>0, (5.71)
u(z,0) = 5sin(2z) — 10sin(3z), 0<z <7 (5.72)
u(0,t) = u(m, t) =0, t>0. (5.73)
U ovom primgeru je L = 7 i k = 2, stoga rjesenje ima oblik
N
u(z,t) = Z Bne 'sin(nx). (5.74)
n=1
1z pocetnog uvjeta
N
u(z,0) = ZB” sin(nz) = 5sin(2z) — 10sin(3x) (5.75)
n=1

zakljucujemo da je N = 3, By = 0, By = 5 1 B3 = —10. Supstitucijom ovih vrijednosti
u jednadzbu (5.74) dobivamo

u(z,t) = 5e ¥ sin(2x) — 10e'* sin(3x). (5.76)



POGLAVLJE 5. JEDNADZBA PROVODENJA TOPLINE 69

Ocigledno je da se proizvoljna funkcija f ne mozemo napisati kao linearnu kombinaciju

(5.70). Medutim, ako se f moze razviti u Fourierov red
- nm
=" Busin (“a) 5.77
) =3 Busin (" (5.77)

na intervalu [0, L], onda ocekujemo da je rjesenje problema dano u obliku reda

u(z,t) = Y7 up(z,t). Sljedeéi teorem daje uvjete koji garantiraju da je red

> o2 un(x,t) klasicno rjesenje jednadzbe provodenja.

Teorem 5.4 (Egzistencija rjeSenja) Pretpostavimo da je funkcija f: [0,L] — R
(i) meprekidna na [0, L] i po dijelovima C' na [0, L],

(ii) f(0) = f(L)=0.

Tada je funkcija
u(z,t) = i Bpe *UT)t sin (Ex> B, = 2 /L f(z)sin <m>dx (5.78)
’ — L) L J, L

klasicno rjesenje pocetno—rubnog problema

Uy — ktlgy = 0, O<a<L, t>0, (5.79)
u(z,0) = f(z), 0<xz<L, (5.80)
u(0,t) = u(L,t) =0, t>0. (5.81)

Dokaz. Neka je f neparno prosirenje funkcije f,

fla) = fzh 0sosl, (5.82)
—f(=z), —-L<z<0O.

Funkcija f je neprekidna i po dijelovima C* na [—L, L] i o¢igledno je f(—L) = f(L) =
0. Prema teoremu 2.4 Fourierov red

[e'¢)
T

flz) = % + Z A, cos (?) + B, sin (%) (5.83)
n=1
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konvergira uniformno ka f na [—L, L]. Fourierovi koeficijenti su dani sa
1t
A, = —/ f(z) cos (@>d1’ =0, n>0, (5.84)
L), L

B, = %/_i f(x)sin (%)dm = %/OL f(z)sin (n_zx)dx’ n>1, (5.85)

i vrijedi Y >, |By| < co. Funkcije
nm

Un(, 1) = Bpe *E)tsin (Tx) n>1 (5.86)

zadovoljavaju jednadzbu provodenja i rubne uvjete u,(0,t) = u,(L,t) = 0. Kako su

up(z,t) ograni¢ene konvergentnim redom,
lun(z,t)| < |Bn| zasve 0<z<L,t>0, (5.87)

prema Weierstrassovom kriteriju red » 7 | u,(z,t) konvergira uniformno na zatvore-
nom skupu Q = {(z,t) | 0 < x < L, t > 0}. Funkcije u,(x,t) su neprekidne na Q pa

je suma reda neprekidna funkcija

u(z,t) = Zun(x,t), (x,t) € S (5.88)

Pokazimo sada da funkcija wu(z,t) zadovoljava jednadzbu provodenja na skupu .

Neka je € > 01 neka je Q. = {(z,t) | 0 <2 < L, t > ¢}. Funkcija f je ogranic¢ena pa

vrijedi
2| [* 2 [F
Ba| = = /0 f(x)sin (”%x)dx < Z/0 \f(2)|dx < 2M (5.89)
gdje je M = max,c[—r,r) | f(2)]. Deriviranjem po varijabli ¢ dobivamo
(;; = —BJ{:(%T) e FCE) t gin (%m) (5.90)
Stoga je u svakoj tocki (z,t) € €. derivacija ograni¢ena sa
ou nm\ 2 2 2 nm 2
"l < B, (-) “k(E? < 9y (-) 20 k()% 91
at_\]kLeL_kLneL (5.91)

. . _(nT\2 . > . .
Lako se provjeri da red Y >°  n’e FCE)% konvergira §to prema Weierstrassovom kri-

teriju povlaci da red Y, du,/0t konvergira uniformno na Q.. Stoga funkciju w
mozemo derivirati po ¢lanovima pa imamo
ou =, du,,

ot - ot’

n—

(2,t) € Q. (5.92)
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Slicno se pokaze da vrijedi

d*u,, Q
W 252’ (2,t) € Q.. (5.93)

Sada iz jednadzbi (5.92) i (5.93) slijedi da u zadovoljava

0 = > Ouy,
ut—kum:a(Zun —k@ Zun Z(@t — 8x2) =0 (5.94)

na skupu €2.. Kako je ¢ > 0 odabran proizvoljno, zaklju¢ujemo da je u rjeSenje
jednadzbe provodenja na otvorenom skupu Q = {(z,t) |0 <z < L, t > 0}. Funkcija

u ocigledno zadovoljava rubne uvjete u(0,t) = u(L,t) = 0 i pocetni uvjet
0) = i B, sin (Tx) — flz), 0<z<L (5.95)
n=1 L 7 a T

jer Fourierov red (5.95) konvergira uniformno ka f na skupu [0, L]. B

Primjer 5.2 Odredite rjesenje problema

U —Upy =0, O<z<m t>0 (5.96)
u(0,t) = u(L,t) =0, (5.97)
x, 0<z< 73
T™— 1, 5 <x <.

Rjesenje Duljina intervala je L = 7 pa je funkcija u dana sa

ZB e "t sin(na). (5.99)

Funkcija f(z) = u(z,0) je neprekidna i po dijelovima C' na [0,7]. Stoga je prema

Dirichletovom teoremu
= Z Bpsin(nz) zasvaki 0 <z < (5.100)

Fourierovi koeficijenti su dani sa
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Slika 5.2: Graf funkcije (5.104).

2 (" 2 (2 2 [T
B, = —/ f(z)sin(nz)dr = — /2 xsin(nz)dr + —/ (m — x) sin(nz)dz
T Jo T Jo L
2 [ x cos(nx) n Sin(n:c)} 3 N 2 [ (m — x) cos(nz) sin(naf;)]7T
o n n? lo 7 n n? Iz
4 nm
~ —sin (7) (5.101)
Kako je
0, n =2m,
sin <T> - (5.102)
2 (=)™, p=2m—1,
samo koeficijenti
4 (_1)m+1
Bopy 1 = — L om>1, 5.103
su razlic¢iti od nule. Stoga je
(D™ o _
e sin ((2m — 1)x) (5.104)
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Rjesenje u(x,t) prikazano je na slici 5.2. Primijetimo da za svaki T > 0 funkcija u
ima maksimum na stranici ¢ = 0 pravokutnika [0, 7] x [0, 7], u skladu s principom
maksimuma. W

Neumannovi rubni uvjeti

Na slican nacin se metodom separacije moze izvesti rjesenje Neumannovog problema

gy — kg, =0, O<z<L,t>0, (5.105)
ue(0,8) = ug(Lyt) = 0, t>0, (5.106)
u(z,0) = f(z), —L<zx<L. (5.107)

Funkcija f zadovoljava uvjete kompatibilnosti pocetnih i rubnih uvjeta f'(0) = f/(L) =
0. Pokazuje se da je rjeSenje dano redom

[e.9]

A nmw\2
u(z,t) = 2+ ; Ane FCEP cog (%x) (5.108)
9 [L
A, = —/ f(@) cos (Taz> dr, n>0. (5.109)
L J, L
Periodic¢ni rubni uvjeti
Pretpostavimo da je zica duljine 2L savijena u obliku kruznice. U tockama x = —L
i z = L temperatura i njezin gradijent imaju iste vrijednosti pa funkcija wu(z,t)
zadovoljava jednadzbu
u — kuy, =0, —L<axz<L,t>0, (5.110)
u(z,0) = f(z), —L<z<L, (5.111)
s periodickim rubnim uvjetima
u(—L,t) =u(L,t), uy(—L,t)=u.(L,t), t>0. (5.112)

Separacijom varijabli se moze pokazati da je opce rjesenje dano sa

A > nwm
u(zx,t) = 70 + Z e HCT) [An oS (n—[iTx) + B, sin (n%xﬂ (5.113)
n=1
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gdje su
1 [t nmw
A, = 17 f(z) cos (T:c)d:c, n >0, (5.114)
L
1 [ nmw
B, = Z/ f(x)sin (Tx)dx, n>1. (5.115)
L

Primjer 5.3 Odredite rjesenje problema

Uy — kg = 0, —L<x<L, t>0, (5.116)
u(z,0) = cos® (%x), —L<z<L, (5.117)
u(—L,t) = u(L,t), uy(—L,t) =u,(L,t), t>0. (5.118)

Funkeiju f(x) = cos*(Fx) moZemo razviti w Fourierov red na [—L, L) koristeci trigo-

nometrijski identitet
1
cos(z) cos(y) = 3 [ cos(z + y) + cos(z — y)]. (5.119)

Iz jednadzbe (5.119) dobivamo

1
cos®(z) = cos(x) cos?(z) = 3 cos(z) [ cos(2z) + 1]
1 1
=3 cos(x) cos(2x) + 5 cos(x)
1 1
=1 [ cos(3z) + cos(z)] + 3 cos(z)
3 1
=1 cos(x) + 1 cos(3x). (5.120)
Dakle,
3 1 3
cos® (%x) =, cos (%x) + 78 (%x) (5.121)
Jednadzba (5.121) predstavija razvoj fukcije cos®(rx /L) u Fouerierov red
A o0
cos® (%x) = 70 + ; [An oS (n%:v) + B, sin (n%:v)] (5.122)
gdje su Ay = % i Az = ;11 dok svi ostali koeficijenti A,, i B,, iscezavaju. Uvrstavanjem
ovih koeficijenata u izraz (5.113) dobivamo
. 3 7k(1)2t m 1 7]{(37‘”)215 <37T )
u(z,t) = 1€ b cos <Lx) +ge it eos (). (5.123)
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Ostali rubni uvjeti

Na kraju navedimo da se metodom separacije varijabli mogu konstruirati rjesenja
jednadzbe provodenja za razlicite kombinacije rubnih uvjeta. Na primjer, na jednom

kraju intervala moze biti zadan Dirichletov a na drugom Neuannov rubni uvjet,

uy — kg, = 0, O<z<L,t>0, (5.124)
u(0,t) =0, u,(L,t) =0, t>0, (5.125)
u(z,0) = f(x), 0<xz<L. (5.126)

U tom slucaju rjesenje je dano sa

- k(212 . ((2n—1)m
u(z,t) = E Cre FGE) Gn=Dt gy (222~ o (5.127)
vt ( 2L )
gdje je
2 [F _/(2n =D
C, = z/o f(z)sin (Tz> dx. (5.128)

Koeficijenti C,, se mogu odrediti tako da se funkcija f prosiri sa intervala [0, L] na

[0,2L]. Prosirena funkcija

- x), 0<z<L,
Fla) = f()
f(2L — x), L<z<2L.

(5.129)

se razvije u Fourierov red po funkcijama sin (nrz/(2L)) na intervalu [0, 2L] (koristeci

neparno prosirenje na interval [—2L,2L]) iz ¢ega se potom dobiju koeficijenti C,,.

5.3 Separacija varijabli za nehomogenu jednadzbu

Modifikacijom prethodne metode moguce je odrediti rjeSenje nehomogene jednadzbe

provodenja
up — kg, = F(z,t), O<z<L,t>0, (5.130)

u(z,0) = f(z), 0<z<IL, (5.131)
u(0,t) =u(L,t) =0, t>0. (5.132)
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Ako je F' =0, onda znamo da je rjesenje dano sa

ZB e~CE t gin (%w) (5.133)

nm 2

sto mozemo interpretirati kao Fourireov red ¢iji koeficijenti B, (t) = B, e=*(E) ™t ovise
o paremetru t. Ovo sugerira da rjeSenje nehomogene jednadzbe potrazimo metodom

varijacije parametara u obliku

Z T,(t) sin ( ) (5.134)

gdje su T),(t) nepoznate funkcije. Funkcije T,,(t) mozemo odrediti ako se F'(x,t) moze
razviti u Fourierov red istog oblika kao (5.134). Pretpostavimo da je F(z,t) nepre-
kidna i po dijelovima C! u varijabli z € [0, L] za svaki ¢t > 0. Obzirom da funkcija
F(z,t) modelira unutarnji izvor koji grije ili hladi stap, razumno je pretpostaviti da
je F(0,t) = F(L,t) = 0. Tada Fourierov red

ZF sm( ) (5.135)

uniformno konvergira ka F(z,t) na intervalu [0, L] za svaki ¢ > 0. Supstitucijom

izraza (5.134) i (5.135) u jednadzbu provodenja dobivamo

i (T,;(t) +k (%)2%@)) sin () = Z F)sin(Fx).  (5.136)

n=1

Odavde slijedi da funkcije T,,(t) zadovoljavaju diferencijalne jednadzbe
, nm 2
T'(t) + k (f) T,(t) = E,(t), n> 1. (5.137)
Opce rjesenje jednadzbe (5.137) je dano sa
nm 2
T (t) = B, e (L)t 4 TP (1) (5.138)

gdje je B, konstanta integracije, a TF(t) je partikularno rjesenje koje ovisi o funkciji
F,.(t). Uvrstenjem rjesenja (5.138) u jednadzbu (5.78) dobivamo

ZB@ (F) sm( ) ZTP s1n<—x> (5.139)
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Prvi ¢lan u jednadzbi (5.139) prepoznajemo kao rjesenje homogenog problema,

up(z,t) = f: B, eik(f)% sin <fx> : (5.140)

n=1

dok je drugi ¢lan partikularno rjesenje

ZTP sm< ) (5.141)

koje ovisi o funkciji F(z,t). Koeficijente B,, odredujemo iz pocetnog uvjeta u(z,0) =

f(z),

3" (B. + T2(0)) sin (”%x) = f(z), 0<z<IL, (5.142)
n=1
odakle dobivamo .
2
B, +TP(0) = E/o f(z)sin (%x) dr. (5.143)

Time je rjesenje nehomogene jednadzbe provodjenja potpuno odredeno.

Primjer 5.4 Rijesite nehomogenu jednadzbu

Up — Ugy = € 'sin(3z), O<z<m, t>0, (5.144)
u(0,t) = u(m,t) =0, t>0, (5.145)
u(z,0) = zsin(x), 0<z<m. (5.146)

Nehomogeni ¢lan F(z,t) = e 'sin(3z) zadovoljva uvjet F(0,t) = F(m,t) = 0 pa

rjeSenje trazimo u obliku
Z T,.(t) sin(nzx) (5.147)

Supstitucijom izraza (5.147) u jednadzbu (5.144) dobivamo

Z (T7,(t) + n*T,(t)) sin(nz) = e " sin(3z). (5.148)

n=1

Ovo povlaci da funkcije T,,(t) zadovoljavaju diferencijalne jednadzbe

T!(t) +n*T,(t) =0, n#3, (5.149)
Ty(t) +9T3(t) = e . (5.150)
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Rjesenje prve jednadzbe je dano sa
To(t) = Bpe ™, n+#3. (5.151)
Drugu jednadzbu mozemo rijesiti medotom varijacije konstanti, T3(t) = Cj(t)e .
Tada iz (5.150) slijedi da je C5(t) = €* Sto povlaci Cs(t) = z€* + Bs. Dakle,
Ts(t) = Bse ™ + %et. (5.152)

Stoga u(z,t) mozemo zapisati kao
G 1
u(z,t) = Z Byne "t sin(nz) + —e ' sin(3z). (5.153)
n=1 8
Iz pocetnog uvjeta (5.146) dobivamo
S 1
Z B, sin(nz) + 3 sin(3z) = zsin(x), 0<z <. (5.154)
n=1

Definirajmo koeficijente Bn =B,zan#3i Bg = B3+ % tako da je

Z B, sin(nz) = zsin(z), 0<z <. (5.155)
n=1
B,, su Fourierovi koeficijenti
~ 2 4
B, = —/ xsin(z) sin(nz)dx, n > 1. (5.156)
T Jo
Za n = 1 imamo
~ 2 [ T
By =— [ xzsin®(z)dr = —. (5.157)
T Jo 2

Za n > 2 dobivamo

8 2 [T
B, = —/ xsin(z) sin(nz)dx
0

_2 /0 g [eos ((n — 1)) — cos ((n + 1)2)] da

- %rll)z [cos ((n — 1):(;) + (n — 1)z sin(z) sin ((n - 1)95)}2

_ %ﬁ [cos ((n + 1)37) + (n + 1)z sin(z) sin ((n + 1)90)}2
Cr(=nrt—1 1 (=Dt -1 An((-1)"+1)

B e | I (e i et R
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Primijetimo da je B, = 0 za neparni n > 1, dok je za parne indekse

B 16 n

= o 2B (5.159)

Iz jednadzbi (5.157) i (5.159) dobivamo
By = g By = —%, B, =0 zaneparnin > 3, (5.160)
B, —_ 0 n n=123,. .. (5.161)

T or (2 —1)%

Supstitucijom koeficijenata B,, u jednadzbu (5.153) nalazimo rjeSenje problema

o0

1 16
u(z,t) = ge_t sin(z) + g(e_t — e M) sin(3z) — — Z Me%”zt sin(2nx).
1

(5.162)

Graf funkcije u je prikazan na slici 5.3. B
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Slika 5.3: Graf funkcije (5.162).
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Poglavlje 6

Valna jednadzba

6.1 Valno gibanje i d’Alembertovo rjesenje

Valna jednadzba ima istaknuto mjesto u primjenama jer opisuje titranje kontinuiranih
mehanickih sredina, Sirenje elektromagnetskih i zvucnih valova, a nalazi primjene i
u kvantnom opisu elementarnih cestica. U ovom poglavlju razmatrat ¢emo valnu

jednadzbu u jednoj prostornoj dimenziji
Uy — gy = 0. (6.1)

Jednadzba (6.1) opisuje tiranje elasti¢ne zice u idealiziranom sluc¢aju kada mozemo
zanemariti disipativne efekte kao §to su unutarnje trenje zice ili trenje zraka. Zica je
polozena duz osi z, a otklon Zice u(z,t) od ravnoteznog polozaja je okomit na os x.
Ovakvo titranje se naziva transferzalno za razliku od logitudinalnog titranja koje se

odvija duz osi x. Konstanta ¢ > 0 predstavlja brzinu Sirenja vala.

Proucavanje valne jednadzbe pocinjemo nekim opéim zapazanjima o valnim giba-

njima. Uvedimo nove variable
a=z+ct, f=x—ct (6.2)
i funkciju w(a, B) = u(z(e, 8), t(o, §)). Tada je

Uy — Clyy = —402wa5 (6.3)

81
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pa u novim varijablama jednadzba ima kanonski oblik
wag = 0. (6.4)
Integracijom ove jednadzbe dobivamo
w(e, f) = A(a) + B(F), (6.5)
stoga je opce rjesenje dano sa
u(x,t) = Az + ct) + Bz — ct) (6.6)

gdje su A i B proizvoljne funkcije klase C?. Funkcija A(z + ct) predstavlja val koji
se krece brzinom ¢ u negativnom smjeru, dok B(xz — ct) predstavlja val koji se krece
istom brzinom u pozitivhom smjeru. Dakle, opce rjesenje valne jednadzbe je super-

pozicija dvaju valova koji se gibaju u suprotnim smjerovima.

Pretpostavimo da valna jednadzba opisuje titranje vrlo dugacke zice. Kako se valno
gibanje §iri kona¢nom brzinom, mozemo zanemariti rubne uvjete na krajevima zice
barem u nekom vremenskom interalu. U tom slucaju titranje Zice mozemo modelirati

jednadzbom
Uy — gy =0, z€R, t>0, (6.7)
u(z,0) = f(z), wu(z,0)=g(x), zeR, (6.8)
gdje funkcije f(z) i g(z) predstavljaju pocetni otklon i poc¢etnu brzinu u tocki x,
redom. Supsitucijom opéeg rjeSenja u pocetne uvjete (6.8) dobivamo
u(z,0) = A(z) + B(x) = f(z), (6.9)
u(x,0) = cA'(z) — eB'(x) = g(z). (6.10)
Integracijom jednadzbe (6.10) slijedi

A(z) — B(z) = l/om g(s)ds+ D (6.11)

C

gdje je D konstanta integracije. Dakle, funkcije A i B zaodovljavaju sistem jednadzbi
Afx) + B(a) = f(a), (6.12)

A(xz) — B(z) = - /Ox g(s)ds + D (6.13)
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koji ima jedinstveno rjeSenje

Alw) = 51)+ 5 | oeds+ 3, (6.14)
Blx) = %f(x) - 2%/019(3)@ - g. (6.15)
Dakle, riesenje valne jednadibe je dano sa
w(a,t) = Alx + ct) + Blx — cf) (6.16)
_ %[ Fla+et) + fla—ct)] + % / i:t o(s)ds. (6.17)

Ovo rjesenje nazivamo d’Alembertovo rjeSenje s pocetnom amplitudom f € C?*(R)
i brzinom g € C(R). Intuitivno je jasno da je gibanje zZice jedinstveno odredeno
ako su poznati pocetni polozaj i brzina. Takoder je razumno ocekivati da male pro-
mjene u pocetnim uvjetima uzrokuju male promjene u rjeSenju u(z,t) kada titranje
promatramo u konacnom vremenskom intervalu. Dokazimo ove tvrdnje u sljede¢em

teoremu.

Teorem 6.1 Neka su f € C*(R) i g € CY(R). Tada valna jednadzba (6.7)-(6.8) ima

jedinstveno rjesenje

z+ct
u(z,t) = %[f(m Fet)+ fla— ct)} + i/ g(s)ds (6.18)

2C —ct

koje je u svakom konacnom intervalu 0 < t < T stabilno obzirom na pocetne uvjete
u(z,0) = f(z), w(z,0) = g(x), v € R.

Dokaz. Koristeéi formulu

p2(z)
d fu)du = f(pa(2)) ph(x) — fle1(2)) @i (2) (6.19)

dz J o, ()

lako se provjeri da funkcija (6.18) zadovoljava jednadzbu (6.7) i pocetne uvjete (6.8).
Iz konstrukcije rjesenja slijedi da je svaka funkcija koja zadovoljava jednadzbe (6.7)-

(6.8) nuzno oblika (6.18) pa je rjesenje jedinstveno.
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Pokazimo da je rjesenje (6.18) stabilno. Neka su u; i ug rjeSenja pridruzena pocetnim
uvjetima f1,91 1 fa, go, redom. Promotrimo u; i us u vremenskom intervalu [0, 7.
Odaberimo ¢ > 0 i pretpostavimo da pocetni uvjeti zadovoljavaju

19 13
_ < _ < . 6.20
igﬂg!fl(fc) fo(2)) T ilelﬂglgl(x) ga(z)] T (6.20)

Razlika rjesenja jednaka je
1
uy(z,t) — us(x, t)—g[fl (z +ct) — folz+ ct) + fi(z — ct) — folz — ct)]
x+ct
v3 ] @) - n)as (6:21)
pa iz nejednakosti (6.20) slijedi

s, 1) —wa, )] < 5 (1l + ) = folar + et) 4 ol —ct) — ol — et)])
r+ct
o [ o) - o)l as

<1 €+€ +1/x+0t8d
=o\iyr"1y7) "2e) , 1+T"

- 1j_T(1—i—t)§5 (6.22)

za svaki 0 <t <T'. Ovo implicira da je

sup |uy(z,t) — us(x,t)] < e. (6.23)

zeR
0<i<T

Pokazali samo da za svaki £ > 0 postoji 6 = 2¢/(1 + T') takav da

sup (\fl(x)—fg(a:)\+]gl(x)—gg(a:)\) <0 = sup |ui(z,t)—us(z,t)| <e. (6.24)

z€R z€R
0<t<T

Dakle, u svakom konacnom intervalu 0 <t < T mala promjena u poc¢etnim uvjetima

uzrokuje malu promjenu u rjeSenju pa je rjesenje valne jednadzbe stabilno. Wl

Primjer 6.1 Rijesite valnu jednadzbu

Uy — CPUgy = 0, reR, t>0, (6.25)
1

el u(z,0) = 0. (6.26)

u(z,0) =
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0.3 4

0.2 4

0.14

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
x x

(a) Pocetni profil f(z) = Hﬁ (b) Funkcija u(z,t) kao superpozicija dva

putujuca vala.

Slika 6.1:

U ovom problemu je f(z) = H% i g(x) = 0. D’Alembertovo rjesenje je dano sa

1 1 1
ul(z,t) = 2 [1 + (z + ct)? i 1+ (z— ct)Z]' (6:27)

Slika 6.1 prikazuje pocetni profil vala i rjesenje u(z,t). B
Primjer 6.2 Odredite rjesenje problema

Ugt — gy = 0, reR, t>0, (6.28)
u(z,0) = sin(z), u(z,0) = cos(z). (6.29)

Prema d’Alembertovoj formuli imamo

x+ct

u(z,t) = %[sin(x + ct) + sin(z — ct)] + %/ cos(s)ds

x—ct

= sin(x) cos(ct) + %[sin(m + ct) —sin(z — ct)]
= sin(x) cos(ct) + % cos(x) sin(ct). (6.30)

Koriste¢i identitet sin(c) cos(8) = 3[sin(a+ 3)+sin(a— )], rjesenje mozemo zapisati
kao superpoziciju valova koji putuju u suprotnim smjerovima

1 -1
et sin(z + ct) + ¢

u(z,t) = sin(x — ct). (6.31)

2c
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6.2 D’Alembertovo rjesenje za nehomogenu valnu

jednadzbu
U ovom poglavlju ¢emo d’Alembertovo rjesenje prosiriti na nehomogenu valnu jed-
nadzbu
Uy — Uy = F(2,1), reER, t>0, (6.32)
u(z,0) = f(z), w(z,0)=g(x), zeR. (6.33)

Funkcija F'(z,t) modelira vanjsku silu koja djeluje na zicu u tocki = u trenutku ¢. Uve-
dimo varijablu y = ¢t i definirajmo funkciju w(z,y) = u(z,t). Ovom transformacijom

dobivamo ekvivalentni problem

Wy — Wyy = F*(2,7), reR, y>0, (6.34)
w(z,0) = f(x), wy(z,0)=g¢"(x), z€R (6.35)

gdje su
Fo(e.y) = —5F(at), g°(x) = -g(o). (6.36)

Neka je (zo,%0) proizvoljna tocka u poluravnini z € R, y > 0. Promotrimo trokut
D kojeg tvore vrhovi Py = (zo,%0), P1 = (o — %0,0) i P> = (¢ + 4o,0). Oznacimo
stranice trokuta s By, By i By kao na slici 6.2. Ideja za rjeSenje problema (6.34)—
(6.35) je sljedeéa. Jednadzbu (6.34) ¢emo integrirati po trokutu D i primjenom
Greenovog teorema integral zamijeniti krivuljnim integralom po stranicama trokuta.
Racunanjem krivuljnih integrala dobit ¢emo vrijednost funkcije w u tocki (xg,yo).
Time je rjesenje odredeno jer je tocka (xg,yo) odabrana proizvoljno. Integracijom
jednadzbe (6.34) po trokutu D dobivamo

/ /D (Wae — Wy, )da dy = / /D F*(2,y)dz dy. (6.37)

Prema Greenovom teoremu integral na lijevoj strani jednak je

/ /D (W — Wy )dx dy = /8 (wydz + wdy) (6.38)

gdje je 0D pozitivno orijentirani rub trokuta D sastavljen od segemenata By, B i

B,. Integral po segmentu By iznosi

Z0+Yo zo+yo
/ (wydr + w,dy) = / wy(x,0)dr = / g (x)dx. (6.39)
Bo x

0—Yo Zo—Yo
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Fy = (20, y0)

y=x — (xo— o) y = —x+ (xo + yo)

oy
=

Py = (z9 — 40,0) Py = (9 + yo.,0)

Slika 6.2: Podrugje integracije za nehomogenu valnu jednadzbu.

Integral po segmentu B; se moze izracunati uvodeci parametrizaciju
z(t) =z + (L= t)yo, y(t) =tyo, te€[0,1] (6.40)
gdje smo vodili racuna o orijentaciji segmenta. Sada je
1
[ (s wdy) = [ [y o0,5(0) 2 0) + waelp®)y O]t (.41
B 0

Primijetimo da je 2'(t) = —y'(t) = —yo, stoga zamjenom 2’'(t) sa y/(t) u integralu
(6.41) dobivamo

/B (wydz + wydy) = — /0 [wa (2 (t), y (1) 2'(t) + wy (x(t), y (1)) y'(t)] dt

t=1

t=0

—— [ o).y = —uG.v)
= w(zo + Yo,0) — w(zo, Yo)- (6.42)

Sliéno se pokazuje da je integral po segmentu Bs jednak

/ (wydx + w,dy) = w(xo — Yo, 0) — w(zo, Yo)- (6.43)
B>
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Kako je w(z,0) = f(x), zbrajanjem integrala po segmentima By, By i By dobivamo

z0+Yo

LD(wydx + w,dy) = f(xo + vo) + f(xo — yo) — 2w(xo, yo) + / g (x)dx. (6.44)

T0—Yo0

Iz jednadzbi (6.37), (6.38) i (6.44) slijedi da je

//D F*(z,y)dzdy = /aD(wyd:c + w,dy)
zo+Yo
= f(zo+v0) + f(xo — yo) — 2w(x0,v0) + / g*(x)dx. (6.45)

T0—Yo

Odavde nalazimo

zo+Yo
wlan, ) = 5 [Feot )+ fao—w)] +3 [ g@te =5 [[ Py
Z0—Yo

Funkcija w u tocki (xg,y) je potpuno odredjena funkcijama f, g i F.. Kako je tocka

20, Yo) € R2 odabrana proizvoljno, mozemo pisati
(0, o) + J
1 ]‘ x+y / / 1 / / / /
wlo) = 3+ + -y 4y [ @i =5 [[ Payardy o0
T—yY D

gdje podrazumijevamo da se vrh trokuta D nalazi u tocki (z,y). Pocetno rjesenje
nalazimo iz jednadzbe u(x,t) = w(z, ct). Primijetimo da su prva dva ¢lana u gornjoj
jednadzbi rjeSenja homogene valne jednadzbe dok je tre¢i ¢lan partikularno rjesenje

koje ovisi o funkciji F(x,t).
Primjer 6.3 Odredite rjesenje problema

Wyp —Wyy =1, z€R, y>0, (6.47)
w(z,0) =sin(z), wy(z,0)==. (6.48)

U ovom problemu je F*(x,y) = 1, f(x) = sin(z) i ¢"(x) = x. Iz d’Alembertove

formule slijedi

1 1 [*tY 1
w(z,y) = 3 [sin(z + y) + sin(z — y)] + 5/ 2'dr’ — 5 // da’ dy' (6.49)
T—y D
1 z+ 1
= sin(z) cos(y) + Z(m')Q g 5(2y)y (6.50)
z=y
= sin(x) cos(y) + zy — 1yQ. (6.51)

2
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Primjer 6.4 Rijesite jednadzbu

Uy — Cugy =xe', TR, t>0, (6.52)
u(x,0) =sin(x), w(x,0)=0. (6.53)

Definiragmo funkcije F(x,t) = ze', f(x) = sin(z) ¢ g(x) = 0. Tada su

1
F(z,y) = -5 eV i g*(x) =0 (6.54)
c
pa je prema d’Alembertovoj formuli
1 1 ,
w(z,y) = 5 [sin(z +y) + sin(z — y)] + 52 // o' eV ed’ dy . (6.55)
¢ D

Oznacimo vrh trokuta D s (x,y) (vidi sliku 6.2). Tada je

Y'+(z+y) , vy o1
//a: e¥'/eda’ dy' —/ / T ey/cdx’dy’:/ ey/c<—(x’)2

—5/0 ey/c[( y+a+y)? = +r—y)’dy

Yy
= Qx/ eV(—y +y)dy =22 (ey/c A 1>. (6.56)
0 ¢

Y=y H(oty)y
)

o=/ +o=)

Supstitucijom jednadzbe (6.56) u (6.55) dobivamo
w(x,y) = sin(z) cos(y) + x (ey/c . 1>. (6.57)
c

Dakle, rjesenje u(x,t) je dano sa

u(z,t) = w(z,ct) = sin(x) cos(ct) + x (¢ —t — 1). (6.58)

6.3 Pocetno—rubni problem za valnu jednadzbu

Razmotrimo sada titranje zice duljine L na koju djeluje vanjska sila F(x,t). Ovaj

problem je opisan valnom jednadzbom
Uy — gy = F(x,t), 0<z<L, t>0, (6.59)
1 poCetnim uvjetima

u(z,0) = f(z), w(z,0)=g(x), 0<z<L. (6.60)
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Ako su krajevi zice uc¢vrséeni, onda u zadovoljava Dirichletove uvjete
u(0,t) =u(L,t) =0, t>0. (6.61)

Ako krajevi zice slobodno titraju okomito na os x, onda se zica postavlja tako da je
tangenta na nju horizontalna u tockama = = 0i x = L. U tom slucaju funkcija u

zadovoljava Neumannove uvjete
uz(0,t) = u (L, t) =0, t>0. (6.62)

Ocigledno, ako je zica u¢vrséena u jednom kraju, a u drugom kraju slobodno titra,
onda u zadovoljava kombinirane Dirichletove i Neumannove uvjete. RjeSenje valne

jednadzbe promatramo na domeni Q2 = {(z,t) |0 <z < L, t > 0}.

Teorem 6.2 (Jedinstvenost rjesenja) Neka suuy iuy C? rjesenja problema (6.59)-
(6.61). Tada je uy = us.

Dokaz. Neka je w = u; — us. Tada je w rjesenje homogene jednadzbe

Wy — CWyy = 0, O<ax<L, t>0, (6.63)
w(z,0) =w(z,0) =0, 0<z<L, (6.64)
w(0,t) =w(L,t) =0, t>0. (6.65)

Pokazat ¢emo da problem (6.63)-(6.65) ima samo trivijalno rjesenje w = 0. Defini-

rajmo pomo¢nu funkciju

E(t) = % /O (Cw? +wh)dz. (6.66)

Funkcija E(t) predstavlja ukupnu energiju titrajuée zice u trenutku ¢. Funkcije
(we)? = 2wawe 1 (wy)? = 2w,wy su neprekidne, pa prema Leibnizovom pravilu za

deriviranje pod integralom dobivamo

dE L
i / (CPWy Way + Wy Wy )dt. (6.67)
0

Parcijalnom integracijom prvog ¢lana nalazimo

x=L L
— WiWyy AT
x=0 0

— wo(L, tywn(L, £) — wa(0, )i (0, ) — /0 v de. (6.68)

L
/ WalWat AT = WyWs
0
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Fukcija w zadovoljava rubni uvjet w(0,t) = 0 za svaki ¢ > 0 Sto implicira

w(0,t+ At) —w(0,1)

w(0,t) = AI?BO A7 = 0. (6.69)
Sliéno, iz uvjeta w(L,t) = 0 za svaki ¢ > 0 slijedi
wy(L,t) =0. (6.70)

Stoga je
L L
/ WyWyy do = —/ Wiy AT (6.71)
0 0
pa je derivacija energije dana sa

dE

L
— = / wy (Wy — Wey) dx =0 (6.72)
a ),

jer je wy — 2wy, = 0. Zakljuéujemo da je funkcija E(t) konstantna, odnosno

E(t) = E(0) =zasvaki t>0. (6.73)
U pocetnom trenutku je
L") 2 L[* s,
E0) = 3 [Pw2(z,0) — wi(z,0)]de = 5] ¢ wi(z,0) dx (6.74)
0 0

zbog pocetnog uvjeta wy(x,0) = 0. Kako je w(x,0) = 0 za svaki z € [0, L], vrijedi
w(x + Az,0) — w(x,0)

wy(z,0) = Algilo Ao =0. (6.75)
Zakljucujemo da je E(0) = 0 sto povlaci
Lh o,y 2
E(t) = 5 (w2 +wy) dz = 0. (6.76)
0
Odavde slijedi da je
wy(z,t) = wi(x,t) =0 (6.77)

pa je funkcija w konstantna jer ne ovisi o varijablama z i ¢t. Sada iz pocetnog uvjeta
w(z,0) = 0 zakljucujemo w(x,t) = 0 za svaki € [0, L] i t > 0. Dakle, u; = uy ¢ima

je pokazano da je rjesenje problema jedinstveno. W

Primijetimo da iz istog dokaza slijedi jedinstvenost rjesenja valne jednadzbe s Ne-

umannovim rubnim uvjetima u,(0,¢) =01 u,(L,t) = 0.
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6.3.1 Separacija varijabli za homogenu jednadzbu
Dirichletovi rubni uvjeti

Razmotrimo sada rjeSenje homogene valne jednadzbe s Dirichletovim rubnim uvje-

tima
Uy — gy = 0, O<x<L, t>0, (6.78)
u(z,0) = f(z), w(z,0)=g(x), 0<z<L, (6.79)
uw(0,t) = u(L,t) =0, t>0. (6.80)

Kompatibilnost pocetnih i rubnih uvjeta zahtijeva da f i g zadovoljavaju f(0) =
f(L) =01 g(0) = g(L) = 0 jer su pocetna amplituda i brzina u tockama = = 0 i

x = L jednake nuli. RjeSenje problema trazimo u separiranom obliku
u(z,t) = P(z)Q(1). (6.81)

Supstitucijom izraza (6.81) u jednadzbu (6.78) dobivamo PQy = ¢*P,,Q, odnosno

P _ 1Qu

P 2Q°

(6.82)

Varijable z i t su nezavisne pa obje strane u jednadzbi (6.82) moraju biti konstantne.

Dakle,
P 10Qu
P 2 Q

za neki A € R koji nazivamo separacijska konstanta. Odavde slijedi da su funkcije P

= —\ (6.83)

i ) rjesenja obicnih diferencijalnih jednadzbi

P, + AP =0, 0<z<L, (6.84)
Qu+X*Q =0, t>0. (6.85)

Rubni uvjeti u(0,t) = P(0)Q(¢t) = 01 u(L,t) = P(L)Q(t) = 0 povlace P(0) = 0 i

P(L) = 0. Stoga funkcija P zadovoljava pridruzeni Sturm—Liouvilleov problem

Py + AP =0, (6.86)
P(0) = P(L) = 0. (6.87)
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U poglavlju 5.2 je pokazano da jednadzba (6.86)-(6.87) ima netrivijalna rjeSenja samo

za vlastite vrijednosti

2
Ay = (”—”) L on> 1, (6.88)
L
kojima pripadaju vlastite funkcije
P.(x) = B, sin (%@ n>1 (6.89)

Za svaku vlastitu vrijednost A, mozemo odrediti funkciju () iz jednadzbe (6.85).

Opce rjesenje je dano sa
Qn(t) = C,, cos <%t> + D, sin <?t>, n>1. (6.90)
Time dobivamo niz funkcija

Up(z,t) = Po(2)Qn(t) = [an Ccos (wt> + b, sin (n_mt>] sin (n_7r$>7 (6.91)
L L L
gdje su a, 1 b, neodredene konstante. Funkcije u, (x,t) zadovoljavaju valnu jednadzbu

(6.78) 1 rubne uvjete (6.80), a svaka linearna kombinacija

rst) =3 [ancos (P250) +bsin (2 sin (222) (692)

n=1

je takoder rjesenje istog problema.

Funkciju w,(z,t) nazivamo harmonik n-tog reda za zicu s u¢vrséenim krajevima u
x =01ixz = L. Ako a, i b, nisu oba nula, onda se harmonik w,(z,t) moze zapi-
sati u sljede¢em obliku. Definirajmo R, = /a2 +b2. S obzirom da je (a,/R,)* +
(bn/R,)? =1, postoji 6, € R takav da je

a, = R,sin(,) 1 b, = R,cos(b,). (6.93)
Tada je

un(z,t) = R, [sin(@n) Ccos (%t) + cos(f,,) sin (?tﬂ sin (n%a:)
= R, sin (n—gx> sin (nTmt + Qn). (6.94)
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(a) n=1 (b) n=2 (c)n=3

Slika 6.3: Prva tri harmonika za titranje Zice s u¢vrséenim krajevima.

U tocki x harmonik u,(x,t) ima amplitudu R,|sin(“*z)| i fazu 6,,. Period harmonika,

odnosno vrijeme potrebno za jednu oscilaciju, dobivamo iz jednadzbe nwcT'/L = 2w

Sto daje
2L
T, =—. (6.95)
ne
Frekvencija titranja f,, je broj oscilacija u jedinici vremena,
1 nc
== 6.96
=7 =31 (6.96)

Slika 6.3 prikazuje prva tri harmonika za titraju¢u zicu s uévrséenim krajevima.
Titranje Zice je opéenito superpozicija harmonika svakog reda, odnosno svih mogué¢ih

frekvencija, pa ocekujemo da se opce rjesenje valne jednadzbe moze zapisati u obliku

u(z,t) = f: [an Cos (%t) + b, sin (?tﬂ sin <nf7rm> (6.97)

Konstante a,, i b, su odredene pocetnim uvjetima u(z,0) = f(x) i u(z,0) = g(z).

Ako pretpostavimo da se red (6.97) moze derivirati po ¢lanovima, onda dobivamo

u(z,0) = ian sin (%x) = f(z), 0<z<1L, (6.98)
uy(x,0) = i (?)bn sin <n%:v> =g(z), 0<z<L. (6.99)

n=1
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Neparnim prosirenjem funkcija f i g na [—L, L] mozem odrediti Fourierove koeficijente

/f sin —x) dz, (6.100)

b, = — g(m) sin (n;jr ) dx. (6.101)

nmwe Jo

Iz dobivenog rjesenja se vidi da je titranje zice potpuno odredeno pocetnim i rubnim
uvjetima. Ovo rjesenje je formalno jer je potrebno odrediti uvjete pod kojima red

(6.97) predstavlja C? funkciju koja zadovoljava valnu jednadzbu.

Teorem 6.3 (Egzistencija rjeSenja) Neka su f € C*([0,L]) ig € C3([0, L]). Pret-

postavimo da funkcije f i g zadovoljavaju uvjete
(1) f(0) = f(L) =0, f"(0) = f"(L) =0

(ii) 9(0) = g(L) = 0.
Tada je funkcija (6.97), gdje su Fourierovi koeficijenti dani relacijama (6.100) 1

(6.101), klasicno rjesenje valne jednadzbe s Dirichletovim uvjetima

Ut — gy = 0, O<xz<L, t>0, (6.102)
W, 0) = f(@), w(w,0)=g(x), 0<z<L, (6.103)
u(0,t) = u(L,t) =0, t>0. (6.104)

Dokaz. Pokazimo da koeficijenti a,, i b, teze k nuli dovoljno brzo tako da je suma
reda (6.97) neprekidna funkcija koja se moze derivirati po ¢lanovima. Parcijalnom

intregracijom relacije (6.100) dobivamo

a, = ) f (x) cos (%x) dx (6.105)

jer je f(0) = f(L) = 0. Koristedi pretpostavku f”(0) = f"”(L) = 0, iteracijom

parcijalne integracije tri puta nalazimo

_ 2L3 / 7O )sin )dx. (6.106)

Kmr
L

Odavde slijedi da je

/ D (2)|dz. (6.107)
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Kako je f® neprekidna na [0, L], to je f) ogranicena na [0, L] pa mozemo definirati

konstantu
_ /|f 2)|da. (6.108)

Tada je
1

(G

n>1. (6.109)

Slicno se pokazuje da koriste¢i uvjete g(0) = g(L) = 01 g € C3([0, L]), iz relacije

(6.101) dobivamo
2
‘(%) b,| < & n>1

= 5, - 5
n2

(6.110)

gdje je
2L

cn?

er= 2 (101 + W+ [ 199w)ar). (6.111)

Definirajmo funkcije

up(z,t) = [an cos (nzc ) + by, sin (nzctﬂ sin (%m), n>1. (6.112)

Nejednakosti (6.109) 1 (6.110) povlace da suredovi >~ |an| 1> -, |b,| konvergenti.
Kako je
|tn (2, )| < |an| + [by] (6.113)

za svaki 0 < x < L it > 0, prema Weierstrassovom kriteriju red » 7 u,(x,1t)
konvergira uniformno na skupu Q = {(z,t) | 0 < # < L, t > 0} ka neprekidnoj
funkeciji

u(z,t) = i [an cos (nzc ) + by, sin <nzct>} sin <%x) (6.114)

Pokazimo da se red (6.114) moze derivirati po ¢lanovima na otvorenom skupu 2 =
{(z,t) |0 <2z < L, t > 0}. Deriviranjem funkcije (6.114) dobivamo

%2;; = —<n—;>2 [an cos (erc ) + by sin <%t>] sin (n%a;) (6.115)
pa nejednakosti (6.109) i (6.110) povlace
% < () el + () ol < S5 (6.116)
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zasvaki0 <z < Lit>0. Red Y 72 1/n? je konvergentan pa prema Weierstrasso-
vom kriteriju red funkcija Y - 6%u,/0x* konvergira uniformno na €. Stoga se red

u(z,t) = 07 uy(x,t) moze derivirati po ¢lanovima i vrijedi

Pu = 0%,

— t) € Q. 6.117
Deriviranjem po varijabli ¢ dobivamo
0?u,, Cy + C
8;; < 02% (6.118)

za svaki 0 < x < L it > 0 pa prema istom argumentu zakljucujemo

Pu = 0%,
Funkcije u, zadovoljavaju valnu jednadzbu (u,)y — ¢*(un)ze = 0 i rubne uvjete

un(0,t) = u,(L,t) = 0. Odavde slijedi da u zadovoljava

<. 9?u,, 2 0%, = /0%, 9%u,,

we = e =Y S =Y S =Y (S PSS =0 (6120)
n=1 n=1 n=1
i rubne uvjete u(0,t) = u(L,t) = 0. Promotrimo sada pocetne uvjete
- nw

0)=S asi (—>: , 6.121
u(z,0) ;a sin (2 f(x) ( )
w(z, t) = ; (%)bn sin (n—Ijrx) =g(z), 0<z<L. (6.122)

Ako su f i § neparna prosirenja funkcija f i g na [—L, L], onda su f i § neprekidne i
po dijelovima C* na [—L, L], i vrijedi f(—L) = f(L) =0, §(—=L) = §(L) = 0. Prema
teoremu 2.4 Fourierovi redovi (6.121) i (6.122) konvergiraju uniformno ka f i g na

intervalu [0, L], a Fourierovi koeficijenti su dani sa

a, = %/OL f(z)sin (%x) dz, (6.123)
9 L

nmwc

. (/nT
7 b, = z/o g(x)sin <Tx)dx, (6.124)
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odnosno

2 L nm
= — in (| — . A2
bn e . g(x) sm( 7 a:) dx (6.125)

Time je pokazano da funkcija u zadovoljava pocetne uvjete (6.121) 1 (6.122). W

U dokazu teorema 6.3 smo pretpostavili da funkcije f i g zadovoljavaju uvjete koji
u primjenama ne moraju biti ispunjeni. Na primjer, ako je u pocetnom trenutku
zica transferzalno zategnuta u tocki 0 < xg < L i puStena da slobodno titra, onda je

pocetni polozaj trokutasta funkcija

Mx’ 0 S € S Zo,
fla)={ @ (6.126)
z—L
U0 o= F ro <z <L,

(vidi sliku 6.4). Funkcija f nema derivaciju u xo pa f ¢ C*([0, L]). Za opis ovakvih
pocetnih uvjeta prirodno je pretpostaviti da je pocetni polozaj definiran samo ne-
prekidnom funkcijom f € C([0, L]) takvom da je f(0) = f(L) = 0. Takoder bismo
htjeli uzeti u obzir da pocetna brzina g ima eventualno prekide prve vrste kako bismo
mogli opisati titranje zice koja je pokrenuta udarcem ostrog predmeta. Sljedeci pri-
mjer pokazuje da pod ovakvim slabijim pretpostavkama rjesenje valne jednadzbe nije
C? funkcija, odnosno nije klasi¢no rjesenje u smislu definicije 1.3. U ovom slucaju
potrebno je prosiriti koncept rjesenja diferencijalne jednadzbe na tzv. slaba rjesenja
koja se prirodno javljaju u formulaciji parcijalnih diferencijalnih jednadzbi primjenom

varijacijskog racuna. Razmatranje slabih rjesenja prelazi okvire ove skripte.

Primjer 6.5 (Gibanje transferzalno zategnute zice) Odredite formalno rjesenje

valne jednadzbe

Uy — gy = 0, 0<x<L, (6.127)
w(0,t) = u(L,t) = 0, t>0, (6.128)
uw(z,0) = f(x), wuz,0)=0, 0<z<L (6.129)

gdje je funkcija f(x) dana jednadzbom (6.126). Kako je u,(z,0) =0, to je b, =0 za

svaki n. Stoga formalno rjesenje ima oblik

u(z,t) = Zan oS (%t) sin (%x) (6.130)
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Slika 6.4: Graf funkcije (6.126).

gdje je
ay = Z/ f(z)sin —l’)dx
= Z/0 x—zx sin <%x) dx + i /: UO;O__Z;/ sin <n%a:) dx. (6.131)
Parcigalnom integracijom dobivamo
/OIO x sin (%x) dx = <%>2 sin (n—gxo) - % cos (%x(]), (6.132)
/xoL(x — L)sin (%x) dx = %(mo — L) cos (%mo) - (%)2 sin (%x()). (6.133)

Supstitucijom (6.132) ¢ (6.133) u jednadzbu (6.131) nalazimo

(L) gt () o

Stoga je formalno rjesenje dano sa

o0

212 1 . /nmx nwe N\ . /nmw
u(z,t) = 7 2o(L — o) ; 5 sin < ) cos <Tt> sin (f$> (6.135)
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Primigetimo da red (6.135) konvergira uniformno za sve x € [0,L] it > 0, ali u(x,t)
nije C* funkcija (sto se dogada kada red deriviramo po clanovima dva puta po x i t?).
Medutim, parcijalne sume reda uy(x,t) su glatke funkcije koje zadovoljavaju valnu
jednadzbu i rubne uvjete un(0,t) = uy(L,t) = 0. Nadalje, uy(z,0) — f(x) unifor-
mno na [0, L] kada N — oo pa je un(z,t) aproksimativno rjesenje naseg problema

cija se tocnost povecava kako N raste.

Neumannovi rubni uvjeti

Titrajuca zica sa slobodnim krajevima zadovoljava valnu jednadzbu s Neumannovim

rubnim uvjetima

Uy — gy =0, 0<z <L, (6.136)
u(z,0) = f(z), wu(z,0)=g(z), 0<z<L, (6.137)
uz(0,t) = u,(L,t) =0, t>0. (6.138)

Kompatibilnost pocetnih i rubnih uvjeta povlaci da je

F0)=f(L)=0, ¢(0)=4g(L)=0. (6.139)

Postupak rjesavanja problema (6.136)—(6.138) je slican prethodnom slucaju s Diri—
chletovim rubnim uvjetima. RjeSenje trazimo u obliku u(z,t) = P(z)Q(t). 1z rubnih
uvjeta u,(0,t) = P (0)Q(t) = 0iu,(L,t) = P.(L)Q(t) = 0 dobivamo sljeée jednadzbe
za funkcije P i Q):

P"(z) + AP(z) =
Q"(t) + A*Q(t)

gdje je A € R separacijska konstanta. Vlastite vrijednosti Sturm—Liouvilleovog pro-

blema (6.140) su diskretizirane, A, = (M)Q, n > 0, a vlastite funkcije P,(x) su dane

P,(0) = P,(L) =0, (6.140)

0,
0, (6.141)

L
sa
nm
Py =By, P,(zr)= B,cos <Tx), n=123,... (6.142)
Za A = A\, jednadzba (6.141) ima rjesenja
Qo = Co + Dot, (6.143)
O, (t) = C, cos (%t) + D, sin (%t) n=1,2,3,... (6.144)
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Time dobivamo niz funkcija u,(z,t) = P,(2)Q,(t) koje mozemo zapisati u obliku
ag + bot

2 )
up(z,t) = [an coS (?t) + b, sin (

up(w,t) = (6.145)

nmwe
—t

7 ﬂcos(ma:), n=1,23,... (6.146)

L

za neke konstante a, i b,. Dakle, rjesenje u(z,t) = > " u,(z,t) je dano sa

bot
u(z,t) = ag—; 4 E [an cos (?t) + b, sin (%tﬂ COS (%a:), (6.147)
n=1

a Fourierovi koeficijenti a,, i b,, su odredeni pocetnim uvjetima

Qo > nm
u(z,0) = 5 + nz:lan Cos <Tx> = f(x), 0<z<IL, (6.148)
u(z,0) = % + i (%)bn cos <n—;x) =g(x), 0<z<L. (6.149)

n=

Parnim prosirenjem funkcija f i ¢ na interval [—L, L] dobivamo

2 [* 2 [*
w=1 [ t@ie e =7 [ f@os(Fo)in (6150)
9 L 2 L nmw

Time je rjeSenje problema poptuno odredeno.

6.3.2 Separacija varijabli za nehomogenu jednadzbu

Metoda separacije varijabli se moze prilagoditi za rjeSavanje nehomogene valne jed-

nadzbe. Ilustrirajmo postupak rjesavanja na Neumannovom problemu

Uy — ClUpy = F(2,1), 0<z <L, t>0, (6.152)
u(w,0) = f(2). w(2,0)=g(z). 0<z<L (6.153)
uz(0,t) = uy(L,t) =0, t>0. (6.154)

Iz prethodnih razmatranja znamo da ako je F' = 0, onda je rjeSenje dano sa

u(z,t) = do —; bot + f: [an Ccos (?t) + by, sin (%tﬂ oS (%Tm) (6.155)
1

n—
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Ovo sugerira da rjeSenje nehomogene jednadzbe potrazimo u obliku
1 o
u(z,t) = §Q0(t) + ; Qn(t) cos <n—l7jx> (6.156)

gdje su Q,(t) nepoznate funkcije. Supstitucijom relacije (6.156) u valnu jednadzbu
(6.152) dobivamo

L0+ 30 [0+ (S Qu0] eos (2a) = Fat). (6157

Ako funkciju F(x,t) mozemo razviti u Fourierov red u varijabli = po kosinusima, onda
@, (t) mozemo odrediti usporedjivanjem koeficijenata dvaju Fourierovih redova. Ovo

¢e biti moguce ako F(z,t) zadovoljava rubne uvjete
Fo(0,t) = Fy(L,t) =0, t>0. (6.158)
Tada je

F(z, ——Co +ZC cos( :U) 0<z<IL, (6.159)

gdje Fourierovi koeficijenti C), ovise o varijabli ¢. Supstitucijom ovog izraza u jed-
nadzbu (6.157) dobivamo

%( {)’(t)—CO(t)) +§: [Q;;(t) (mc) O.(t) — C (t)} cos <%x> —0. (6.160)

Ovo povlaci da funkcije @, (t) zadovoljavaju diferencijalne jednadzbe
(1) = Colt). (6.161)
” nwe
Q)+ () Qul) = Cult), m>1 (6.162)

Rjesenja ovih jednadzbi mozemo zapisati kao zbroj rjesenja pripadne homogene jed-

nadzbe i partikularnog rjesenja QP (t):

Qo(t) = ap + bot + Q5(t), (6.163)
Qn(t) = a, cos (%t) + by, sin (%t) + QP (1). (6.164)
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Funkcije QP (t) su jedinstveno odredene Fourierovim koeficijentima C,,(t). Supstitu-

cijom rjeSenja za @, (t) u jednadzbu (6.156) nalazimo da je
u(z,t) = up(z,t) + upy(z,t) (6.165)

gdje je up(z,t) dano izrazom (6.155) rjesenje pripadne homogene jednadzbe, a
up(x,t) = —Qp )+ Z QP (t) cos ( ) (6.166)

je partikularno rjesenje. Koeficijenti a,, i b, su odredeni pocetnim uvjetima u(x,0) =
f() 1wz, 0) = g(x).

Primjer 6.6 Odredite rjesenje valne jednadzbe

Uy — Uygy = cos(2mx) cos(2nt), O0<zx <1, t>0, ( )
u(z,0) = cos’(rx), 0<z<1, ( )
ug(z,0) = 2cos(2mx), 0<uz <1, (6.169)
0a0,) = e (1,8) = 0. (6.170)

Ovdje je L = ¢ = 1 pa opce rjeSenje ima oblik
u(z,t) = —Qo + ZQn cos(nmx). (6.171)

Supstitucijom izraza (6.171) u jednadzbu (6.167) dobivamo

o

Z (nm)?Qy(t)) cos(nrz) = cos(2mt) cos(2mx). (6.172)

Za n = 0,2 funkcije @),, zadovoljavaju

Qo(t) =0, (6.173)
h(t) + 47°Qo(t) = cos(2rt), (6.174)

dok za n # 0,2 vrijedi
Qn(t) + (nm)*Qn(t) = 0. (6.175)
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Rjesenja jednadzbi (6.173) i (6.175) su dana sa
Qo(t) = ap + bot, Qn(t) = a, cos(nrt) + b, sin(nwt). (6.176)
Partikularno rjesenje jednadzbe (6.174) ima oblik
Qu(t) = % sin(2rt) (6.177)
jer su prirodna frekvencija i frekvencija prisilnih titraja jednake 27. Stoga je
Q2(t) = as cos(2mt) + by sin(27t) + 4i sin(2mt). (6.178)

7

Dakle, rjesenje jednadzbe je dano redom

bt  ~— t
u(x,t) = il + L an cos(nmt) + by, sin(nnt)) cos(nmx) + — sin(27t) cos(2mx
4

n=1

(6.179)

gdje su koeficijenti a,, i b, odredeni pocetnim uvjetima. Iz uvjeta (6.168) dobivamo

ao

u(z,0) = 5

+ Z an cos(nwx) = cos®(mx). (6.180)

n=1

Koristeci identitet cos?(mz) = 5 + 3 cos(2mx) i usporedivanjem Fourierovih koeficije-

nata u gornjoj jednadzbi zakljucujemo da je

ag=1, as= %, a, =0, n#0,2. (6.181)
Slicno, iz uvjeta (6.169) slijedi
u(x,0) = % + i nwb, cos(nmz) = 2 cos(2mx) (6.182)
n=1
odakle dobivamo
by — % by =0, n+2. (6.183)

Uvrstavanjem Fourierovih koeficijenata a, i b, u izraz za u(x,t) nalazimo rjesenje

problema

u(z,t) = % + <% cos(2mt) + At sin(27rt)> cos(2m). (6.184)

™



Poglavlje 7
Laplaceova jednadzba

Jedan od najvaznijih primjera eliptickih jednadzbi je Laplaceova jednadzba nazvana
po francuskom matematicaru i fizicaru Pierre Simon de Laplaceu (1749-1827) koji
je zasluzan za razvoj teorije potencijala. Laplaceova jednadzba ima primjene u elek-
trostatici, teoriji gravitacije, mehanici fluda i drugim problemima fizike i tehnike. U

ovom poglavlju proucavamo Laplaceovu jednadzbu u dvije dimenzije
Ugy + Uy =0,  (2,y) € Q, (7.1)

gdje je 2 C R? ograni¢ena domena. Diferencijalni operator

0*  0?

A=t op

(7.2)

naziva se Laplaceov operator. Laplaceova jednadzba je posebni sluc¢aj Poissonove
jednadzbe
Au= f(z,y), (2,y) €Q (7.3)

za f = 0. U prvom dijelu izlaganja razmatrat ¢emo opc¢a svojstva Laplaceove jed-
nadzbe od kojih su najvazniji principi maksimuma i princip srednje vrijednosti. Me-
todom separacije varijabli ¢emo konstruirati rjesenja Laplaceove jednadzbe za pravo-
kutne i kruzne domene. Na kraju, izvest ¢emo rjesenje Laplaceove jednadzbe u obliku

Poissonove formule i prosiriti metodu separacije varijabli na Poissonovu jednadzbu.

105
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7.1 Opca svojstva Laplaceove jednadzbe

Funkciju u € C?%(Q) koja zadovoljava Laplaceovu jednadzbu u podrucju  C R?
nazivamo harmonijska funkcija u €). Harmonijske funkcije se prirodno javljaju u
teoriji funkcija kompleksne varijable. Ako je f(z) = wu(x,y) + iv(z,y) analiticka
funkcija u 2 € C, onda u i v zadovoljavaju Cauchy-Riemannove jednadzbe u, = v,

iu, =—v,. Stoga je
0 0
Upy + Ugyyy = £<Uy) - 8—y(vm) =0. (74)

Slicno se pokazuje da v zadovoljava v, + vy, = 0. Dakle, realni i imaginarni dio

analiticke funkcije f = u + v je harmonijska funkcija. Na primjer,
e® = e”(cos(y) + isin(y)) (7.5)

je analiticka funkcija u C. Lako se provjeri da su u(z,y) = e®cos(y) i v(z,y) =

e”sin(y) harmonijske funkcije u R2.

U daljnjem tekstu pretpostavljamo je rub ogranicenog podrucja €2 unija 02 = U, C;
po dijelovima glatkih jednostavnih zatvorenih krivulja Cy,Cs, ..., C,. Jedini¢ni nor-
malni vektor 7 je definiran u svakoj tocki na rubu 0f2 osim eventualno u tockama

gdje se krivulje C; nastavljaju jedna na drugu.

Definicija 7.1 Neka je u rjesenje Poissonove jednadzbe (7.3) na domeni 2, i neka

je funkcija g definirana na 0S). KaZemo da funkcija u zadovoljava

(i) Dirichletov uvjet na Q ako je
w(z,y) = g(z,y) za svaki (x,y) € 0L, (7.6)

(1) Neumannov uvjet na Q ako je

%(z,y) =g(x,y) za svaki (x,y) € I (7.7)

gdje je i jedinicni vektor normale na 02 usmjeren prema van, a Ou/0ni = Vu-7i

je usmgerena derivacija funkcije u u smjeru vektora 1.
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Ako rjesenje Poissonove jednadzbe zadovoljava Neumannov uvjet, onda funkcije f i

g moraju zadovoljavati tzv. uvjet konzistentnosti.

Lema 7.1 Neka je Q ogranicena domena u R?. Nuzni uwvjet za egistenciju rjevienja

Neumannovog problema

Uz + Uyy = f(xa y)7 (:Ca y) € Qa (78>
o) = glay), () €00 (7.9)

je uvjet konzistentnosti

/8 ds = / /Q Fdady. (7.10)

Dokaz. Koristedi vektorski identitet za Laplaceov operator

Au=V - (Vu) (7.11)
Poissonovu jednadzbu mozemo zapisati u obliku

V- (Vu) = f. (7.12)

Ako je G vektorsko polje klase C! na €, onda je prema Gaussovom teoremu

/v-édmy:/ (G - i)ds (7.13)
Q o0

gdje je 17 jedini¢ni vektor normale na 02 usmjeren prema van. Integracijom jednadzbe

(7.12) po 2 i primjenom Gaussovog teorema dobivamo

//Qfdxdy://gv-(Vu)dxdy

|
Primijetimo da u sluc¢aju kada je u rjesenje Laplaceove jednadzbe (f = 0), tada je

nuzan uvjet za egistenciju rjeSenja

/80 gds = 0. (7.14)
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Drugim rijecima, integral normalne derivacije harmonijske funkcije u po 02 is¢ezava,

ou
. 07 (7.15)

Ako uvjet konzistentnosti nije ispunjen, onda Neumannov problem nije rjesiv.

Sljedeci rezultat pokazuje da harmonijska funkcija na ograni¢enoj domeni doseze svoju
maksimalnu i minimalnu vrijednost na rubu te domene. Ovaj zakljucak je slican

principu maksimuma za jednadzbu provodjenja topline.

Teorem 7.1 (Slabi princip maksimuma) Neka je Q ogranicena domena u R? i
neka je u € C%(Q) N C(Q) harmonijska funkcija na Q. Tada je

max_u(z,y) = u(z’,y) (7.16)
(z,y)eQ

za neku tocku (x',y') € 0Q. Drugim rijecima, funkcija u doseze maksimum po Q0 u

nekoj tocki ruba 0S).

Dokaz. Neka je € > 0. Definirajmo funkciju

v(z,y) = ulw,y) +e(@® +¢7), (z,y) €. (7.17)
Funkcija v je neprekidna na kompaktnom skupu €2, pa v doseze maksimum u nekoj
tocki (zo,v0) € Q. Ako je (o, o) unutarnja tocka skupa €, odnosno (zg,%) € €,

onda je v(xg,yo) lokalni maksimum pa vrijedi

Uz (20, Y0) <0 1 vyy(20,%0) <O0. (7.18)

Medjutim,
Vg + Vyy = Ugy + Uyy +4e =4 >0 (7.19)

u svakoj tocki (x,y) € €, pa zakljuéujemo da (zo,y0) ¢ Q2. Dakle, v doseze maksi-
malnu vrijednost na rubu 0f2, stoga je

max v(z,y) = v(zo,yo) za neku tocku (zg,yo) € 0N (7.20)
(z,y)eQ

Neka su

M = , i K= 2+ ?). 7.21
e ) TR I ) (721
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Sada iz relacija (7.20) i (7.21) slijedi da za svaki (z,y) € € imamo
< = 2 N =M+ K. 7.22
v(ey) < max v(ey) = max (u(z,y) +e(a® + 7)) +e (7.22)
Stoga za svaki (x,y) € € vrijedi nejednakost

u(z,y) =v(z,y) —e(@® +9?) < M+ eK —e(2® +y*) < M +eK. (7.23)

Kako je € > 0 odabran proizvoljno, zaklju¢ujemo da je

u(z,y) < M zasvaki (z,y) € (. (7.24)
Ovo povlaci da je

max u(x,y) = M = max u(x,y). 7.25

Jnax, (z,y) Joax u(w,y) (7.25)

Funkcija u je neprekidna na kompaktnom skupu 02, pa postoji («',y') € 0f) takav
da je

max_u(z,y) = u(z’,y’). (7.26)
(z,y)€Q

Primijetimo da slabi princip maksimuma ne iskljuc¢uje moguénost da u(zx,y) ima mak-

simum u nekoj tocki (z,y) € €, na primjer ako je u(z,y) konstantna funkcija.

Ako je uw harmonijska funkcija na €2, tada je v = —u takodjer harmonijska na €.
S obzirom da je max, ,eqv(z,y) = ming equ(r,y), prema prethodnom teoremu

zakljucujemo da vrijedi

Teorem 7.2 (Slabi princip minimuma) Neka je u € C%(Q) N C(Q) harmonijska
funkcija na ogranicenoj domeni Q C R?. Tada postoji (z',y') € O takav da je

min_u(z,y) = u(z',y'). (7.27)
(z,y)eQ

Iz principa maksimuma i minimuma neposredno slijedi

Korolar 7.1 Ako je u € C*(Q) N C(Q) harmonijska funkcija na ogranicenoj domeni
QCR? iu(z,y) =0 za svaki (z,y) € 09, tada je u = 0.
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Dokaz. Prema slabom principu maksimuma i minimuma imamo

0= mi ) <u(z,y) < y) =0 7.28
<x,r516%9“<x y) < u(z,y) (xgl)aeggu(:c y) (7.28)

za svaki (z,y) € Q, pajeu=0. B

Jedna od vaznih posljednica principa maksimuma je jedinstvenost rjesenja Dirichle-

tovog problema za Poissonovu jednadzbu.

Teorem 7.3 Neka je Q ogranicena domena u R?. Tada postoji najvise jedno rjesenje
u € C*(Q) N C(Q) Dirichletovog problema

Au(z,y) = f(z,y), (v,y) €Q, (7.29)

u(r,y) = g(r,y), (z,y) € . (7.30)

Dokaz. Pretpostavimo da postoje dva rjesenja wu; i us problema (7.29)—(7.30). Tada
je u = u; — us harmonijska funkcija koja zadovoljava problem

Au(z,y) =0, (x,y)€Q, (7.31)
u(z,y) =0, (x,y) € 0. (7.32)

Prema korolaru 7.1 je u = 0, sto povlaci u; = u,. W

Naglasimo da je ogranicenost domene €2 vazna pretpostavka u teoremu 7.3. Promo-

trimo Dirichletov problem na neograni¢enoj domeni Q = {(x,y) | % + y* > 4}:

Au(z,y) =0, (z,y) € Q, (7.33)
u(z,y) =1, 2°+y°=4. (7.34)

Lako se provjeri da su funkcije ui(z,y) = 11 us(x,y) = @ln /1% 4 y? rjesenja
problema (7.33)—(7.34), pa rjesenje Laplaceove jednadzbe na 2 nije jedinstveno.

Princip maksimuma takodjer ima za posljedicu da su rjesenja Dirichletovog problema
za Poissonovu jednadzbu stabilna u odnosu na rubne uvjete. Drugim rijeCima, male
promjene u rubnim uvjetima rezultiraju malim promjenama u rjesenju Poissonove

jednadzbe.
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Teorem 7.4 Neka je Q ogranicena domena u R?, i neka su uy,uy € C?(2) NC(Q)

rjesenja Poissonove jednadzbe
Auy(z,y) = f(x,y), Aus(z,y) = f(z,y), (z,y) € Q, (7.35)
koje zadovoljavaju rubne uvjete
ui(@,y) = g1(z,y) wa(z,y) =g(z,y), (v,y) €, (7.36)
gdje su g1 i go neprekidne funkcije na 9). Ako je
max lg1 — go| <e, (7.37)

onda je

max |up — ug| < e. (7.38)

Dokaz. Definirajmo v = u; — us. Tada je u rjeSenje Laplaceove jednadzbeV?2u = 0
u  koje zadovoljava rubni uvjet u(x,y) = g1(z,y) — g2(x,y), (x,y) € 9Q. Na rubu

domene vrijedi

lu(z,y)| = |g1(7,y) — g2(w,y)| <&, (x,y) € 09, (7.39)

Sto povlaci

—e<minu i maxu<e. (7.40)
o0 B

Prema slabom principu maksimuma i minimuma imamo

_ i < < . .
€<r%anu_u(x,y)_r%%xu<€, V(z,y) € Q (7.41)
dakle,
lu(z,y)| = |wi(z,y) — us(z,y)| <e zasvaki (z,y) € Q. (7.42)
[

Teorem 7.5 (Princip srednje vrijednosti) Neka je u harmonijska funkcija u do-
meni Q (koja nije nuino ogranicena), i neka je K, (xo,1y0) C Q zatvoreni krug radijusa

r >0 sa sredistem u (xg,yo) € Q. Tada je

1
(o, yo) = —/ uds (7.43)
Cr

2rr

gdje je C, kruznica radiju r > 0 sa sredistem u (xq, yo)-
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Prema ovom principu, vrijednost harmonijske funkcije u sredistu kruznice jednaka je

srednjoj vrijednosti funkcije po kruznici.

Dokaz. Neka je 0 < p < r i neka je C, kruznica radijusa p sa sredistem u (zo, yo).

Definirajmo funkciju
1

1 2m
—/ uds = —/ u(zo + pcos(p),yo + psin(p)) de. (7.44)
Cy 21 Jo

Vip) = o7

Funkcija V (p) ima uklonjivi prekid u p = 0 jer je

p—0F p—0t+ 27

1 27
lim V(p) = lim — / u(zo + peos(p), yo + psin(p)) dp = u(xg, yo)- (7.45)
0

Pokazimo da je V(p) konstanta. Deriviranjem dobivamo
- / (o + peos(p), o + psin(p)) de.

27T [ux(xo + peos(p), yo + psin(y)) sin(p)

+ uy (2o + peos(p), yo + psin(p)) cos(y)] dp
1 [*0 1 9

= D= — [ & (7.46)
2w Jo on 2mp Je, O

gdje je % = Vu - 7 usmjerena derivacija u smjeru jedini¢nog radijalnog vektora

il = cos(p)i + sin(yp)j. Prema jednadzbi (7.15) imamo
/ 9 s — 0 (7.47)

jer je u harmonijska funkcija na krugu K,(zo, yo). Stoga je V'(p) = 0, $to povlaci da

je V(p) konstantna funkcija. Odavde slijedi da je

V(r) = lim V(p) = u(xo, yo) (7.48)
p—0+
Sto implicira
1
p—- . uds = u(zo, Yo)- (7.49)

Princip srednje vrijednosti karakterizira harmonijske funkcije jer vrijedi i obrat ovog

teorema.
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Teorem 7.6 Pretpostavimo da funkcija u € C*(Q)) zadovoljava princip srednje vri-

jednosti u svakoj tocki domene ). Tada je u harmonijska funkcija u €.

Dokaz. Pretpostavimo da postoji (xg,70) € 2 takav da je Au(zg,yo) # 0. Bez
gubitka opcenitosti mozemo pretpostaviti Au(zg,yo) > 0. Kako je Au neprekidna
na 2, postoji r > 0 takav da je Au(x,y) > 0 na krugu K, radijusa r sa sredistem u

(x0,y0). Neka je C,. rub kruga K,. Iz Gaussovog teorema (vidi (7.13)) slijedi

1 1 27
ou p

1
0< — Audxdy = — —ds = —
2m /IQ waerey = or o, On T o 0

[t (o + 7 os(e). o + rsin(9)) cos()

(Vu - i) rde

r
2 Jo

+ u, (:1:0 + rcos(p),yo + 1 Sil’l((p)) sin(gp)} dp

r 2T o .
=5 [ grulzo+reos(p),yo +rsin(p)) dp
0
r 1 27 .
~"oror / (o + 1 cos(p), yo + rsin(p)) dyp (7.50)
0

gdje je i = cos(cp)27+ sin(c,p)f jedini¢ni normalni vektor na C,. Prema pretpostavci u
zadovoljava princip srednje vrijednosti na 2, pa je

1 [ :
o u(zo + 17 cos(), yo + rsin(p)) de = u(wo, yo). (7.51)
0
Ovo vodi na kontradikciju jer iz jednadzbe (7.50) dobivamo

r 1 2

. 0
oo i u(zo + 1 cos(p),yo + rsin(p)) dp = TEU(SBO, Yo) = 0. (7.52)

Dakle, Au(zg,yo) = 0 za svaki (xg,y0) € Q pa zakljuéujemo da je u harmonijska

funkcija na 2. W

Iz principa srednje vrijenodsti moze se dokazati

Teorem 7.7 (Jaki princip maksimuma) Neka je u harmonijska funkcija u do-
meni 0 (koja nije nuino ogranicena). Ako w ima minimum ili maksimum u unu-

trasnjosti podrucja €2, onda je u konstantna funkcija.
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Jaki princip maksimuma garantira da harmonijske funkcije koje nisu konstantne ne
mogu dose¢i svoju minimalnu ili maksimalnu vrijednost u unutrasnjosti domene (2.
Ako je € ogranicena domena, tada znamo da je minimum ili maksimum dosegnut
u nekoj tocki na rubu 0€2. Medjutim, ako {2 nije ogranicen skup, tada harmonijska
funkcija u ne mora dosegnuti svoj maksimum ili minimum u Q = QUOQ. Na primjer,
u(z,y) = In(z? + »?) je harmonijska funkcija u domeni Q = {(x,y) | 2> +y*> > 1} i

u(z,y) = 0 u svakoj tocki (x,y) € 99, ali u ne doseze maksimum u .

7.2 Separacija varijabli za Laplaceovu jednadzbu

Metoda separacije varijabli se moze primijeniti na Laplaceovu jednadzbu ako domena
() ima odredjenu simetriju. U ovom poglavlju ¢emo prouciti metode rjesavanja La-
placeove jednadzbe za pravokutne i kruzne domene. Formalno rjesenje Laplaceove
jednazbe je dano u obliku reda v = >~ u, gdje su u, harmonijske funkcije u €.
Stoga je potrebno znati pod kojim uvjetima red Y~ u, konvergira prema harmo-
nijskoj funkeiji, odnosno koji uvjeti garantiraju da je u =y~ u, klasi¢no rjesenje

Laplaceove jednadzbe.

Teorem 7.8 Neka je Q ogranicena domena u R?. Neka je u = > 7 u, formalno

rjesenje Dirichletovog problema

Au(z,y) =0, (z,y)€ Q, (7.53)
u(r,y) = g(r,y), (z,y) € 0, (7.54)

gdje je g neprekidna funkcija na 02 i u, € C*(2) N C(Q) je harmonijska funkcija u
Q za svakin € N. Ako red Y7 | w, konvergira uniformno ka funkciji g na 09, tada

S uy konvergira uniformno u Q, i u je klasicno rjesenje problema (7.53)-(7.54).

Dokaz. Definirajmo parcijalne sume s, = >_,_, u. Tada je s, € C*(Q) U C(Q) niz
harmonijskih funkcija koji konvergira uniformno ka ¢ na 0€2. Neka je ¢ > 0. Prema

Cauchyevom kriteriju za uniformnu konvergenciju postoji ng € N takav da

n,m>ng = sup |sn(z,y) — sm(z,y)| < e. (7.55)
(z,y)€00
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Kako je s, — s, € C%(Q) N C(Q) harmonijska funkcija u €2, slabi princip maksimuma
povlaci da je

SUp. [5n(, ) — sm(@ )] < <. (7.56)
(z,m)€EQ

Prema Cauchyevom kriteriju niz {s,} konvergira uniformno na €, pa red ), _, u

konvergira uniformno na 2.

Pokazimo da je u = >, ; u; harmonijska funkcija u 2. Neka je (zg, yo) € Q1 neka je
K, (x0,70) C Q krug radijusa r > 0 sa sredistem u (zg, yo). Funkcije u,, su harmonijske

u €2 pa zadovoljavaju princip srednje vrijednosti

1
un (o, Yo) = - /aK Uy, ds (7.57)

za svaki n € N. Sada je

o o0 1
o) = S uarn) = 555 [
n=1 n=1 r

1 1
:2_WZ/8 Zunds:z—w uds (7.58)

= Jok. oK,
gdje se integral i suma smiju zamijeniti zbog uniformne konvergencije reda. Dakle,
funkcija u zadovoljava princip srednje vrijednosti u svakoj tocki (xg,v0) € €2, pa je
prema teoremu 7.6 v harmonijska funkcija u €2. Nadalje, u zadovoljava rubni uvjet
w(@,y) = o uk(z,y) = g(z,y), (z,y) € 09, stoga je u klasiéno rjesenje problema
(7.53)-(7.54). A

7.2.1 Pravokutne domene

U ovom poglavlju ¢emo razviti metodu separacije varijabli za Laplaceovu jednadzbu
na pravokutnoj domeni. Translacijom koordinatnog sustava mozemo pretpostaviti da

je domena definirana sa = (0,b) x (0,d). Promotrimio Laplaceovu jednadzbu
Au(z,y) =0, (z,y) € (7.59)
s Dirichletovim rubnim uvjetima
u(z,0) = h(x), u(z,d) = k(x), 0<x<b, (7.60)
u(0,y) = fly),  uwlby) =gly), 0<y<d (7.61)
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Slika 7.1:

Da bismo rijesili problem potrebno je Laplaceovoj jednadzbi pridruziti odgovarajuci
Sturm-Lioiuvilleov problem koje daje bazne funkcije po kojima se rjesenje u razvija
u red. Prisjetimo se da Sturm-Liouvilleov problem zahtijeva homogene rubne uvjete.
Stoga je rjesenje u potrebno rastaviti na zbroj u = u; +us gdje su u; i us harmonijske

funkcije koje zadovoljavaju sljedeée rubne uvjete (vidi sliku 7.1):

uy(z,0) =0, uy(z,d) =0, 0<x<hb, (7.62)
ur(0,y) = f(y),  wby) =gy, 0<y<d, (7.63)
us(x,0) = h(zx), us(x,d) = k(x), 0<x<hb, 7.64
uz(0,y) = 0, us(b,y) =0, <y<d (7.65)

Rubni uvjeti u teoremu 7.8 su definirani neprekidnom funkcijom na 0€2. Da bi
rubni uvjeti za funkcije uy i us bili neprekidni, potrebno je pretpostaviti da funkcije

f, g, h ik zadovoljavaju uvjete kompatibilnosti

-
—
=)
~—
I
-

(d) =0,  9(0)=g(d) =0, (7.66)
0, 0.

(7.67)

Ocigledno je da u = u; + us zadovoljava rubne uvjete (7.60)-(7.61) pa je prema te-

oremu 7.3 funkcija u = uy + us jedinstveno rjesenje problema (7.59)-(7.61).
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Pokazimo kako se nalazi funkcija u;. RjeSenje trazimo u separiranom obliku uy(x,y) =

P(x)Q(y). Iz Laplaceove jednadzbe dobivamo

P'(z) Q")
=— =A 7.68
Plr) QU (70
za neki A € R. Dakle, funkcije P i ) zadovoljavaju jednadzbe
P"(z) — AP(x) = 0, 0<x<b, (7.69)
Q"(y) +AQ(y) =0, 0<y<d (7.70)
Rubni uvjeti (7.62) povlace
Q(0) =Q(d) =0 (7.71)

pa funkcija @ zadovoljava pridruzeni Sturm-Liouvilleov problem (7.70)-(7.71). Vlas-

tite vrijednosti i funkcije su dane sa

nm 2 . [nm
An = <7> ,  Qn(y) =sin <7y> , néeN. (7.72)
Sada jednadzba za funkciju P ima oblik
2
P"(z) — (%) P(z)=0, 0<uz<b. (7.73)

Zbog rubnih uvjeta na stranicama pravokutnika x = 0 i x = b opce rjeSenje zapiSimo
kao
P.(x) = A, sh <%Tx> + B, sh (%T(x - b)) , néeN. (7.74)
Primijetimo da su hiperbolne funkcije sh(nmz/d) i sh(nm(x —b)/d) linearno nezavisna
rjesenja jednadzbe (7.73). Prema principu superpozicije, formalno rjesenje wu; je dano
u obliku reda
uy(z,y) = nz: [An sh <%Tx> + B, sh (%T(x - b)ﬂ sin (%y) : (7.75)

Supstitucijom izraza (7.75) u rubne uvjete (7.63) dobivamo
= b
w (0,y) = ; ~B,sh (%) sin (51y) = fw), 0<y<d, (7.76)

- nwb\ . /nmw
ui(b,y) = ZAn sh (T) sin (7?/) =g(y), 0<y<d (7.77)
n=1
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Definirajmo koeficijente

.= A, sh (”gb), B, = —B,sh ("gb). (7.78)

Jednadzbe (7.76) i (7.77) predstavljaju razvoj funkcija f i g u Fourierov red po

sinusima na intervalu [0, d],

= ian sin <%Ty) . fly) = iﬁn sin (%y) , 0<y<d, (7.79)
n=1 n=1

gdje su Fourierovi koeficijenti dani sa

2 4 . /nT 2 4 . /nm
ay = 3/0 9(y) sin <7y> dy, Bn= C—Z/O f(y)sin (Fy) dy. (7.80)
Sada iz jednadzbe (7.78) dobivamo

2 d nmw
A, = dsh—(”—”b)/o g(y) sin (7y> dy, (7.81)
B, = 2 /f sin —)d (7.82)
" " eh (=) , y)dy. :

Slicnim racunom se moze pokazati da je rjesenje za us(x,y) dano sa

ug(z,y) = i [C sh( 2 y) + Dnsh< 2 (y — d))] sin (n_wa> (7.83)

n=1

D, = —m /Obh( ) sin (nb ) dx. (7.85)

b
U ovom postupku pretpostavili smo da rubne funkcije f, g, h i k zadovoljavaju uvjete
kompatibilnosti (7.66)-(7.67). U primjenama ova pretpostavka ¢esto nije opravdana
pa je potrebno modificirati postupak kako bi obuhvatili rubne uvjete koji ne is¢ezavaju
u vrhovima pravokutnika. To se moze napraviti dodavanjem harmonijskih polinoma

funkcijama koje definiraju rubne uvjete. Promotrimo Dirichletov problem

Au(z,y) =0, (x,y) € Q, (7.86)
u(z,y) = G(z,y), (zr,y) € 0N (7.87)
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gdje je G(x,y) neprekidna funkcija na rubu pravokutnika 2 = (0,b) x (0,d). Nas
zadatak je transformirati problem (7.86)-(7.87) u Dirichletov problem s neprekidnim
rubnim uvjetima koji is¢ezavaju u vrhovima pravokutnika 2. Rastavimo funkciju
na zbroj u(z,y) = v(z,y) + Py(z,y) gdje je Py(z,y) harmonijski polinom drugog reda.
Op¢i oblik polinoma P, je

Py(z,y) = a1(z? — y?) + apzy + asv + agy + as (7.88)

gdje su aq, ..., as proizvoljni koeficijenti. Funkcija v je harmonijska u €2 i u vrhovima

pravokutnika zadovoljava

U(O, 0) = G<07 O) - P2(0> 0)7 (789)
v(b,0) = G(b,0) — Py(b,0), (7.91)
v(b,d) = G(b,d) — Ps(b,d). (7.92)
Ako koeficijene polinoma P, odaberemo tako da je
tada funkcija v(z,y) zadovoljava Dirichletov problem
Vo(z,y) =0, (z,y) € Q, (7.95)
v(z,y) = Glz,y), (a,y) € 0L, (7.96)

gdje je é(w, y) = G(z,y) — Py(z,y) neprekidna funkcija na 0f2 koja zadovoljava uvjete
kompatibilnosti jer is¢ezava u vrhovima pravokutnika. Funkcija v se moze odrediti
postupkom kako je opisano ranije. Time dobivamo rjesenje problema (7.86)-(7.87) u
obliku

u(z,y) = o(,y) + Pala, ). (7.97)

Primijetimo da uvjeti (7.93)-(7.94) daju ¢etiri jednadzbe za pet nepoznanica a, .. ., as
sto daje beskona¢no mnogo harmonijskih polinoma Ps(z,y). Ovo nije u kontradikeiji
s ¢injenicom da je rjesenje Dirichletovog problema jedinstveno jer izbor polinoma P
mijenja rubne uvjete za funkciju v pa time i samu funkciju v. Medjutim, rjesenje

(7.97) ostaje nepromijenjeno.
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Primjer 7.1 Odredite rjesenje Laplaceove jednadzbe na pravokutniku Q = (0,1) X

(0,1) s rubnim uvjetima
u(z,0) =1+sin(rz),  uw(0,y) =1+y, (7.98)
u(z,1) =2, u(l,y) =1+y. (7.99)
Primijetimo da su rubni uvjeti danu neprekidnom funkcijom na rubu pravokutnika,
ali ne ispunjavaju uvjet kompatibilnosti. Neka je u(x,y) = v(x,y) + Ps(z,y) gdje je

Py(z,y) = ay(2® — y?) + asxy + azx + agy + as. Funkcija v(z,y) zadovoljava rubne

uvjete

v(z,0) = 1+ sin(mzx) — Py(z,0), v(0,y) =1+y— P(0,y), (7.100)
v(z,1) =2 — Py(x,1), v(ly) =1+y— B(1,y). (7.101)

Polinom Py(x,y) éemo odabrati tako da rubni wvjeti za v(z,y) is¢ezavaju u vrhovima

pravokutnika:
v(0,0) =1 — P,(0,0) =0, (7.102)
v(0,1) =2 — P(0,1) =0, (7.103)
v(1,0) =1 — P(1,0) =0, (7.104)
v(l,1)=2— Py(1,1) =0. (7.105)

Odavde slijedi da koeficijenti polinoma zadovoljavaju sustav jednadzbi
a5:1, —a1+a4+a5:2, a1+a3+a5:1, CL2+(I3+CL4+CL5:2. (7106)

Jedan od koeficijenata mozZemo odabrati po volji. Ako odaberemo a; = 0, onda je

as =az =0 1a4 =1 pa dobivamo
Py(z,y) =1+y. (7.107)
Sada su rubni wvjeti za funkciju v(z,y) dani sa

: (7.108)
(7.109)

v(x,0) = sin(7x), v(0,y) =
v(x,1) =0, v(l,y) =
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Rubni uvjeti na stranicama pravokutnika x =0 i x = 1 su homogeni pa metodu sepra-
cije konstanti mozemo primijeniti na funkciju v(x,y). Neka je v(z,y) = P(z)Q(y).
Tada Av = 0 povlaci

P"(z) = AP(x) =0, Q"(y)+XQ=0, XeR (7.110)
Iz rubnih uwvjeta na stranicama x =0 i« x = 1 dobivamo

v(0,y) = P(0)Q(y) =0, v(l,y) =P1)Qy) =0, (7.111)
odnosno P(0) = P(1) = 0. Stoga funkcija P(x) zadovoljava Sturm—Liouvilleov pro-
blem

P'(z) — AP(z) =0, P(0)= P(1) =0, (7.112)
cije rjesenje je dano sa
A\ = —(n7m)?, P,(v) =sin(nmz), n>1. (7.113)
Odavde slijedi da funkcija Q(y) zadovoljava jednadzbu

Q"(y) — (nm)*Qly) = 0. (7.114)

Opce rjesenge jednadzbe (7.114) moZemo zapisati kao superpoziciju linearno nezavis-
nih rjesenja
Qn(y) = A, sh(nmy) + B, sh(nm(y — 1)), n>1. (7.115)

Sada je rjesenje Laplaceove jednadzbe dano u obliku reda

) =Y Pu(z)Qu(y) (7.116)

o

= Z [ sh(nmy) + By, shinm(y — 1))] sin(nmz). (7.117)

1z rubnog wvjeta na stranici y = 0 dobivamo

o0

v(x,0) = Z By, sh(—nm) sin(nmx) = sin(mx) (7.118)
n=1
sto povlaci By = —1/sh(m) i B, =0 za n > 2. Slicno, na stranici y = 1 imamo

= i A, sh(nm)sin(nrz) =0 (7.119)

n=1
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pa je A, =0 za sve n > 1. Dakle, funkcija v(zx,y) ima jednostavni oblik
1
v(z,y) = —%sh(ﬂ(y — 1)) sin(7z). (7.120)

Konacno, rjesenje pocetnog problema je dano sa

u(z,y) =v(z,y)+ Py(x,y) =1+y— sh(m(y — 1)) sin(7x). (7.121)

1
sh(m)

7.2.2 Kruzne domene

Drugi primjer domene na kojoj Laplaceovu jednadzbu mozemo rijesiti separacijom
varijabli je krug. Neka je K, C R? krug radijusa a > 0 sa srediStem u ishodistu.

Promotrimo Dirichletov problem

Au(z,y) =0, (z,y) € K, (7.122)
u(z,y) = g(z,y), (x,y) € 0K, (7.123)

gdje je g neprekidna funkcija na 0K,. Zbog simetrije domene uvedimo polarne koorid-
nate x = rcos(#), y = rsin(f) i definirajmo funkciju w(r,d) = u(rsin(f),r cos()).
Laplaceovu jednadzbu u polarnom sustavu mozemo dobiti na sljede¢i nacin. Deriva-

cije funkcije w(r, §) su dane sa

aa—w = u, cos(6) + u, sin(6), (7.124)

-

azw 2 . « 2

5z = Uae COS (0) + 2uy, sin(8) cos(8) + uy, sin” (), (7.125)
-

g_lg = —uyrsin(6) + u,r cos(6), (7.126)

8210 2 ) ) 2 .

0z =" (s SIN*(0) + tyy c08*(0)) — 2ug,r” sin(6) cos(6)

— 1 (ug cos(6) + uy sin(6)). (7.127)

Iz jednadzbi (7.125) i (7.127) slijed
0*w N 1 9%w
or?  r2 06?
Supstitucijom jednadzbe (7.124) u (7.128) dobivamo

Pu 10w 1
or2  ror r?2og?

1
= Ugy + Uyy — . (us cos(8) + uy sin(6)). (7.128)



POGLAVLJE 7. LAPLACEOVA JEDNADZBA 123

Dakle, Laplaceov operator u polarnom sustavu ima oblik

2 10 102

AR 7.130
or? + ror + r2 002 ( )
pa Dirichletov problem glasi
Pw 10w 1 0%w
- —— = <0<2 . 131
52t g T am 0, 0<é<2m, 0<r<a (7.131)
Na rubu kruga funkcija w(r, ) zadovoljava uvjet
w(a,d) = g(acos(),asin(f)), 0<6<2m. (7.132)

Obzirom da nas zanimaju neprekidna rjesenja na krugu K, (koja nemaju singularitet
u ishodistu), potrebno je dodati uvjet da je lim; .o+ w(r, §) konacan. Rjesenje trazimo
u obliku w(r,#) = P(r)Q(#). Supstitucijom u jednadzbu (7.131) i separacijom vari-

jabli dobivamo

_a, PO s er (7.133)

Q(9)
Slijedi da funkcije P(r) i Q(6) zadovoljavaju obicne diferencijalne jednadzbe

r2P"(r) +rP'(r)
P(r)

r?P"(r)+1rP'(r) = AP(r) =0, 0<r<a, (7.134)
Q"(6) + \Q(8) =0, 0<6< 2. (7.135)

Granice § = 0 i = 27 predstavljaju istu tocku na kruznici, stoga () zadovoljava

periodicki rubni uvjet Q(0) = Q(27). Sturm-Liouvilleov problem (7.135) ima rjesenja

za vlastite vrijednosti A\, = n% n =0,1,2,... kojima su pridruZene vlastite funkcije
Qo(0) = Ao, n =0, (7.136)
Qn(0) = A, cos(nf) + B,sin(nf), n=1,2,3,... (7.137)

Ovo povlaéi da radijalni dio rjeSenja zadovoljava jednadzbu
r*P"(r) +rP'(r) + n*P(r) = 0. (7.138)
Za n = 0 rjesenje dobivamo direktnom integracijom,

Py(r) = Cy + Do In(r). (7.139)
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k

Za n > 0 rjesenje trazimo u obliku P(r) = r* ¢ime dobivamo indicijalnu jednadzbu

k* —n? =0, odnosno k = £n. Odavde slijedi da jednadzba ima opée rjesenje
P,(r)=Cyr"+D,r ", n=1,23,.... (7.140)

Obzirom da trazeno rjeSenje nema singularitet u » = 0, koeficijenti D,, is¢ezavaju pa

dobivamo

P()(T’) = Co, n:O, (7141)
P.,(r)=Cyr", n=1,2,3,.... (7.142)

Opce rjesenje Laplaceovu jednadzbe na krugu je dano superpozicijom

= Z P,(r)Q®) = % + Z 1™ (v, cos(nb) + B, sin(nb)) (7.143)
n=0 n=1

gdje su ag = 24¢Cy, a,, = A,C, i B, = B,C, koeficijenti koji su odredeni rubnim

uvjetom (7.132). Definirajmo funkciju h(6) = g(acos(f), asin(f)). Tada iz jednadzbi

(7.132) i (7.143) slijedi

[e.9]

=4 Za" o, cos(nb) + B,sin(nd)) = h(), 0<6 < 2r. (7.144)

Ako je h neprekidna i po dijelovima C! na [0, 2], onda iz uvjeta h(0) = h(2n) slijedi

da Fourierov red (7.144) konvergira uniformno ka h. Fourierovi koeficijenti su dani sa

1 2
ay = — h(p) cos(np)de, n=0,1,2,..., (7.145)
Ta” J
1 2m
Bn = — h(p)sin(np)dp, n=1,2,3,.... (7.146)
0

Time je rjesenje Dirichletovog problema na krugu potpuno odredeno.

7.2.3 Poissonova formula

Relacije (7.143) i (7.145)—(7.146) daju rjesenje Laplaceove jednadzbe na krugu u
obliku beskonacnog reda. Isto rjesenje se moze napisati u integralnoj reprezentaciji

koju nazivamo Poissonova formula. U toj reprezentaciji rjeSenje je dano kao integral
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po rubu domene funkcije h(p) pomnozene s Poissonovom jezgrom. Supstitucijom

jednadzbi (7.145) i (7.146) u (7.143) dobivamo

w(r,0) = 217r /27T h(p)dy + % i /O27r <£>n h() cos(n(0 — ¢))dp (7.147)

gdje smo koristili identitet cos(n(6 — ¢)) = cos(nf) cos(ny) + sin(nh) sin(np). Defini-
rajmo funkcije

) = (2)" h(g) cos(n(0 — @), n>1. (7.148)

Funkcija h(p) je neprekidna na zatvorenom skupu [0, 27] pa postoji M > 0 takav da
je [h(p)| < M za svaki ¢ € [0,27]. Stoga je f.(p) ograni¢ena sa

swp [ful)| < (£)" . (7.149)

0<p<2m

Red >, (§>n konvergira za svaki 0 < r < a pa prema Weierstrassovom kriteriju
(7.149) red > 7 fu(p) konvergira uniformno na [0,2n]. Stoga smijemo zamijeniti

integral i sumu u jednadzbi (7.147) sto povlaci

w(r,0) = %/0% [ +Z< ) cos(n(0 — v))|dep. (7.150)

Nas sljedeci zadatak je odrediti sumu reda

% + i <£>n cos(n(f — ¢)). (7.151)

n—

Definirajmo p = r/a, a = 0 — ¢ i z = pe’®. Prema Moivreovoj formuli je 2" =

p"(cos(na) 4 isin(a)) sto povlaci

_+Z< ) cos(n(6 — ) ( —i—Zz) (7.152)

Kako je |z| = r/a < 1, geometrijski red konvergira i vrijedi » - = z/(1 — z). Stoga

je

1+ 2z 1 — p? +12psin(a)
z = 1
+ Z 2(1 —2)  2(1 —2pcos(a) + p?) (7.153)
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pa odvajanjem realnog dijela dobivamo

S ) pp———
2 “—la M T 2(1 — 2pcos(a) + p?)
a2 — 2
= . 7.154
2(a? — 2ar cos(0 — ) +1?) ( )
Uvrstenjem jednadzbe (7.154) u (7.150) dobivamo Poissonovu formulu
1 2 CL2 _ T2
0) = — h(p)dep. 7.155
w(r,6) 27 /0 a? — 2ar cos(6 — @) + r? (P)dy ( )

Jednadzba (7.155) daje harmonijsku funkciju w(r, §) na krugu K, u ovisnosti o nje-

zinim vrijednostima na rubu domene 0K,. Podintegralna funkcija

a2 — 2
K ra,0) = 7.156
(r.¢10.0) a? — 2ar cos(0 — ) + r? ( )
naziva se Poissonova jezgra. Primijetimo da za r = 0 dobivamo teorem srednje
vrijednosti za harmonijske funkcije jer je u ishodistu
(r=0)— / s = [ ha (7.157)
w(r=0)=— = — s. :
2m Jo pIey 2ma Jok,

Poissonova jezgra je primjer Greenove funkcije pomocu koje se rjesenje diferencijalne
jednadzbe moze napisati u integralnoj reprezentaciji koja ukljucuje rubne uvjete.
Greenove funkcije za Laplaceovu jednadzbu se mogu konstruirati za razlicite rubne

uvjete i razlicite domene, kako konacne tako i beskonacne.



