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6.3.2 Separacija varijabli za nehomogenu jednadžbu . . . . . . . . . 101
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Poglavlje 1

Uvodna razmatranja

1.1 Osnovni pojmovi

Parcijalne diferencijalne jednadžbe (PDJ) opisuju relacije izmedu nepoznate funkcije

u i njezinih parcijalnih derivacija. Ove jednadžbe su vrlo važne u fizici i tehnici

jer modeliraju različite pojave u prirodi. U novije vrijeme parcijalne diferencijalne

jednadžbe nalaze primjene u biologiji, kemiji, računalnim znanostima i ekonomiji.

Neka je u(x) = u(x1, x2, . . . , xn) funkcija n nezavisnih varijabli x1, x2, . . . , xn. Par-

cijalne derivacija označavamo sa

uxi
=

∂u

∂xi

, uxixj
=

∂2u

∂xi∂xj

, . . . (1.1)

Definicija 1.1 Kažemo da je funkcija u klase Ck na Ω, i pǐsemo u ∈ Ck(Ω), ako u

ima neprekidne parcijalne derivacije reda k na Ω.

Ako je u ∈ Ck(Ω), onda redoslijed u kojem se parcijalne derivacije računaju nije

važan. Primijetimo da u ∈ Ck(Ω) povlači u ∈ Ck−1(Ω). Skup neprekidnih funkcija

na Ω označavamo sa C0(Ω).

Definicija 1.2 Parcijalna diferencijalna jednadžba je jednadžba oblika

F (x1, . . . , xn, u, ux1 , . . . , uxn , ux1x1 , ux1x2 , . . .) = 0 (1.2)

gdje je u = u(x1, x2, . . . , xn) nepoznata funkcija u nezavisnim varijablama x1, x2, . . . , xn.
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POGLAVLJE 1. UVODNA RAZMATRANJA 4

Red parcijalne diferencijalne jednadžbe je red najvǐse derivacije koja se javlja u jed-

nadžbi. Parcijalne diferencijalna jednadžbe obično promatramo na otvorenom pove-

zanom skupu Ω ⊆ Rn.

Definicija 1.3 Rješenje parcijalne diferencijalne jednadžbe (1.2) reda k > 0 na skupu

Ω ⊆ Rn je funkcija u ∈ Ck(Ω) koja zadovoljava jednadžbu (1.2) u svakoj točki skupa

Ω.

Ova rješenja nazivamo klasična ili jaka rješenja. U primjenama su od interesa i tzv.

distribucijska i slaba rješenja koja ovdje nećemo razmatrati.

Primjer 1.1 Jednadžba

uxx − uyy = 0 (1.3)

je parcijalna diferencijalna jednadžba drugog reda. Lako se provjeri da su funkcije

u(x, y) = (x + y)3 i u(x, y) = sin(x − y) rješenja jednadžbe (1.3) na skupu Ω = R2.

Primjer 1.2 Kortewe–de Vriesova jednadžba

ut + uxxx − 6uux = 0 (1.4)

modelira valove na vodi u plitkom kanalu. Provjerite da funkcija

u(x, t) =
c

2
sch2

[√2

2

(
x − ct − x0

)]
, c > 0, x0 ∈ R (1.5)

zadovoljava jednadžbu (1.5) gdje je sch(x) = 2/(ex + e−x) hiperbolni sekans na skupu

Ω = R2. Ova funkcija opisuje solitonski val koji putuje bez disperzije brzinom c > 0.

Parcijalne diferencijalne jednadžbe možemo grubo klasificirati prema sljedećim svoj-

stvima.

• Red jednadžbe

Osnovna podjela PDJ je prema redu jednadžbe. Općenito se može kazati da

što je red jednadžbe veći to je jednadžbu teže riješiti.

• Linearne i nelinearne jednadžbe
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(a) Jednadžba (1.2) je linearna ako je F linearna funkcija u varijablama u

i svim njezinim parcijalnim derivacijama. U tom slučaju koeficijenti koji

množe u i njezine derivacije ovise samo o nezavisnim varijablama x1, . . . , xn.

(b) Jednadža je nelinearna ako nije linearna.

(c) Jednažba (1.2) je kvazi-linearna ako je F linearna u svim parcijalnim de-

rivacijama od u najvǐseg reda.

Na primjer, Eulerova jednadžba

xux + yuy = nu, n ∈ N, (1.6)

je linearna jednadžba prvog reda jer je linearna u varijablama ux i uy. Jednadžba

uxuxx + xuuy = sin(y) (1.7)

je kvazi-linearna jednadžba drugog reda jer je linearna u najvǐsoj derivaciji uxx. Jed-

nadžba

uxu
2
xx + xuuy = sin(y) (1.8)

je nelinearna jer član u2
xx nije linearan. Navedimo još nekoliko primjera:

uuxy + ux = y, kvazilinearna jednadžba drugog reda, (1.9)

(ux)
2 + (uy)

2 = 1, nelinearna jednadžba prvog reda, (1.10)

ux uxxy + xuy = sin(y), kvazilinearna jednadžba trećeg reda, (1.11)

ut + uxxx − 6uux = 0, kvazilinearna jednadžba trećeg reda. (1.12)

1.2 Linearne jednadžbe i princip superpozicije

Posebno će nas zanimati linearne parcijalne diferencijalne jednadžbe drugog reda jer

ovaj tip jednadžbi ima važne primjene u prirodnim i tehničkim znanostima. Klasične

jednadžbe matematičke fizike kao što su valna jednadžba, jednadžba provodenja to-

pline, Poissonova i Schrödingerova jednadžba su linearne jednadžbe drugog reda. Li-

nearna jednadžba drugog reda u n nezavisnih varijabli x1, x2, . . . , xn ima opći oblik

n∑

i,j=1

Aijuxixj
+

n∑

i=1

Bixxi
+ Fu = G (1.13)
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gdje su Aij , Bi, F i G funkcije varijabli x1, x2, . . . , xn. Ako je u klasično rješenje

jednadžbe (1.13), onda je uxixj
= uxjxi

pa se jednadžba (1.13) može svesti na oblik

tako da je Aij = Aji. Diferencijalnoj jednadžbi (1.13) možemo pridružiti diferencijalni

operator

L =
n∑

i,j=1

Aij
∂2

∂xi∂xj

+
n∑

i=1

Bi
∂

∂xi

+ F (1.14)

gdje je F operator množenja funkcijom F . Tada jednadžbu možemo zapisati u kom-

paktnom obliku L[u] = G.

Definicija 1.4 Jednadžba L[u] = G je homogena ako je G = 0. U protivnom kažemo

da je jednadžba nehomogena.

Operator L je linearan jer vrijedi

L[α1u1 + α2u2] = α1L[u1] + α2L[u2], ∀α1, α2 ∈ R. (1.15)

Linearne jednadžbe imaju važno svojstvo koje nazivamo princip superpozicije. Ako

su u1 i u2 rješenja jednadžbi

L[u1] = G1, L[u2] = G2, (1.16)

onda je linearna kombinacija u = α1u1 + α2u2, αi ∈ R, rješenje jednadžbe

L[u] = α1L[u1] + α2L[u2] = α1G1 + α2G2. (1.17)

U posebnom slučaju ako su u1, u2 rješenja homogene jednadžbe L[u] = 0, onda je

svaka linearna kombinacija u = α1u1 + α2u2 rješenje iste jednadžbe jer je L[α1u1 +

α2u2] = 0. Ovaj princip je naročito važan u rješavanju parcijalnih diferencijalnih

jednadžbi metodom separacije varijabli jer se opće rješenje može napisati kao line-

arna kombinacija nekih posebnih rješenja. Ovu metodu ćemo detaljnije razmatrati u

sljedećim poglavljima.

Primjer 1.3 Promotrimo jednadžbu

utt − uxx = 0. (1.18)
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Lako se provjeri da su funkcije un(x, t) = sin(nt) cos(nx) rješenja jednadžbe za svaki

n ∈ N. Stoga je svaka linearna kombinacija

u(x, t) =
N∑

n=1

cn sin(nt) cos(nx), cn ∈ R, (1.19)

takoder rješenje jednadžbe (1.18).

Primjer 1.4 Odredite rješenje jednadžbe

uxx − uy = 18x + 8y (1.20)

koristeći princip superpozicije. Promotrimo dvije jednadžbe

uxx − uy = 18x, (1.21)

uxx − uy = 8y. (1.22)

Rješenja ovih jednadžbi potražimo u obliku u1 = u1(x) i u2 = u2(y), redom. Tada je

u′′
1(x) = 18x i −u′

2(y) = 8y2 pa integracijom dobivamo

u1(x) = 3x3 + ax + b, u2(y) = −4y2 + c (1.23)

gdje su a, b, c ∈ R konstante integracije. Prema principu superpozicije, funkcija

u(x, y) = u1(x) + u2(y) = 3x3 − 4y2 + ax + d, (1.24)

gdje je d = b + c, daje rješenje jednadžbe (1.20).

1.3 Klasične jednadžbe matematičke fizike

Fundamentalni zakoni u prirodnim znanostima se često formuliraju u obliku parci-

jalnih diferencijalnih jednadžbi. Kada neka fizikalna veličina u = u(x, y, z, t) ovisi o

prostornim ili vremenskih promjenama od u, onda funkcija u zadovoljava parcijalnu

diferencijalnu jednadžbu. U većini slučajeva to su linearne jednadžbe drugog reda

koje ovise o prostornim varijablama x, y i z i vremenskoj varijabli t. Navedimo neke

važne jednadžbe matematičke fizike.
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(1) Valna jednadžba. Valna gibanja u različitim medijima su opisana valnom jed-

nadžbom

utt − c2∇2u = 0 (1.25)

gdje je

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.26)

Laplaceov operator. Na primjer, ako je u(x, y, z, t) tlak zraka u točki (x, y, z)

u trenutku t i c je brzina zvuka, onda jednadžba (1.25) opisuje širenje zvučnih

valova. Ista jednadžba opisuje širenje elektromagnetskih valova kada u predstavlja

skalarnu komponentu električnog ili magnetskog polja, a c je brzina svjetlosti.

(2) Jednadžba provodenja topline. Neka je u(x, y, z, t) temperatura homogenog

toplinski vodljivog tijela koji nema izvora topline. Tada funkcija u zadovoljava

jednadžbu provodenja topline

ut − k∇2u = 0 (1.27)

gdje je konstanta k > 0 toplinska vodljivost materijala. Ovu jednadžbu takoder

nazivamo difuzijska jednadžba jer opisuje difuzijske procese u tvarima.

(3) Laplaceova jednadžba. Ako je temperatura u toplinski vodljivom tijelu staci-

onarna, onda je ut = 0 pa se jednadžba provodenja topline svodi na Laplaceovu

jednadžbu

∇2u = 0. (1.28)

Ova jednadžba takoder opisuje distribuciju električnog potencijala u u prostoru

bez naboja.

Navedene jednadžbe predstavljaju tzv. kanonske ili standardne oblike parcijalnih

diferencijalnih jednadžbi drugog reda koje ćemo detaljno proučavati u sljedećim po-

glavljima. Navedimo još nekoliko jednadžbi drugog reda koje imaju važne primjene

u fizici.

(4) Poissonova jednadžba

∇2u = ρ(x, y, z), (1.29)
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(5) Helmholtzova jednadžba

∇2u + λu = 0, (1.30)

(6) Schrödingerova jednadžba

−
~2

2m
∇2ψ + V (x, y, z)ψ = i~ψt. (1.31)

1.4 Elementarne tehnike

U jednostavnim slučajevima parcijalne diferencijalne jednadžbe se mogu riješiti di-

rektnom integracijom ili uvodenjem novih varijabli. Ako jednadžba opisuje ponašanje

nekog fizikalnog sustava koji ima odredenu simetriju, na primjer ako je sustav inva-

rijantan na rotacije ili neku drugu transformaciju, onda se korǐstenjem simetrija jed-

nadžba može pojednostavniti. Prisjetimo se da rješenja običnih diferencijalnih jed-

nadžbi ovise o proizvoljnim konstantama integracije. Slično, opće rješenje parcijalne

diferencijalne jednadžbe ovisi o proizvoljnim funkcijama koje se dobiju u postupku

integracije. Sljedeći primjeri ilustriraju ova svojstva parcijalnih diferencijalnih jed-

nadžbi.

Primjer 1.5 Odredite rješenje jednadžbe

uyy = 2 (1.32)

za funkciju u = u(x, y). Integracijom po varijabli y dobivamo

uy =

∫
2dy = 2y + f(x). (1.33)

Ponavljanjem postupka nalazimo

u(x, y) =

∫
(2y + f(x))dy = y2 + yf(x) + g(x) (1.34)

gdje su f(x) i g(x) proizvoljne funkcije. S obzirom da je funcija u klasično rješenje

jednadžbe (1.32), f i g su funkcije klase C2.

Primjer 1.6 Odredite opće rješenje PDJ

ux − uy = 0. (1.35)
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Uvedimo nove varijable α = x + y i β = x − y. Tada je

∂u

∂x
=

∂u

∂α

∂α

∂x
+

∂u

∂β

∂β

∂x
=

∂u

∂α
+

∂u

∂β
, (1.36)

∂u

∂y
=

∂u

∂α

∂α

∂y
+

∂u

∂β

∂β

∂y
=

∂u

∂α
−

∂u

∂β
. (1.37)

Oduzimanjem dobivamo

ux − uy = 2uβ = 0. (1.38)

U novim varijablama jednadžba ima jednostavniji oblik

uβ = 0. (1.39)

Integracijom jednadžbe dobivamo

u = f(α) = f(x + y) (1.40)

gdje je f(α) proizvoljna C1 funkcija. Na primjer, svaka od funkcija en(x+y), sin(n(x+

y)) i cos(n(x + y)), n ∈ N, je rješenje jednadžbe.

Primjer 1.7 Odredite opće rješenje problema

uxx + cu = 0, (1.41)

gdje je u = u(x, t), za c > 0, c = 0 i c < 0. Obzirom da funkcija u(x, t) ovisi

o varijablama x i t, jednadžbu (1.41) možemo promatriati kao običnu diferencijalnu

jednadžbu u varijabli x koja ovisi o parametru t. Ako je c > 0, opće rješenje je dano

sa

u(x, t) = C1(t) sin(
√

cx) + C2(t) cos(
√

cx) (1.42)

gdje su C1(t) i C2(t) proizvoljne funkcije klase C2. Slično, za c = 0 imamo

u(x, t) = C1(t)x + C2(t), (1.43)

dok je za c < 0 rješenje dano sa

u(x, t) = C1(t)e
√

|c|x + C2(t)e
−
√

|c|x. (1.44)
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Primjer 1.8 Odredite opće rješenje jednadžbe

ux = u2 (1.45)

za funkciju u = u(x, y). Kao u prethodnom primjeru, jednadžbu (1.45) možemo

promatrati kao običnu diferencijalnu jednadžbu u varijabli x s parametrom y. Separi-

ranjem jednadžbe dobivamo u−2du = dx iz čega slijedi −u−1 = x + f(y). Dakle,

u(x, y) = −
1

x + f(y)
(1.46)

gdje je f(y) proizvoljna funkcija klase C1.

Sljedeći primjer ilustrira kako se simetrija problema može koristiti za svodenje parci-

jalne diferencijalne jednadžbe na jednostavniji oblik.

Primjer 1.9 Odredite sferno simetrično rješenje Laplaceove jednadžbe

uxx + uyy + uzz = 0. (1.47)

Traženo rješenje je invarijantno na grupu rotacija SO(3) pa ovisi samo o udaljenosti

točke (x, y, z) od ishodǐsta. Stoga u(x, y) tražimo u obliku

u = f(r), r =
√

x2 + y2 + z2. (1.48)

Sada je

ux = f ′(r)
∂r

∂x
= f ′(r)

x

r
, (1.49)

uxx =
∂

∂x

(
f ′(r)

)x
r

+ f ′(r)
∂

∂x

(x
r

)
(1.50)

= f ′′(r)
(x

r

)2

+ f ′(r)
(1

r
−

x2

r3

)
. (1.51)

Zbog simerije funkcije u, preostale derivacije su dane analognim izrazima,

uyy = f ′′(r)
(y

r

)2

+ f ′(r)
(1

r
−

y2

r3

)
, (1.52)

uzz = f ′′(r)
(z

r

)2

+ f ′(r)
(1

r
−

z2

r3

)
. (1.53)
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Zabrajanjem jednadžbi (1.51)-(1.53) dobivamo

uxx + uyy + uzz = f ′′(r) +
2

r
f ′(r) = 0. (1.54)

Uvedimo supstituciju g(r) = f ′(r). Tada je g′(r) + 2r−1g(r) = 0 što povlači g(r) =

Cr−2. Sada je

f(r) =

∫
g(r)dr = −

C

r
+ K (1.55)

gdje su C,K ∈ R proizvoljne konstante integracije. Dakle, sferno simetrično rješenje

Laplaceove jednadžbe je dano sa

u(x, y, z) = −
C

√
x2 + y2 + z2

+ K. (1.56)

1.5 Početni i rubni uvjeti

Iz prethodnih razmatranja je očigledno da parcijalne diferencijalne jednadžbe mogu

imati beskonačno mnogo rješenja koja ovise o proizvoljnim funkcijama. Ako jed-

nadžba modelira fizikalnu pojavu, onda je potrebno imati jedinstveno rješenje kako

bismo mogli predvidjeti ponašanje sustava. Stoga parcijalne diferencijalne jednadžbe

obično promatramo zajedno sa zadanim rubnim i/ili početnim uvjetima koji rješenje

čine jedinstvenim. Na konkretnim primjerima ćemo ilustrirati parcijalne diferenci-

jalne jednadžbe s pripadajućim rubnim i početnim uvjetima i objasniti njihovo fizi-

kalno značenje.

Promotrimo jednodimenzionalnu valnu jednadžbu

utt − c2uxx = 0, 0 < x < L, t > 0. (1.57)

gdje funkcija u(x, t) predstavlja amplitudu titranja u točki x u trenutku t. Ova

jednadžba vrijedi pod pretpostavkom da nema disipativnih efekata i da se svaka točka

giba okomito na os x. Titranje žice je dinamički problem koji zahtijeva poznavanje

početnog položaja i početne brzine žice u svakoj točki x ∈ [0, L]. Stoga tražimo da

funkcija u zadvoljava početne uvjete

u(x, 0) = f(x), x ∈ [0, L], (1.58)

ut(x, 0) = g(x), x ∈ [0, L], (1.59)
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gdje su f(x) početna amplituda, a g(x) početna brzina u točki x. Rješenje valne

jednadžbe takoder ovisi o rubnim uvjetima na krajevima žice. Ako je žica učvršćena

u točkama x = 0 i x = L, onda u zadovoljava Dirichletove rubne uvjete

u(0, t) = u(L, t) = 0, t ≥ 0. (1.60)

Ako krajevi žice slobodno titraju okomito na os x, onda derivacija amplitude ǐsčezava

u x = 0 i x = L pa u tom slučaju funkcija u zadovoljava Neumannove rubne uvjete

ux(0, t) = ux(L, t) = 0, t ≥ 0. (1.61)

Nadalje, ako je žica savijena u kružnicu tako da se točka x = 0 preklapa s točkom

x = L, onda funkcija u zadovoljava periodičke uvjete

u(0, t) = u(L, t), (1.62)

ux(0, t) = ux(L, t), t ≥ 0. (1.63)

Rubni uvjeti takoder mogu biti kombinirani, na primjer u može zadovoljavati Diric-

hletov uvjet u jednom kraju, a Neumannov uvjet u drugom kraju intervala.

Promotrimo sada Laplaceovu jednadžbu

uxx + uyy = 0, (x, y) ∈ Ω, (1.64)

na području Ω ⊂ R2 koje je omedenom jednostavnom, zatvorenom, po dijelovima

glatkom krivuljom ∂Ω. Ako je poznata vrijednost funkcije u na rubu područja ∂Ω,

onda u zadovoljava Dirichletov rubni uvjet

u(x, y) = h(x, y), (x, y) ∈ ∂Ω. (1.65)

Ako je zadana normalna derivacija na krivulju ∂Ω, onda u zadovoljava Neumannov

rubni uvjet
∂u

∂~n
(x, y) = h(x, y), (x, y) ∈ ∂Ω, (1.66)

gdje je ~n jedinični vektor normale na ∂Ω usmjeren prema van, a

∂u

∂~n
= ∇u ∙ ~n (1.67)

je usmjerena derivacija u smjeru vektora ~n. U narednim poglavljima ćemo vidjeti

da za svaki od navedenih rubnih i/ili početnih uvjeta postoji jedinstveno rješenje

parcijalne diferencijalne jednadžbe.
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1.6 Stabilnost rješenja

U realnim problemima se početni i rubni uvjeti obično odreduju mjerenjima pa te

veličine nisu poznate s potpunom točnošću. Pogreška u početnim ili rubnim uvjetima

tada uzrokuje pogrešku u rješenju jednadžbe koja ne mora biti mala. Nadalje, parci-

jalne diferencijalne jednadžbe na složenim domenama se često rješavaju numeričkim

metodama pa diskretizacija jednadžbe utječe na točnost rješenja. Jedno od osnovnih

teorijskih pitanja jest da li je matematički problem, koji se sastoji od parcijalne dife-

rencijalne jednadžbe zajedno s početnim ili rubnim uvjetima, dobro postavljen. Ovo

pitanje je formulirao francuski matematičar Jacques Hadamard (1865-1963). Prema

njegovoj definiciji problem je dobro postavljen ako zadovoljava sljedeće uvjete:

(1) egzistencija: problem ima rješenje,

(2) jedinstvenost: rješenje je jedinstveno za zadane početne i/ili rubne uvjete,

(3) stabilnost: rješenje kontinuirano ovisi o parametrima jednadžbe i rubnim ili

početnim uvjetima.

Kažemo da je parcijalna diferencijalna jednadžba stabilna ako male perturbacije

početnih ili rubnih uvjeta uzrokuju male promjene u rješenju. U tom slučaju će

dobiveno rješenje biti dobra aproksimacija egzatknog rješenja. Klasične jednadžbe

matematičke fizike opisane u poglavlju 1.3 su dobro postavljeni problemi, dok se u

tehnici često susrećemo s jednadžbama koje nisu stabilne. Ilustrirajmo ove ideje na

sljedećim primjerima.

Laplaceova jednadžba

Objasnimo kako se formulira stabilnost Laplaceove jednadžbe na domeni Ω ⊂ R2,

uxx + uyy = 0, (x, y) ∈ Ω, (1.68)

s Dirichletovim rubnim uvjetom

u(x, y) = f(x, y), (x, y) ∈ ∂Ω. (1.69)

Neka su u1 i u2 rješenja Laplaceove jednadžbe koja zadovoljavaju rubne uvjete u1(x, y) =

f1(x, y) i u2(x, y) = f2(x, y) za (x, y) ∈ ∂Ω. Kažemo da rješenje kontinuirano ovisi o
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rubnom uvjetu (1.69) ako za svaki ε > 0 postoji δ > 0 takav da

sup
(x,y)∈∂Ω

|f1(x, y) − f2(x, y)| < δ ⇒ sup
(x,y)∈Ω̄

|u1(x, y) − u2(x, y)| < ε, (1.70)

gdje je Ω̄ = Ω∪∂Ω zatvarač skupa Ω. Rješenja koja ispunjavaju ovaj uvjet se nazivaju

stabilna rješenja. Drugim riječima, rješenje u je stabilno ako mala promjena rubnog

uvjeta na krivulji ∂Ω uzrokuje malu promjenu rješenja na skupu Ω.

Hadamardov primjer

Sljedeći primjer ilustrira da za pogrešno postavljene rubne uvjete rješenje Laplace-

ove jednadžbe ne mora biti stabilno. U tom slučaju kažemo da problem nije dobro

postavljen. Promotrimo jednadžbu

uxx + uyy = 0, (x, y) ∈ R2 (1.71)

s rubnim uvjetima na pravcu y = 0:

u(x, 0) = f(x), uy(x, 0) = g(x). (1.72)

Neka je v(x, y) rješenje iste jednadžbe uz modificirane rubne uvjete

v(x, 0) = f(x), vy(x, 0) = g(x) +
1

n
sin(nx). (1.73)

Očigledno je da se za dovoljno veliki n > 0 razlika u rubnim uvjetima može napraviti

proizvoljno malom jer je

sup
x∈R

(
|v(x, 0) − u(x, 0)| + |vy(x, 0) − uy(x, 0)|

)
=

1

n
sup
x∈R

| sin(nx)| ≤
1

n
. (1.74)

Medutim, razlika u pripadnim rješenjima na domeni R2 je velika bez obzira na vrijed-

nost parametra n. Definirajmo funkciju w = v − u. Tada w zadovoljava Laplaceovu

jednadžbu

wxx + wyy = 0 (1.75)

s rubnim uvjetima

w(x, 0) = 0, wy(x, 0) =
1

n
sin(nx). (1.76)
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Slika 1.1: Graf funkcije w(x, y) = 1
n2 sh(ny) sin(nx) za n = 2.

Lako se provjeri da je rješenje problema (1.75)-(1.76) dano s

w(x, y) =
1

n2
sh(ny) sin(nx). (1.77)

Funkcija sh(ny) nije ograničena na R jer |sh(yn)| → ∞ kada y → ±∞. Stoga za

svaki x ∈ R takav da je sin(nx) 6= 0 vrijedi da

|w(x, y)| → ∞ kada y → ±∞. (1.78)

Ovo pokazuje da funkcija w = v − u nije ograničena na R2. Graf funkcije w prikazan

je na slici (1.1). Zaključujemo da, iako se razlika u početnim uvjetima može napraviti

proizvoljno malom za dovoljno veliki n > 0, pripadna rješenja se znatno razlikuju

kada je |y| dovoljno velik. Stoga problem (1.71)-(1.72) nije dobro postavljen.
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Obrnuta jednadžba provodenja topline

Promotrimo sada jednažbu

ut + uxx = 0, −∞ < x < ∞, t > 0, (1.79)

u(x, 0) = 1. (1.80)

Ova jednadžba se dobiva tako da u jednadžbi provodenja topline ut−uxx = 0 varijablu

t zamijenimo varijablom −t. Neka je v(x, t) rješenje jednadžbe (1.79) uz početni uvjet

v(x, 0) = 1 +
1

n
sin(nx). (1.81)

Lako se provjeri da su rješenja u(x, t) i v(x, t) dana sa

u(x, t) = 1, v(x, t) = 1 +
1

n
en2t sin(nx). (1.82)

Razliku u početnim uvjetima možemo učini proizvoljno malom jer je

sup
x∈R

|u(x, 0) − v(x, 0)| =
1

n
sup
x∈R

| sin(nx)| ≤
1

n
. (1.83)

Medutim, razlika rješenja w = v − u nije ograničena na R2 jer

|w(x, t)| =
1

n
en2t| sin(nx)| → ∞ kada t → ∞ (1.84)

za svaki x takav da je sin(nx) 6= 0. Dakle, obrnuta jednadžba provodenja topline

zajedno s rubnim uvjetom (1.80) nije dobro postavljen problem.

1.7 Zadaci

1. Pokažite da jednadžba uxy + ux = 0 ima opće rješenje

u(x, y) = D(x)e−y + E(y). (1.85)

Uputa: koristite supstituciju v = ux.

2. Odredite konstante a i b tako da funkcija u(x, y) = f(ax + by) bude rješenje

jednadžbe

ux + 3uy = 0. (1.86)
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3. Riješite jednadžbu

uxx + uyy = 5ex−2y. (1.87)

Uputa: pretpostavite rješenje u obliku u(x, y) = Ceax+by.

4. Riješite sustav jednadžbi

ux = 3x2y + y, (1.88)

uy = x3 + x. (1.89)

5. Pokažite da jednadžba

ut + uxx = 0, 0 < x < L, t > 0, (1.90)

u(0, t) = u(L, t) = 0, t ≥ 0, (1.91)

u(x, 0) = f(x), 0 ≤ x ≤ L, (1.92)

nije dobro postavljen problem. Uputa: provjerite da je

vn(x, t) =
1

n
en2t sin

(nπx

L

)
(1.93)

rješenje problema vt+vxx = 0, v(0, t) = v(L, t) = 0, v(x, 0) = (1/n) sin(nπx/L).



Poglavlje 2

Fourierov red

2.1 Razvoj funkcije u Fourierov red

Fourierova analiza se bavi razvojem funkcija u trigonometrijske redove. Joseph Fo-

urier (1768–1830), francuski matematičar i inženjer, je uveo trigonometrijske redove

kao metodu rješavanja parcijalnih diferencijalnih jednadžbi koje modeliraju valna gi-

banja i prijenos topline u tvarima. Danas Fourierova analiza ima veliku važnost u

primjenama na različite probleme u fizici i tehnici. Takoder, veliki dio moderne ana-

lize je rezultat pokušaja da se Foureirovi redovi formuliraju na strogim matematičkim

osnovama. U ovom poglavlju izložit ćemo neke rezultate iz teorije Fourierovih redova

koji su nam potrebni za daljnje proučavanje materije.

Neka je f : [−L,L] → R funkcija definirana na simetričnom intervalu [−L,L].

Zanima nas može li se f prikazati u obliku trigonometrijskog reda

f(x) =
a0

2
+

∞∑

n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
. (2.1)

Ovdje je potrebno odgovoriti na sljedeća pitanja.

(1) Je li prikaz funkcije pomoću reda (2.1) moguć?

(2) Na koji način možemo odrediti koeficijente an i bn?

(3) Kakva je konvergencija reda (2.1): po točkama, uniformna ili u nekom drugom

smislu?

19
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Na drugo pitanje možemo odgovoriti ako prepostavimo da red (2.1) konvergira uni-

formno na [−L,L]. Ovdje koristimo činjenicu da funkcije

1, sin
(nπx

L

)
, cos

(nπx

L

)
, n = 1, 2, 3, . . . (2.2)

zadovoljavaju relacije ortogonalnosti
∫ L

−L

1 ∙ cos
(nπx

L

)
dx =

∫ L

−L

1 ∙ sin
(nπx

L

)
dx = 0, (2.3)

∫ L

−L

sin
(mπx

L

)
sin
(nπx

L

)
dx = L δnm, (2.4)

∫ L

−L

cos
(mπx

L

)
cos
(nπx

L

)
dx = L δnm, (2.5)

∫ L

−L

sin
(mπx

L

)
cos
(nπx

L

)
dx = 0, n,m ≥ 1 (2.6)

gdje je δnm Kroneckerov simbol definiran sa

δij =






0, i 6= j,

1, i = j,
(2.7)

Jednakosti (2.3)–(2.6) se lako pokažu upotrebom trigonometrijskog identiteta za pre-

tvorbu umnoška u zbroj trigonometrijskih funkcija. Integracijom jednadnakosti (2.1)

dobivamo
∫ L

−L

f(x)dx =
a0

2

∫ L

−L

dx +
∞∑

n=1

[

an

∫ L

−L

cos
(nπ

L
x
)
dx + bn

∫ L

−L

sin
(nπ

L
x
)
dx

]

= a0L

(2.8)

što povlači

a0 =
1

L

∫ L

−L

f(x)dx (2.9)

(ovdje smo zamijenili sumu i integral jer po pretpostavci red (2.1) konvergira unifor-

mno). Množenjem jednakosti (2.1) sa cos(mπx/L) i primjenom relacije ortogonalnosti

(2.6) dobivamo
∫ L

−L

f(x) cos
(mπ

L
x
)
dx =

a0

2

∫ L

−L

cos
(mπ

L
x
)
dx

+
∞∑

n=1

[

an

∫ L

−L

cos
(nπ

L
x
)
cos
(mπ

L
x
)
dx + bn

∫ L

L

sin
(nπ

L
x
)
cos
(mπ

L
x
)
dx

]

= amL. (2.10)
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Dakle,

am =
1

L

∫ L

−L

f(x) cos
(mπ

L
x
)
dx, m ≥ 1. (2.11)

Na sličam način se pokaže da je

bm =
1

L

∫ L

−L

f(x) sin
(mπ

L
x
)
dx, m ≥ 1. (2.12)

Primijetimo da je konstantni član u redu (2.1) definiran ako a0/2 kako bi se izrazi za

a0 i am mogli napisati u kompaktnom obliku

am =
1

L

∫ L

−L

f(x) cos
(mπ

L
x
)
dx, m ≥ 0. (2.13)

Ova početna razmatranja motiviraju sljedeću definiciju.

Definicija 2.1 (Fourierov red) Trigonometrijski red

a0

2
+

∞∑

n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

) ]
(2.14)

gdje su

an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx, n = 0, 1, 2, . . . (2.15)

bn =
1

L

∫ L

−L

f(x) sin
(nπx

L

)
dx, n = 1, 2, 3, . . . (2.16)

se naziva Fourierov red funkcije f na intervalu [−L,L]. Koeficienti an i bn se nazivaju

Fourierovi koeficijenti.

Prije nego proučimo važno pitanje konvergencije Fourierovog reda, promotrimo ne-

koliko jednostavnih primjera. Fourierov red funkcije f označavamo sa f̃ jer, kao što

ćemo uskoro vidjeti, suma reda ne mora biti jednaka vrijednosti funkcije u danoj

točki.

Pri računanju Fourierovih koeficijenata korisno je uočiti da vrijede sljedeća pravila:

(i) ako je f : [−L,L] → R neparna funkcija, onda je

∫ L

−L

f(x)dx = 0, (2.17)
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(ii) ako je f : [−L,L] → R parna funkcija, onda je

∫ L

−L

f(x)dx = 2

∫ L

0

f(x)dx. (2.18)

Primjer 2.1 Odredimo Fourierov red funkcije f(x) = x na intervalu [−L,L].

Funkcija x cos(nπx/L) je neparna pa je

an =
1

L

∫ L

−L

x cos
(nπx

L

)
dx = 0, n ≥ 0. (2.19)

Koeficijenti bn su dani sa

bn =
1

L

∫ L

−L

x sin
(nπx

L

)
dx =

2

L

∫ L

0

x sin
(nπx

L

)
dx (2.20)

=
2

L

[

−
Lx

nπ
cos
(nπx

L

)
+
( L

nπ

)2

sin
(nπx

L

)]
∣
∣
∣
∣
∣

L

0

(2.21)

= −
2L

nπ
cos(nπ), n ≥ 1. (2.22)

Kako je cos(nπ) = (−1)n, imamo

bn =
2L

nπ
(−1)n+1. (2.23)

Dakle, Fourierov red funkcije f(x) = x ima oblik

f̃(x) =
2L

π

∞∑

n=1

(−1)n+1 1

n
sin
(nπx

L

)

=
2L

π

[

sin
(πx

L

)
−

1

2
sin
(2πx

L

)
+

1

3
sin
(3πx

L

)
− ∙ ∙ ∙

]

(2.24)

Slika 2.1 prikazuje parcijalne sume reda s N = 5 i N = 15 članova. Primijetimo

da suma Fourierovog reda u točkama x = ±L nije jednaka vrijednosti funkcije. U

točkama x ∈ (−L,L) Fourierov red konvergira ka f(x) što se može naslutiti iz slike 2.1

(b). Medutim, konvergencija je “sporija” što je točka x bliže rubovima intervala ±L.

Zanimljivo je primijetiti sljedeću činjenicu. Za L = π izraz (2.24) ima jednostavniji

oblik

f̃(x) = 2
(

sin(x) −
1

2
sin(2x) +

1

3
sin(3x) − ∙ ∙ ∙

)
. (2.25)
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(b) N = 15

Slika 2.1: Razvoj funkcije f(x) = x u Fourierov red.

Ako uvrstimo x = π/2, onda je f̃(π/2) = π/2 pa dobivamo Gregoryev red

π

4
= 1 −

1

3
+

1

5
−

1

7
+

1

9
− ∙ ∙ ∙ (2.26)

pomoću kojeg računamo aproksimacije broja π. �

Primjer 2.2 Odredimo Fourierov red funkcije f(x) = x2 − 1 na intervalu [−1, 1].

Koeficijenti an su dani sa

a0 =

∫ 1

−1

(x2 − 1)dx = −
4

3
, (2.27)

an =

∫ 1

−1

(x2 − 1) cos(nπx)dx =

∫ 1

−1

x2 cos(nπx)dx −
∫ 1

−1

cos(nπx)dx

=
1

(nπ)3

[
2nπx cos(nπx) +

(
(nπx)2 − 2

)
sin(nπx)

]∣∣
∣
1

−1
−

1

nπ
sin(nπx)

∣
∣
∣
1

−1

=
4

(nπ)2
cos(nπ) =

4(−1)n

(nπ)2
, n ≥ 1. (2.28)

Funkcija (x2 − 1) sin(nπx) je neparna pa je

bn =

∫ 1

−1

(x2 − 1) sin(nπx)dx = 0, n ≥ 1. (2.29)
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Slika 2.2: Razvoj funkcije f(x) = x2 − 1 u Fourierov red.

Stoga je Fourierov red funkcije f ima oblik

f̃(x) = −
2

3
+

4

π2

∞∑

n=1

(−1)n

n2
cos(nπx)

= −
2

3
+

4

π2

(

− cos(πx) +
1

4
cos(2πx) −

1

9
cos(3πx) + ∙ ∙ ∙

)

(2.30)

Paricijalne sume reda s N = 2 i N = 6 članova su prikazane na slici 2.2. Primijetimo

da ovaj red konvergira brže od reda u prethodnom primjeru jer se dobra aproksima-

cija funkcije postiže sa samo N = 6 članova. Takoder, slika 2.2 (b) sugerira da red

konvergira podjednako brzo na cijelom intervalu [−1, 1]. �

Navedeni primjeri pokazuju da razvoj funkcije u Fourierov red ima smisla. Iz primjera

takoder uočavamo da suma Fourierovog reda ne mora biti jednaka vrijednosti funkcije

u svim točkama. Stoga je potrebno pobliže proučiti uvjete pod kojima i na koji način

Fourierov red konvergira ka zadanoj funkciji.

2.2 Konvergencija Fourierovog reda

Fourierov reda je potpuno odreden integralom funkcije f na intervalu [−L,L]. Ako

vrijednost funkcije promijenimo u jednoj točki, vrijednost integrala se ne mijenja pa

Fourierov red ostaje isti. Stoga ne možemo očekivati da Fourierov red konvergira
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ka f u svakoj točki. Ovo jednostavno zapažanje sugerira da je problem konvergen-

cije Fourierovog reda vrlo složen. Može se pokazati da postoji neprekidna funkcija

čiji Fourierov red divergira u svim racionalnim točkama, dok je Kolmogorov je oko

1930. godine pokazao da postoji integrabilna funkcija (u Lebesgueovom smislu) čiji

Fourierov red divergira svugdje. Mi ćemo se ovdje ograničiti na funkcije koje su po

dijelovima neprekidne i proučavati svojstva Fourierovih redova takvih funkcija. One

One čine dovoljno široku klasu funkcija za primjenu Fourierovih redova na različite

probleme.

Definicija 2.2 Kažemo da je funkcija f po dijelovima neprekidna na [a, b] ako

(i) je definirana i neprekidna osim najvǐse u konačno mnogo točaka

a ≤ x1 < x2 < . . . < xn ≤ b,

(ii) u točkama prekida xk 6= a, b postoje jednostrani limesi

f(x−
k ) = lim

x→x−
k

f(x), f(x+
k ) = lim

x→x+
k

f(x), (2.31)

(iii) u rubnim točkama postoje limesi limx→a+ f(x) i limx→b− f(x).

Uočimo da po dijelovima neprekidna funkcija ne mora biti definirana u točkama

prekida. Ako je f(xk) definirano, onda f(xk) ne mora biti jednako lijevom ili desnom

limes u xk. U točkama xk funkcija f ima prekid prve vrste, a razlika

βk = f(x+
k ) − f(x−

k ) (2.32)

predstavlja skok vrijednosti funkcije u točki prekida. Ako je βk = 0, onda funkcija ima

uklonjivi prekid u točki xk. Jedan od sredǐsnjih rezultata o konvergenciji Fourierovog

reda se odnosi na fukcije koje su po dijelovima C1 na intervalu [a, b].

Definicija 2.3 Kažemo da je funkcija f po dijelovima C1 na intervalu [a, b] ako su

f i f ′ po dijelovima neprekidne na [a, b].

Prema ovoj definiciji, f je po dijelovima C1 na [a, b] ako funkcije f i f ′ imaju najvǐse

konačno mnogo točaka prekida i u tim točkama imaju prekid prve vrste. Kod takve

funkcije razlikujemo točke prekida prve vrste u kojima je f(x−
k ) 6= f(x+

k ) i točke u

kojima funkcija ima šiljkak jer je f(x−
k ) = f(x+

k ), ali je f ′(x−
k ) 6= f ′(x+

k ). Ilustrirajmo

ove pojmove na sljedećem primjeru.
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Slika 2.3: Funkcija (2.33) je po dijelovima C1 na [−1, 1].

Primjer 2.3 Zadana je funkcija

f(x) =






−1, −1 ≤ x < 0,

2, x = 0,

x2, 0 < x ≤ 1.

(2.33)

Funkcije f je neprekidna na otvorenom skupu (−1, 0) ∪ (0, 1). Ima prekid prve vrste

u x = 0 jer je f(0−) = −1 i f(0+) = 0. U rubnim točkama vrijedi f(−1+) = −1 i

f(1−) = 1. Derivacija f ′ je dana sa

f ′(x) =






0, −1 < x < 0,

2x, 0 < x < 1,
(2.34)

dok u točkama x = −1, 0 i 1 nije definirana. U točki x = 0 imamo f ′(0−) = f ′(0+) =

0, a u rubnim točakama je f ′(−1+) = 0 i f ′(1−) = 2. Dakle, f i f ′ ispunjavaju uvjete

iz Definicije 2.2 pa je f po dijelovima C1 na intervalu [−1, 1].
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Grubo govoreći, po dijelovima C1 funkcije imaju konačno mnogo prekida prve vrste

i konačno mnogo šiljaka u kojima funkcija nije derivabilna. U ovom slučaju može se

pokazati sljedeći rezultat koji navodimo bez dokaza.

Teorem 2.1 (Dirichletov teorem) Neka je f po dijelovima C1 funkcija na [−L,L]

i neka je f̃ Fourierov red funkcije f . Onda vrijedi

(i) f̃(x0) = f(x0) ako je f neprekidna u točki x0 ∈ (−L,L),

(ii) f̃(x0) = 1
2

[
f(x+

0 ) + f(x−
0 )
]

ako f ima prekid u točki x0 ∈ (−L,L),

(iii) f̃(±L) = 1
2

[
f(−L+) + f(L−)

]
.

Prema ovom teoremu, ako f ima prekid u x0, onda je f̃(x0) jednako srednjoj vri-

jednosti jednostranih limesa u x0. Suma Fourierovog reda u rubnim točkama ±L se

takoder može interpretirati kao srednja vrijednost jednostranih limesa ako interval

[−L,L] savijemo u kružnicu i identificiramo točke −L i L.

Ilustrirajmo Dirichletov teorem na primjeru step funkcije

f(x) =






0, −1 ≤ x < 0,

1, 0 < x ≤ 1.
(2.35)

prikazane na slici 2.4. Funkcija f je očigledno po dijelovima C1 na intervalu [−1, 1].

Fourierovi koeficijenti su dani sa

a0 =

∫ 1

0

dx = 1, (2.36)

an =

∫ 1

0

cos(nπx)dx =
sin(nπ)

nπ
= 0, n ≥ 1, (2.37)

bn =

∫ 1

0

sin(nπx)dx =
1

nπ

(
1 − (−1)n

)
=






0, n = 2k,

2
nπ

, n = 2k + 1.
(2.38)

Stoga je

f̃(x) =
1

2
+

2

π

∞∑

k=0

1

2k + 1
sin
(
(2k + 1)πx)

)
. (2.39)
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Slika 2.4: Fourierov red step funkcije (2.35).

Suma reda (2.39) u x = 0 je jednaka f̃(0) = 1/2. S druge strane, f(0−) = 0 i

f(0+) = 1 pa je

f̃(0) =
1

2

[
f(0−) + f(0+)

]
(2.40)

u skladu s Dirichletovim teoremom. Takoder, na rubovima intervala imamo

f̃(±1) =
1

2

[
f(−1+) + f(1−)

]
(2.41)

jer je f̃(±1) = 1/2. Pokažimo da red ne konvergira uniformno na [−1, 1]. Razlog

tome je prekid funkcije u točki x = 0. Označimo sa SN (x) N -tu parcijalnu sumu

Fourierovog reda (2.39),

SN(x) =
1

2
+

2

π

N∑

k=1

1

2k + 1
sin
(
(2k + 1)πx)

)
. (2.42)

Funkcija SN (x) je neprekidna i SN (0) = 1/2 pa za ε = 1/4 postoji δ > 0 takav da

|x − 0| < δ ⇒
∣
∣
∣SN (x) −

1

2

∣
∣
∣ <

1

4
. (2.43)

Posebno, za 0 < x < δ iz (2.43) slijedi

1

4
< SN(x) <

3

4
. (2.44)
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S druge strane, f(x) = 1 za 0 < x < δ pa imamo

|SN (x) − f(x)| > f(x) − SN (x) > 1 −
3

4
=

1

4
. (2.45)

Odavde zaključujemo da je

1

4
< |SN (x) − f(x)| za sve 0 < x < δ, N ≥ 1, (2.46)

što povlači

sup
x∈[−1,1]

|SN(x) − f(x)| ≥
1

4
za svaki N ≥ 1. (2.47)

Dakle, konvergencija reda nije uniformna na skupu [−1, 1].

Primjer 2.4 Odredimo Fourierov red funkcije f(x) = |x| na intervalu [−π, π].

Ova funkcija je po dijelovima C1 na [−π, π] i neprekidna na [−π, π]. Za Fourierove

koeficijente nalazimo

a0 =
1

π

∫ π

−π

|x|dx =
2

π

∫ π

0

xdx = π, (2.48)

an =
1

π

∫ π

−π

|x| cos(nx)dx =
2

π

∫ π

0

x cos(nx)dx

=
2

π

[
x sin(nx)

n

∣
∣
∣
∣
∣

π

0

−
∫ π

0

sin(nx)

n
dx

]

=
2

π

cos(nx)

n2

∣
∣
∣
∣
∣

π

0

=
2

π

(−1)n − 1

n2
, n ≥ 1. (2.49)

Kako je f(x) = |x| parna funkcija, to je

bn =
1

π

∫ π

−π

|x| sin(nx)dx = 0, n ≥ 1. (2.50)

Stoga Fourierov red ima oblik

f̃(x) =
π

2
+

2

π

∞∑

n=1

(−1)n − 1

n2
cos(nx)

=
π

2
−

4

π

∞∑

n=0

1

(2n + 1)2
cos
(
(2n + 1)x

)
. (2.51)



POGLAVLJE 2. FOURIEROV RED 30

3 2 1 1 2 3

0.5

1.0

1.5

2.0

2.5

3.0

Slika 2.5: Razvoj funkcije f(x) = |x| u Fourierov red.

(vidi sliku 2.5). Obzirom da je f neprekidna na [−π, π], prema Dirichletovom teoremu

je f̃(x) = f(x) za svaki x ∈ [−π, π]. Primijetimo da je f̃(0) = f(0) = 0 pa iz relacije

(2.51) dobivamo sumu reda
∞∑

n=0

1

(2n + 1)2
=

π2

8
. (2.52)

�

2.2.1 Uniformna konvergencija

U mnogim primjenama Fourierovih redova poželjno je da red uniformno konvergira.

Važnost uniformne konvergencije ćemo posebno vidjeti kod rješavanja parcijalnih dife-

rencijalnih jednadžbi metodom separacije varijabli. Uočimo na primjeru step funkcije

(2.35) da je neprekidnost nužan uvjet za uniformnu konvergenciju Fourierovog reda.

U ovom poglavlju ćemo dokazati da uz neke dodatne uvjete na funkciju f Fouri-

erov red konvergira uniformno ka f . Za dokaz ove tvrdnje potrebni su nam sljedeći

rezultati.

Propozicija 2.1 (Cauchy–Schwartzova nejednakost) Neka su zi, wi kompleksni

brojevi za 1 ≤ i ≤ n. Tada je
∣
∣
∣
∣
∣

n∑

i=1

ziw̄i

∣
∣
∣
∣
∣
≤

√√
√
√

n∑

i=1

|zi|2

√√
√
√

n∑

i=1

|wi|2. (2.53)
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Dokaz. Definirajmo a =
∑n

i=1 ziw̄i. Tada za svaki realni broj λ imamo

0 ≤
n∑

i=1

|zi − λawi|
2 =

n∑

i=1

(zi − λawi)(z̄i − λāw̄i)

=
n∑

i=1

ziz̄i − λ
n∑

i=1

awiz̄i − λ
n∑

i=1

ziāw̄i + λ2aā
n∑

i=1

wiw̄i

=
n∑

i=1

|zi|
2 − 2λ|a|2 + λ2|a|2

n∑

i=1

|wi|
2. (2.54)

Izraz (2.54) je kvadratni polinom p(λ) u varijabli λ za koji vrijedi p(λ) ≥ 0. Stoga

diskriminanta polinoma

Δ =
(
−2|a|2

)2
− 4

(

|a|2
n∑

i=1

|wi|
2

)(
n∑

i=1

|zi|
2

)

(2.55)

mora zadovoljavati Δ ≤ 0. Ako je a = 0, onda je uvjet trivijalno zadovoljen. Ako je

a 6= 0, onda dijeljenjem s |a|2 6= 0 iz uvjeta Δ ≤ 0 dobivamo

|a|2 ≤
n∑

i=1

|zi|
2

n∑

i=1

|wi|
2, (2.56)

odnosno
n∑

i=1

|ziw̄i| ≤

√√
√
√

n∑

i=1

|zi|2

√√
√
√

n∑

i=1

|wi|2. (2.57)

�

Cauchy–Schwartzova nejednakost je možda najvažnija nejednakost u matematičkoj

analizi. Posebno je važna njezina generalizacija na unitarne prostore.

Teorem 2.2 (Besselova nejednakost) Neka je f : [−L,L] → R po dijelovima ne-

prekidna funkcija i neka su

an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx, n ≥ 0, (2.58)

bn =
1

L

∫ L

−L

f(x) sin
(nπx

L

)
dx, n ≥ 1, (2.59)
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Fourierovi koeficijenti funkcije f . Tada vrijedi

1

2
a2

0 +
∞∑

n=1

(a2
n + b2

n) ≤
1

L

∫ L

−L

f(x)2 dx. (2.60)

Dokaz. Neka je

SN(x) =
a0

2
+

N∑

n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
(2.61)

N–ta parcijalna suma Fouerirovog reda. Kvadriranjem dobivamo

0 ≤
∫ L

−L

(
f(x) − SN (x)

)2
dx =

∫ L

−L

f(x)2 dx − 2

∫ L

−L

f(x)SN (x)dx +

∫ L

−L

SN(x)2 dx.

(2.62)

Iz definicije Fourierovih koeficijenata izravnim računom dobivamo

∫ L

−L

f(x)SN (x)dx =

∫ L

−L

f(x)

[
1

2
a0 +

N∑

n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
]

dx

=
1

2
a0

∫ L

−L

f(x)dx +
N∑

n=1

[

an

∫ L

−L

f(x) cos
(nπx

L

)
dx + bn

∫ L

−L

f(x) sin
(nπx

L

)
dx

]

= L
(1

2
a2

0 +
N∑

n=1

(a2
n + b2

n)
)
. (2.63)

Nadalje, relacije ortogonalnosti (2.3)-(2.6) povlače da je

∫ L

−L

SN (x)2 dx =

∫ L

−L

SN (x)

[
1

2
a0 +

N∑

n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
]

dx

=
1

2
a0

∫ L

−L

SN (x)dx +
N∑

n=1

[

an

∫ L

−L

SN (x) cos
(nπx

L

)
dx + bn

∫ L

−L

SN (x) sin
(nπx

L

)
dx

]

= L
(1

2
a2

0 +
N∑

n=1

(a2
n + b2

n)
)
. (2.64)

Sada supstitucijom izraza (2.63) i (2.64) u (2.62) dobivamo

0 ≤
∫ L

−L

f(x)2 dx − L
(1

2
a2

0 +
N∑

n=1

(a2
n + b2

n)
)

(2.65)
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odnosno
1

2
a2

0 +
N∑

n=1

(a2
n + b2

n) ≤
1

L

∫ L

−L

f(x)2 dx. (2.66)

Nejednakost (2.66) vrijedi za svaki N ≥ 1 pa zaključujemo da je

1

2
a2

0 +
∞∑

n=1

(a2
n + b2

n) ≤
1

L

∫ L

−L

f(x)2 dx. (2.67)

�

Kažemo da je funkcija kvadratno integrabilna na intervalu [a, b] ako je

∫ b

a

f(x)2 dx < ∞. (2.68)

Za kvadratno integrabilne funkcije se može pokazati da vrijedi Parsevalova jednakost

1

2
a2

0 +
N∑

n=1

(a2
n + b2

n) =
1

L

∫ L

−L

f(x)2 dx. (2.69)

Po dijelovima neprekidne funkcije su kvadratno integrabilne pa takve funkcije zadov-

ljavaju jednakost (2.69). Dokaz Parsevalove jednakosti prelazi okvire ovog teksta jer

zahtijeva poznavanje teorije Hilbertovih prostora. Ova jednakost je često korisna za

sumiranje redova realnih brojeva, kako ilustrira sljedeći primjer.

Primjer 2.5 Odredite sumu reda
∑∞

n=1
1
n2 . Prisjetimo se da funkcija f(x) = x,

x ∈ [−L,L], u primjeru 2.1 ima Fourierove koeficijente an = 0 za svaki n ≥ 0 i

bn =
2L

nπ
(−1)n+1, n ≥ 1, (2.70)

Stoga iz relacije (2.69) dobivamo

∞∑

n=1

(
2L

nπ

)2

=
1

L

∫ L

−L

x2dx =
2

3
L2 (2.71)

što povlači
∞∑

n=1

1

n2
=

π2

6
. (2.72)

Izravna posljedica Besselove nejednakosti je
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Teorem 2.3 (Riemann-Lebesgueova lema) Neka je f : [−L,L] → R po dijelo-

vima neprekidna funkcija. Onda za Fourierove koeficijente vrijedi

lim
n→∞

an =
1

L
lim

n→∞

∫ L

−L

f(x) cos
(nπx

L

)
= 0, (2.73)

lim
n→∞

bn =
1

L
lim

n→∞

∫ L

−L

f(x) sin
(nπx

L

)
= 0. (2.74)

Dokaz. Besselova nejednakost implicira da
∑∞

n=1(a
2
n + b2

n) konvergira pa iz nužnog

uvjeta za konvergenciju reda slijedi limn→∞ a2
n = limn→∞ b2

n = 0. Stoga je limn→∞ an =

limn→∞ bn = 0. �

Sada možemo dozati naš glavni rezultat.

Teorem 2.4 (Teorem o uniformnoj konvergenciji) Neka je f neprekidna i po

dijelovima C1 funkcija na [−L,L] takva da je f(−L) = f(L). Onda Fourierov red

konvergira uniformno ka f na skupu [−L,L].

Dokaz. Neka je

SN(x) =
a0

2
+

N∑

n=1

[
an cos

(nπ

L
x
)

+ bn sin
(nπ

L
x
)]

(2.75)

N -ta parcijalna suma Fourierovog reda funkcije f . Prema Dirichletovom teoremu je

lim
N→∞

SN(x) = f(x) za svaki x ∈ [−L,L] (2.76)

jer je f neprekidna i po dijelovima C1 na [−L,L]. Sada je

|f(x) − SN (x)| =
∣
∣
∣

∞∑

n=N+1

[
an cos

(nπ

L
x
)

+ bn sin
(nπ

L
x
)] ∣∣
∣

≤
∞∑

n=N+1

∣
∣
∣an cos

(nπ

L
x
)

+ bn sin
(nπ

L
x
)∣∣
∣

≤
∞∑

n=N+1

(|an| + |bn|) za svaki x ∈ [−L,L]. (2.77)
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Ako pokažemo da su redovi
∑∞

n=1 |an| i
∑∞

n=1 |bn| konvergentni, onda će uniformna

konvergencija slijediti iz nejednakosti (2.77). Koeficijente an možemo parcijalnom

integracijom prikazati u obliku

an =
1

L

∫ L

−L

f(x) cos
(nπ

L
x
)
dx (2.78)

=
1

L



f(x)
L

nπ
sin
(nπ

L
x
)
∣
∣
∣
∣
∣

L

−L

−
∫ L

−L

f ′(x)
L

nπ
sin
(nπ

L
x
)


 (2.79)

= −
L

nπ

1

L

∫ L

−L

f ′(x) sin
(nπ

L
x
)
dx = −

L

nπ
An, n ≥ 1, (2.80)

gdje je

An =
1

L

∫ L

−L

f ′(x) sin
(nπ

L
x
)
dx. (2.81)

Slično, koristeći uvjet f(−L) = f(L) dobivamo

bn =
L

nπ

1

L

∫ L

−L

f ′(x) cos
(nπ

L
x
)
dx =

L

nπ
Bn, n ≥ 1 (2.82)

gdje je

Bn =
1

L

∫ L

−L

f ′(x) cos
(nπ

L
x
)
dx. (2.83)

Dakle, Fourierovi koeficijenti za f i f ′ zadovoljavaju

|an| =
L

πn
|An| i |bn| =

L

πn
|Bn|, n ≥ 1. (2.84)

Pokažimo sada da redovi
∑∞

n=1
1
n
|An| i

∑∞
n=1

1
n
|Bn| konvergiraju. Primijetimo da je

B0 =
1

L

∫ L

−L

f ′(x)dx =
1

L

(
f(L) − f(−L)

)
= 0. (2.85)

Stoga Besselova nejednakost za funkciju f ′ povlači

∞∑

n=1

(
A2

n + B2
n

)
≤

1

L

∫ L

−L

(
f ′(x)

)2
dx < ∞. (2.86)

Prema Cauchy–Schwartzovoj nejednakosti, za svaki N ∈ N vrijedi

N∑

n=1

1

n
|An| ≤

√√
√
√

N∑

n=1

1

n2

√√
√
√

N∑

n=1

A2
n ≤

π2

6

√√
√
√

∞∑

n=1

A2
n (2.87)
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jer je
∑∞

n=1
1
n2 = π2

6
. Slično dobivamo

N∑

n=1

1

n
|Bn| ≤

π
√

6

√√
√
√

∞∑

n=1

B2
n (2.88)

za svaki N ≥ 1. Nejednakosti (2.87) i (2.88) impliciraju da redovi
∑∞

n=1 |an| i
∑∞

n=1 |bn| konvergiraju. Stoga iz (2.77) slijedi

lim
N→∞

sup
x∈[−L,L]

|f(x) − SN(x)| ≤ lim
N→∞

∞∑

n=N+1

(|an| + |bn|) = 0. (2.89)

Time je dokazano da Fourierov red konvergira uniformno ka f na [−L,L]. �

Grubo govoreći, Teorem o uniformnoj konvergenciji vrijedi za neprekidne funkcije

koje imaju najvǐse konačan broj šiljaka u intervalu [−L,L] u kojima prva derivacija

ne postoji. Primjer takve funkcije je f(x) = |x| koja ima šiljak u točki x = 0.

Posebno važan aspekt u teoriji Fourierovih redova je odnos izmedu glatkoće funkcije

i brzine kojom Fourierovi koeficijenti teže k nuli. U dokazu teorema 2.4 pretpostavka

da je f ′ po dijelovima neprekidna povlači da redovi
∑∞

n=1 an i
∑∞

n=1 bn apsolutno

konvergiraju što znači da |an| i |bn| teže k nuli brže od 1/n. Poznavajući ocjenu za

gornju medu koeficijenata |an| i |bn| možemo procijeniti koliko članova Fourierovog

reda je potrebno da bi postigli odredenu točnost u aproksimaciji funkcije.

Propozicija 2.2 Neka je f ∈ C2[−L,L] takva da je f(−L) = f(L) i f ′(−L) = f ′(L).

Neka je M = maxx∈[−L,L] |f ′′(x)|. Onda Fourierovi koeficijenti imaju gornje mede

|an| =

∣
∣
∣
∣
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx

∣
∣
∣
∣ ≤

2L2M

π2n2
, (2.90)

|bn| =

∣
∣
∣
∣
1

L

∫ L

−L

f(x) sin
(nπx

L

)
dx

∣
∣
∣
∣ ≤

2L2M

π2n2
, n ≥ 1. (2.91)



POGLAVLJE 2. FOURIEROV RED 37

Dokaz. Parcijalnom integracijom dobivamo

an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx

=
1

L

[
L

nπ
f(x) sin

(nπx

L

)∣∣
∣
x=L

x=−L
−

L

nπ

∫ L

−L

f ′(x) sin
(nπx

L

)
dx

]

= −
1

nπ

∫ L

−L

f ′(x) sin
(nπx

L

)
dx. (2.92)

Iz uvjeta f ′(−L) = f ′(L) slijedi da je

∫ L

−L

f ′(x) sin
(nπx

L

)
dx = −

L

nπ
f ′(x) cos

(nπx

L

)∣∣
∣
x=L

x=−L
+

L

nπ

∫ L

−L

f ′′(x) cos
(nπx

L

)
dx

=
L

nπ

∫ L

−L

f ′′(x) cos
(nπx

L

)
dx (2.93)

pa supstitucijom (2.93) u (2.92) dobivamo

an = −
L

n2π2

∫ L

−L

f ′′(x) cos
(nπx

L

)
dx. (2.94)

Slično se pokazuje da uvjet f(−L) = f(L) povlači

bn = −
L

n2π2

∫ L

−L

f ′′(x) sin
(nπx

L

)
dx. (2.95)

Sada iz jednadžbi (2.94) i (2.95) zaključujemo da su gornje mede za |an| i |bn| dane

sa

|an| ≤
L

n2π2

∫ L

−L

∣
∣
∣f ′′(x) cos

(nπx

L

)∣∣
∣ dx ≤

2L2M

n2π2
, (2.96)

|bn| ≤
L

n2π2

∫ L

−L

∣
∣
∣f ′′(x) sin

(nπx

L

)∣∣
∣ dx ≤

2L2M

n2π2
(2.97)

gdje je M = maxx∈[−L,L] |f ′′(x)|. �

Ove ocjene za Fourierove koeficijente su korisne ako an i bn nisu eksplicitno poznati,

na primjer ako se računaju numeričkim metodama. Onda se iz relacija (2.96) i (2.97)

može dobiti gruba procjena koliko je članova Fourierovog reda potrebno za aproksima-

ciju funkcije unutar zadane točnosti. Razlika izmedju funkcije f(x) i N -te parcijalne
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Slika 2.6: Suma reda
∑∞

n=N+1
1
n2

sume Fourierovog reda SN (x) je omedena sa

|f(x) − SN (x)| ≤
∣
∣
∣

∞∑

n=N+1

(
an cos

(nπ

L
x
)

+ bn sin
(nπ

L
x
)∣∣
∣

≤
∞∑

n=N+1

(|an| + |bn|) =
4L2M

π2

∞∑

n=N+1

1

n2
(2.98)

za sve x ∈ [−L,L]. Primijetimo da je suma reda
∑∞

n=N+1
1
n2 manja od površine ispod

krivulje y = 1
x2 , N ≤ x < ∞ (vidi sliku 2.6). Stoga je

∞∑

n=N+1

1

n2
≤
∫ ∞

N

dx

x2
=

1

N
(2.99)

pa iz (2.98) dobivamo ocjenu

sup
x∈[−L,L]

|f(x) − SN (x)| ≤
4L2M

π2N
. (2.100)

Ako želimo da je pogreška aproksimacije manja od ε > 0, onda N treba uzeti tako da

je

N >
4L2M

π2ε
. (2.101)
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Ovu metodu procjene broja N nazivamo integralna metoda jer je u relaciji (2.99)

suma reda majorizirana integralom. Mnogo finije procjene broja N se mogu dobiti

ako se Fourierovi koeficijenti eksplicitno izračunaju i onda primijeni integralna metoda

u majorizaciji reda. Ilustrirajmo ovaj postupak na sljedećem primjeru.

Primjer 2.6 Procijenite koliko članova Fourierovog reda je potrebno za aproksima-

ciju funkcije f(x) = x3 − x, x ∈ [−1, 1], s pogreškom manjom od ε = 0.01.

Funkcija f(x) = x3 − x je naparna pa je an = 0 za svaki n ≥ 0. Koeficijenti bn su

dani sa

bn =

∫ 1

−1

(x3 − x) sin(nπx)dx = (−1)n 12

(nπ)3
. (2.102)

Stoga je Fourierov red jednak

f̃(x) =
12

π3

∞∑

n=1

(−1)n

n3
sin(nπx). (2.103)

Prema teoremu 2.4, red (2.103) konvergira uniformno ka f i vrijedi

∣
∣
∣
∣
∣
f(x) −

12

π3

N∑

n=1

(−1)n

n3
sin(nπx)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
12

π3

∞∑

n=N+1

(−1)n

n3
sin(nπx)

∣
∣
∣
∣
∣
≤

12

π3

∞∑

n=N+1

1

n3

(2.104)

za svaki x ∈ [−1, 1]. Suma reda
∑∞

n=N+1 1/n3 je manja od površine ispod krivulje

y = 1/x3, N ≤ x < ∞, stoga je

∞∑

n=N+1

1

n3
≤
∫ ∞

N

1

x3
dx =

1

2N2
. (2.105)

Sada iz (2.104) dobivamo ocjenu

∣
∣
∣
∣
∣
f(x) −

12

π3

N∑

n=1

(−1)n

n3
sin(nπx)

∣
∣
∣
∣
∣
≤

6

π3N2
. (2.106)

Ako želimo da je pogreška aproksimacije manja od ε = 0.01, onda N treba uzeti takav

da je 6/(π3N2) < 0.01, odnosno

N >

√
6

π3 ∙ 0.01
≈ 4.4. (2.107)
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Dakle, dovoljno je uzeti N = 5 članova reda. Za usporedbu odredimo N iz relacije

(2.101). Maksimalna vrijednost druge derivacije je dana sa

M = max
−1≤x≤1

|6x| = 6, (2.108)

pa uvjet (2.101) povlači

N >
4 ∙ 6

π2 ∙ 0.01
≈ 243.17, (2.109)

odnosno N = 244. Očigledno je prva procjena mnogo bolja od procjene dobivene

relacijom (2.101). �



Poglavlje 3

Kvazi–linearne jednadžbe prvog

reda

U ovom poglavlju razmatramo opće rješenje kvazi–linearne jednadžbe prvog reda

P (x, y, u)ux + Q(x, y, u)uy = R(x, y, u). (3.1)

Pretpostavimo da su P , Q i R funkcije klase C1 na domeni Ω ⊆ R3 koje ne isčezavaju

istodobno ni u jednoj točki (x, y, u) ∈ Ω. Rješenje jednadžbe (3.1) je funkcija

u = u(x, y) klase C1 na domeni Ω0 ⊆ R2 takva da je (x, y, u(x, y)) ∈ Ω za svaku točku

(x, y) ∈ Ω0. Drugim riječima, funkcije P (x, y, u(x, y)), Q(x, y, u(x, y)) i R(x, y, u(x, y))

su dobro definirane na domeni Ω0. Rješenje u = u(x, y) se može promatrati kao nivo–

ploha funkcije f(x, y) = u(x, y) − u,

S =
{

(x, y, u) | f(x, y, u) = 0
}

, (3.2)

koju nazivamo integralna ploha jednadžbe (3.1). Vektor ∇f = ux~e1 + uy~e2 − ~e3 je

okomit na plohu S u svakoj točki (x, y, u) ∈ S gdje je ∇f 6= 0. Primijetimo da se

jednadžba (3.1) može napisati kao skalarni umnožak vektora

(P~e1 + Q~e2 + R~e3) ∙ (ux~e1 + uy~e2 − ~e3) = 0 (3.3)

što povlači da je vektor ~F = P~e1 + Q~e2 + R~e3 okomit na ∇f ako je ∇f 6= 0. Za-

ključujemo da ~F mora biti tangencijalni vektor na integralnu plohu S u svakoj točki

gdje je ∇f 6= 0. Pravac koji odreduje vektor ~F naziva se Mongeova os i ima ključnu

ulogu u rješavanju jednadžbe (3.1).

41
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Definicija 3.1 Kažemo da je γ ⊂ S karakteristična krivulja ako je u svakoj točki

(x, y, u) ∈ γ tangencijalni vektor od γ jednak ~F (x, y, u) = P (x, y, u)~e1 +Q(x, y, u)~e2 +

R(x, y, u)~e3.

Ako je γ definirana parametarskim jednadžbama

γ : x = x(t), y = y(t), u = u(t), t ∈ I, (3.4)

onda je

x′(t) = P (x, y, u), y′(t) = Q(x, y, u), u′(t) = R(x, y, u). (3.5)

Jednadžbe (3.5) nazivaju se karakteristične jednadžbe kvazi–linearne jednadžbe (3.1).

Karakterstične jednadžbe možemo zapisati u neparametarskom obliku

dx

P
=

dy

Q
=

du

R
. (3.6)

Pronalaženje općeg rješenja jednadžbe (3.1) se svodi na rješavanje karakterističnih

jednadžbi (3.5), odnosno (3.6). Ova metoda se naziva Lagrangeova metoda karakte-

ristika. Rješenja jednadžbi (3.6) općenito možemo zapisati u obliku φ(x, y, u) = C za

neki C ∈ R. Kažemo da su φ(x, y, u) = C1 i ψ(x, y, u) = C2 funkcinalno nezavisna

rješenja ako je

∇φ ×∇ψ 6= 0. (3.7)

Teorem 3.1 (Metoda karakteristika) Neka su φ(x, y, u) = C1 i ψ(x, y, u) = C2

dva funkctionalno nezavisna rješenja karakterističnih jednadžbi (3.6) u domeni Ω ⊆

R3 u kojoj su definirane funkcije P , Q i R. Opće rješenje jednadžbe (3.1) je dano sa

f(φ, ψ) = 0 gdje je f proizvoljna funkcija klase C1.

Dokaz. Neka je γ ⊂ S karakteristična krivulja s parametrizacijom x = x(t), y = y(t),

u = u(t), t ∈ I. Tada je φ(x(t), y(t), u(t)) = C1 pa vrijedi

dφ

dt
= φx x′(t) + φy y′(t) + φu u′(t) = Pφx + Qφy + Rφu = 0. (3.8)

Slično, iz ψ(x(t), y(t), u(t)) = C2 dobivamo

dψ

dt
= Pψx + Qφy + Rψu = 0. (3.9)
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Kako su φ i ψ funkcionalno nezavisni, to je

∇φ ×∇ψ =~i

∣
∣
∣
∣
∣
φy φu

ψy ψu

∣
∣
∣
∣
∣
−~j

∣
∣
∣
∣
∣
φx φu

ψx ψu

∣
∣
∣
∣
∣
+ ~k

∣
∣
∣
∣
∣
φx φy

ψx ψy

∣
∣
∣
∣
∣
6= 0. (3.10)

Bez gubitka općenitosti pretpostavimo da je φxψy − φyψx 6= 0. Tada koristeći jed-

nadžbe (3.8) i (3.9) funkcije P i Q možemo izraziti pomoću R,

P = −R

∣
∣
∣
∣
∣
φu φy

ψu ψy

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
φx φy

ψx ψy

∣
∣
∣
∣
∣

, Q = −R

∣
∣
∣
∣
∣
φx φu

ψx ψu

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
φx φy

ψx ψy

∣
∣
∣
∣
∣

. (3.11)

S druge strane, deriviranjem izraza f(φ, ψ) = 0 dobivamo

∂f

∂x
=

∂f

∂φ

(
∂φ

∂x
+

∂φ

∂u

∂u

∂x

)

+
∂f

∂ψ

(
∂ψ

∂x
+

∂ψ

∂u

∂u

∂x

)

= 0, (3.12)

∂f

∂y
=

∂f

∂φ

(
∂φ

∂y
+

∂φ

∂u

∂u

∂y

)

+
∂f

∂ψ

(
∂ψ

∂y
+

∂ψ

∂u

∂u

∂y

)

= 0, (3.13)

gdje smo uzeli u obzir da varijabla u ovisi o x i y. Sustav jednadžbi (3.12)–(3.13) ima

netrivijalna rješenja za ∂f/∂φ i ∂f/∂ψ samo ako je

∣
∣
∣
∣
∣
φx + φu ux ψx + ψu ux

φy + φu uy ψy + ψu uy

∣
∣
∣
∣
∣
= 0. (3.14)

Uvjet (3.14) se može zapisati u obliku

∣
∣
∣
∣
∣
φu φy

ψu ψy

∣
∣
∣
∣
∣
ux +

∣
∣
∣
∣
∣
φx φu

ψx ψu

∣
∣
∣
∣
∣
uy = −

∣
∣
∣
∣
∣
φx φy

ψx ψy

∣
∣
∣
∣
∣
. (3.15)

Sada iz jednadžbi (3.11) i (3.15) slijedi da u zadovoljava diferencijalnu jednadžbu

Pux + Quy = R. (3.16)

�

Primijetimo da se do istog rezultata dolazi ako pretpostavimo da je bilo koja deter-

minanta u jednadžbi (3.10) različita od nule.
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Primjer 3.1 Odredite opće rješenje kvazi–linearne jednadžbe

x2ux + y2uy = (x + y)u. (3.17)

Karakteristične krivulje su odredene jednadžbama

x′(t) = x2, y′(t) = y2, u′(t) = (x + y)u. (3.18)

Integracijom prve dvije jednadžbe u (3.18) dobivamo

x = −
1

t + C1

, y = −
1

t + C2

(3.19)

gdje su C1 i C2 konstante integracije. Supstitucijom (3.19) u treću jednadžbu u (3.18)

slijedi da funkcija u zadovoljava

u′(t) = −

(
1

t + C1

+
1

t + C2

)

u. (3.20)

Integracijom jednadžbe (3.20) dobivamo

u(t) =
K1

(t + C1)(t + C2)
(3.21)

za neku konstantu K1. Sada iz jednadžbi (3.19) i (3.21) možemo odrediti funkcije φ

i ψ koje su konstantne duž karakterističnih krivulja. Primijetimo da je

1

t + C1

1

t + C2

= xy (3.22)

pa iz jednadžbe (3.21) slijedi
u

xy
= K1. (3.23)

Nadalje, jednadžba (3.19) implicira

1

x
−

1

y
= C2 − C1 = K2. (3.24)

Ako definiramo funkcije

φ(x, y, u) =
u

xy
, ψ(x, y, u) =

y − x

xy
, (3.25)

onda iz (3.23) i (3.24) slijedi da je φ = K1 i ψ = K2 duž karakterističnih krivulja.

Stoga je opće rješenje dano sa

f

(
u

xy
,
y − x

xy

)

= 0 (3.26)

gdje je f proizvoljna C1 funkcija. �



Poglavlje 4

Jednadžbe drugog reda u dvije

nezavisne varijable

U ovom poglavlju proučavamo linearne jednadžbe drugog reda u dvije nezavisne va-

rijable. Ove jednadžbe se mogu klasificirati na tri tipa: hiperboličke, paraboličke i

eliptičke jednadžbe. Fundamentalne jednadžbe matematičke fizike, valna, difuzijska

i Laplaceove jednadžba su važni primjeri ovih tipova jednadžbi. Rješenja istog tipa

imaju slična kvalitativna svojstva, a svaki tip jednadžbe se može transformacijom

varijabli svesti na tzv. kanonski oblik koji je jednostavniji za proučavanje.

Opća linearna jednadžba drugog reda u dvije nezavisne varijable ima oblik

Auxx + 2Buxy + Cuyy + Dux + Euy + Fu = G (4.1)

gdje su u,A,B,C,D,E, F,G funkcije varijabli x, y u zadanom području Ω ⊆ R2.

Pretpostavljamo da funkcije A, B i C ne isčezavaju istovremeno u Ω i da je u ∈ C2(Ω).

Jednadžbu (4.1) možemo zapisati u operatorskom obliku L[u] = G gdje je

L = A
∂2

∂x2
+ 2B

∂2

∂x∂y
+ C

∂2

∂y2
+ D

∂

∂x
+ E

∂

∂y
+ F. (4.2)

Operator

L0 = A
∂2

∂x2
+ 2B

∂2

∂x∂y
+ C

∂2

∂y2
(4.3)

naziva se glavni dio operatora L. Operatoru L0 pridružena je diskriminanta

Δ(x, y) = B2(x, y) − A(x, y)C(x, y). (4.4)

45
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Pokazat ćemo da je predznak diskriminante Δ invarijantan obzirom na regularnu

transformaciju varijabli, odnosno da ne ovisi o koordinatnom sustavu u kojem pro-

matramo jednadžbu. Ovo sugerira da jednadžbe drugog reda možemo klasificirati

prema predznaku diskriminante Δ.

Definicija 4.1 Kažemo da je jednadžba (4.1)

(a) hiperbolička u točki (x, y) ako je Δ(x, y) > 0,

(b) parabolička u točki (x, y) ako je Δ(x, y) = 0,

(c) eliptička u točki (x, y) ako je Δ(x, y) < 0.

Ako je jednadžba (4.1) hiperbolička (parabolička, eliptička) u svakoj točki područja

Ω, onda kažemo da je ona hiperbolička (parabolička, eliptička) u Ω. Klasifikacija

jednadžbi na spomenute tipove je motivirana krivuljama drugog reda jer jednadžba

Ax2 + 2Bxy + Cy2 + Dx + Ey + F = 0 (4.5)

predstavlja hiperbolu, parabolu, odnosno elipsu ovisno o tome je li diskriminanta

Δ = B2 − AC pozitivna, nula ili negativna.

Valna jednadžba

utt − c2uxx = 0 (4.6)

je hiperbolička u R2 jer je Δ = c2 > 0 (A = −c2, B = 0, C = 1). Jednadžba

provodenja topline

ut − kuxx = 0, k > 0, (4.7)

je parabolička u R2 jer je Δ = 0 (A = −k,B = C = 0) dok je Laplaceova jednadžba

uxx + uyy = 0 (4.8)

je eliptička u R2 jer je Δ = −1 < 0 (A = C = 1, B = 0). Tricomijeva jednadžba

yuxx + uyy = 0 (4.9)

ima diskriminantu Δ = −y (A = y,B = 0, C = 1). Jednadžba je eliptička u polurav-

nini y > 0, hiperbolička u poluravnini y < 0 i parabolička na pravcu y = 0.
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Zanima nas kako se jednadžba (4.1) transformira uvodenjem novih varijabli

α = α(x, y), β = β(x, y), (x, y) ∈ Ω. (4.10)

Pretpostavit ćemo da su α, β ∈ C2(Ω) i da je Jacobijan transformacija

J =

∣
∣
∣
∣
∣
αx αy

βx βy

∣
∣
∣
∣
∣
= αxβy − αyβx 6= 0 ∀ (x, y) ∈ Ω. (4.11)

U tom slučaju postoji inverzna transformacija

x = x(α, β), y = y(α, β), (4.12)

a transformirana funkcija w(α, β) = u(x(α, β), y(α, β)) je klase C2.

Lema 4.1 Neka je

Auxx + 2Buxy + Cuyy + Dux + Euy + Fu = G (4.13)

linearna jednadžba drugog reda. Neka je α = α(x, y), β = β(x, y) regularna transfor-

macija varijabli. Tada je predznak diskriminante Δ = B2 −AC invarijantan obzirom

na transformaciju (x, y) 7→ (α, β).

Lema 4.1 pokazuje da je predznak diskriminante Δ(x, y) intrinzično svojstvo jed-

nadžbe (4.13) jer funkcije u(x, y) i w(α, β) zadovoljavaju jednadžbu istog tipa.

Dokaz. Funkcije u i w povezane su relacijom u(x, y) = w(α(x, y), β(x, y)). Primje-

nom pravila za derivaciju kompozicije dobivamo

ux = wα αx + wβ βx, (4.14)

uy = wα αy + wβ βy, (4.15)

uxx = wαα α2
x + 2wαβ αx βx + wββ β2

x + wα αxx + wβ βxx, (4.16)

uxy = wαα αx αy + wαβ(αxβy + αyβx) + wββ βx βy + wα αxy + wβ βxy, (4.17)

uyy = wαα α2
y + 2wαβ αy βy + wββ β2

y + wα αyy + wβ βyy. (4.18)

Suptitucijom ovih izraza u (4.13) slijedi da funkcija w zadovoljava transformiranu

jednadžbu

L̄[w] ≡ Āwαα + 2B̄wαβ + C̄wββ + D̄wα + Ēwβ + F̄w = Ḡ (4.19)
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gdje je

Ā(α, β) = Aα2
x + 2Bαx αy + Cα2

y, (4.20)

B̄(α, β) = Aαx βx + B(αx βy + αy βx) + Cαy βy, (4.21)

C̄(α, β) = Aβ2
x + 2Bβx βy + Cβ2

y . (4.22)

Ostale koeficijente ne trebamo eksplicitno izračunati jer tip jednadžbe ovisi samo o

koeficijentima A, B i C. Jednadžbe (4.20)-(4.22) se mogu zapisati u matričnom obliku
(

Ā B̄

B̄ C̄

)

=

(
αx αy

βx βy

)(
A B

B C

)(
αx βx

αy βy

)

. (4.23)

Računanjem determinante lijeve i desne strane jednadžbe (4.23) dobivamo

ĀC̄ − B̄2 = (AC − B2)(αx βy − αy βx)
2, (4.24)

odnosno

Δ̄ = ΔJ2 (4.25)

gdje je J = αxβy − αyβx Jacobijan transformacije. Kako je (x, y) 7→ (α, β) regularna

transformacija, to je J 6= 0 pa zaključujemo da diskriminante Δ̄ i Δ̄ imaju isti pred-

znak ili su obje nula. Ovo implicira da funkcije u i w zadovoljavaju jednadžbu istog

tipa. �

Uvodenjem novih varijabli jednadžba (4.1) se može transformirati u jednostavniji, tzv.

kanonski oblik. Proučavanjem kanonskih oblika dobivamo lakši uvid u opća svojstva

jednadžbe (4.1). Ako nam je poznato rješenje w(α, β) kanonskog oblika jednadžbe,

onda je rješenje početne jednadžbe dano sa u(x, y) = w(α(x, y), β(x, y)). Razlikujemo

sljedeće kanonske oblike jednadžbi drugog reda.

Definicija 4.2 (1) Kanonski oblik hiperboličke jednadžbe je

uxy + L1[u] = G (4.26)

gdje je L1 diferencijalni operator prvog reda. Ovaj kanonski oblik je ekvivalentan

sa

wαα − wββ + L1[w] = G (4.27)

gdje su varijable α, β dane transformacijom α = x + y, β = x − y.
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(2) Kanonski oblik paraboličke jednadžbe je

uxx + L1[u] = G. (4.28)

(3) Kanonski oblik eliptičke jednadžbe je

uxx + uyy + L1[u] = G. (4.29)

Primijetimo da su fundamentalne jednadžbe matematičke fizike, valna, difuzijska i

Laplaceova jednadžba glavni dijelovi hiperboličke, paraboličke i eliptičke jednadžbe,

redom. U sljedećem poglavlju proučavamo transformacije varijabli kojima se jed-

nadžbe svode na kanonske oblike.

4.1 Kanonski oblik hiperboličkih jednadžbi

Teorem 4.1 Neka je

Auxx + 2Buxy + Cuyy + Dux + Euy + Fu = G (4.30)

hiperbolička jednadžba u području Ω ⊆ R2. Onda postoje varijable α = α(x, y), β =

β(x, y) u kojima jednadžba (4.30) ima kanonski oblik

wαβ + L1[w] = Ḡ (4.31)

gdje je w(α, β) = u(x(α, β), y(α, β)) i L1 je diferencijalni operator prvog reda.

Dokaz. Ako je A = C = 0, onda je Δ = B2 > 0 pa se u ovom slučaju jednadžba svodi

na kanonski oblik dijeljenjem s 2B 6= 0. Pretpostavimo sada bez gubitka općenitosti

da je A 6= 0 u području Ω. Ako je C 6= 0, možemo zamijeniti uloge x i y. Jednadžbu

ćemo svesti na kanonski oblik ako odredimo varijable α = α(x, y), β = β(x, y) takve

da je

Ā = Aα2
x + 2Bαxαy + Cα2

y = 0, (4.32)

C̄ = Aβ2
x + 2Bβxβy + Cβ2

y = 0. (4.33)

Kvadratna jednadžba

Aλ2 + 2Bλ + C = 0 (4.34)
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ima dva različita realna rješenja λ1(x, y) i λ2(x, y) u Ω,

λ1,2 =
−B ±

√
B2 − AC

A
, (4.35)

jer je Δ = B2 − AC > 0. Neka su α(x, y) i β(x, y) netrivijalna rješenja jednadžbi

prvog reda

αx = λ1(x, y)αy, (4.36)

βx = λ2(x, y)βy. (4.37)

Jednadžbe (4.36) i (4.37) nazivamo karakteristične jednadžbe. Supstitucijom ovih

jednadžbi u izraze za koeficijente Ā i C̄ dobivamo

Ā = (Aλ2
1 + 2Bλ1 + C)α2

y = 0, (4.38)

C̄ = (Aλ2
2 + 2Bλ2 + C)β2

y = 0. (4.39)

Dakle, jednadžba (4.30) u novim varijablama ima oblik

2B̄wαβ + L1[w] = Ḡ (4.40)

gdje je L1 diferencijalni operator prvog reda. Prema lemi 4.1 transformirana diskri-

minanta zadovoljava Δ̄ = B̄2 > 0, stoga jednadžbu (4.40) možemo podijeliti s 2B̄ 6= 0

čime dobivamo kanonski oblik (4.31).

Ostaje nam provjeriti je li transformacija α = α(x, y), β = β(x, y) regularna.

Supstitucijom jednadžbi (4.36) i (4.37) u Jacobijan transformacije dobivamo

J =

∣
∣
∣
∣
∣
λ1αy αy

λ2βy βy

∣
∣
∣
∣
∣
= (λ1 − λ2)αyβy. (4.41)

Ovdje je λ1 − λ2 6= 0 jer su λ1 i λ2 različita rješenja jednadžbe (4.34). Kako je α

netrivijalno rješenje karakteristične jednadžbe, to je αy 6= 0 jer u protivnom iz (4.36)

slijedi da je αx = αy = 0, odnosno α = konst. Slično zaključujemo da je βy 6= 0.

Stoga je J 6= 0 pa netrivijalna rješenja karakterističnih jednadžbi daju regularnu tran-

sformaciju varijabli. �

Ako su λ1 i λ2 konstante, onda karakteristične jednadžbe imaju jednostavna rješenja

α(x, y) = a(λ1x + y) i β(x, y) = b(λ2x + y) gdje su a, b ∈ R proizvoljni.
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Primjer 4.1 Odredite kanonski oblik i opće rješenje jednadžbe

4uxx + 5uxy + uyy + ux + uy = 2. (4.42)

Imamo A = 4, B = 5/2 i C = 1 i Δ = 9/4 > 0 pa je jednadžba hiperbolička u

R2. Kvadratna jednadžba Aλ2 + 2Bλ + C = 0 ima dva realna korijena λ1 = −1/4 i

λ2 = −1. Karakteristične jednadžbe su dane sa

αx = −
1

4
αy, βx = −βy, (4.43)

odakle slijedi

α = −
1

4
x + y, β = −x + y. (4.44)

Neka je w(α, β) = u
(
x(α, β), y(α, β)

)
. Onda je

ux = −
1

4
wα − wβ, (4.45)

uy = wα + wβ, (4.46)

uxx =
1

16
wαα +

1

2
wαβ + wββ, (4.47)

uyy = wαα + 2wαβ + wββ, (4.48)

uxy = −
1

4
wαα −

5

4
wαβ − wββ (4.49)

pa supstitucijom izraza (4.45)–(4.49) u jednadžbu (4.42) dobivamo kanonski oblik

jednadžbe

wαβ =
1

3
wα −

8

9
. (4.50)

Funkcija v = wα zadovoljava jednadžbu prvog reda vβ − 1
3
v = −8

9
. Opće rješenje je

dano sa v(α, β) = B(α)e
1
3

β + 8
3

gdje konstanta integracije B ovisi o varijabli α. Sada

je

w(α, β) =

∫
v(α, β)dα =

∫
B(α)dα e

1
3

β +
8

3
α + C. (4.51)

Dakle, opće rješenje jednadže (4.42) ima oblik

u(x, y) = w
(
−

1

4
x + y,−x + y

)
= f

(
−

1

4
x + y

)
e

1
3

(−x+y) −
2

3
x +

8

3
y + C (4.52)

gdje je f proizvoljna C2 funkcija.
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Ako uvedemo varijable ξ = α+β, η = α−β i funkciju w̄(ξ, η) = w
(
α(ξ, η), β(ξ, η)

)
,

onda je ekvivalentni kanonski oblik jednadžbe (4.42) dan sa

w̄ξξ − w̄ηη =
1

3
w̄ξ +

1

3
w̄η −

8

9
. (4.53)

�

4.2 Kanonski oblik paraboličkih jednadžbi

Teorem 4.2 Neka je

Auxx + 2Buxy + Cuyy + Dux + Euy + Fu = G (4.54)

parabolička jednadžba u području Ω ⊆ R2. Onda postoje varijable α = α(x, y), β =

β(x, y) u kojima jednadžba (4.54) ima kanonski oblik

wαα + L1[w] = Ḡ (4.55)

gdje je w(α, β) = u
(
x(α, β), y(α, β)

)
i L1 je diferencijalni operator prvog reda.

Dokaz. Kako A, B i C nisu svi nula, pretpostavka Δ = B2 − AC = 0 povlači da

je A 6= 0 ili C 6= 0. Bez gubitka općenitosti pretpostavimo da je A 6= 0 u Ω. Ako je

C 6= 0, dokaz se modificira na očigledni način. Prema lemi 4.1, potrebno je odrediti

varijable α = α(x, y), β = β(x, y) takve da je

B̄ = Aαx βx + B(αx βy + αy βx) + Cαy βy = 0, (4.56)

C̄ = Aβ2
x + 2Bβx βy + Cβ2

y = 0. (4.57)

Zbog uvjeta Δ = B2 − AC = 0, jednadžba Aλ2 + 2Bλ + C = 0 ima jedno realno

rješenje u Ω,

λ(x, y) = −
B(x, y)

A(x, y)
. (4.58)

Neka je β netrivijalno rješenje karakteristične jednadžbe

βx = λ(x, y)βy. (4.59)
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Supstitucijom jednadžbe (4.59) u (4.56) i (4.57) dobivamo

B̄ = (Aλ + B)αxβy + (Bλ + C)αyβy =
1

A

(
AC − B2

)
αyβy = 0, (4.60)

C̄ = (Aλ2 + 2Bλ + C)β2
y = 0. (4.61)

Za α(x, y) možemo uzeti proizvoljnu funkciju za koju Jacobijan transformacije (x, y) 7→

(α, β) ne ǐsčezava. Ako odaberemo α = x, onda je

J =

∣
∣
∣
∣
∣
αx αy

βx βy

∣
∣
∣
∣
∣
= βy 6= 0 (4.62)

jer je β netrivijalno rješenje karakteristične jednadžbe. Sada za koeficijente imamo

Ā = Aα2
x + 2Bαxαy + Cα2

y = A 6= 0 (4.63)

i B̄ = C̄ = 0 pa je transformirana jednadžba dana sa Āwαα +L1[w] = Ḡ. Dijeljenjem

s Ā 6= 0 dobivamo kanonski oblik (4.55). �

Primjer 4.2 Odredite kanonski oblik jednadžbe

x2uxx − 2xyuxy + y2uyy + xux + yuy = 0 (4.64)

i pronadite opće rješenje jednadžbe u poluravnini Ω = {(x, y) | x > 0}.

Jednadžba je parabolička u R2 jer je A = x2, B = −xy i C = y2 što povlači Δ =

B2 − AC = (−xy)2 − x2y2 = 0. Prema prethodnom teoremu treba odrediti rješenje

karakteristične jednadžbe

βx = λβy gdje je λ = −
B

A
=

y

x
. (4.65)

Jedno rješenje je dano sa β = xy, stoga transformaicija variabli glasi α = x, β = xy.

Transformacija je regularna u poluravnini Ω jer je Jacobijan transformacije J = βy =

x > 0 u Ω. Definirajmo w(α, β) = u(x(α, β), y(α, β)). Onda je

ux = wα + wβ
β

α
, (4.66)

uy = wβα, (4.67)

uxx = wαα + 2wαβ
β

α
+ wββ

(β

α

)2

, (4.68)

uxy = wαβα + wββ β + wβ, (4.69)

uyy = wββ α2. (4.70)
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Supstitucijom ovih izraza u jednadžbu (4.64) dobivamo

α2wαα + αwα = 0. (4.71)

Integracijom jednadžbe nalazimo

wα =
1

α
f(β), (4.72)

pa je funkcija w dana sa

w =

∫
wαdα = f(β) ln |α| + g(β) (4.73)

gdje su f i g proizvoljne C2 funkcije. Dakle, opće rješenje jednadžbe (4.64) u polu-

ravnini x > 0 je funkcija

u(x, y) = f(xy) ln(x) + g(xy). (4.74)

�

4.3 Kanonski oblik eliptičkih jednadžbi

Odredivanje varijabli u kojima eliptička jednadžba ima kanonski oblik je u općem

slučaju složenije nego za hiperboličke ili paraboličke jednadžbe (vidi [P.R. Garabe-

dian, Partial Diferential Equations, John Wiley and Sons, New York, 1964]). Medutim,

ako su koeficijenti uz druge derivacije konstantni, onda je procedura za svodenje na

kanonski oblik slična hiperboličkom slučaju.

Teorem 4.3 Neka je

Auxx + 2Buxy + Cuyy + Dux + Euy + Fu = G (4.75)

eliptička jednadžba u području Ω ⊂ R2. Onda postoje varijable α = α(x, y), β =

β(x, y) u kojima jednadžba (4.75) ima kanonski oblik

wαα + wββ + L1[w] = Ḡ (4.76)

gdje je w(α, β) = u
(
x(α, β), y(α, β)

)
i L1 je diferencijalni operator prvog reda.
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Dokaz. Dokaz provodimo u slučaju kada su koeficijenti A, B i C konstantni. Iz

uvjeta Δ = B2 − AC < 0 slijedi da je A 6= 0 i C 6= 0. Koeficijenti glavnog dijela

jednadžbe se transformiraju prema pravilu

Ā = Aα2
x + 2Bαx αy + Cα2

y, (4.77)

B̄ = Aαx βx + B(αx βy + αy βx) + Cαy βy, (4.78)

C̄ = Aβ2
x + 2Bβx βy + Cβ2

y . (4.79)

Želimo odrediti varijable α = α(x, y) i β = β(x, y) takve da je Ā = C̄ 6= 0 i B̄ = 0. U

tom slučaju α i β zadovoljavaju jednadžbe Ā − C̄ = 0 i B̄ = 0, odnosno

A(α2
x − β2

x) + 2B(αxαy − βxβy) + C(α2
y − β2

y) = 0, (4.80)

Aαxβx + B(αxβy + αyβx) + Cαyβy = 0. (4.81)

Sustav jednadžbi (4.80)–(4.81) je ekvivalentan sa

Aφ2
x + 2Bφxφy + Cφ2

y = 0 (4.82)

gdje je φ kompleksna funkcija φ = α + iβ. Jednadžba Aλ2 + 2Bλ + C = 0 ima dva

kompleksno–konjugirana rješenja

λ1 =
−B + i

√
AC − B2

A
, λ2 =

−B − i
√

AC − B2

A
(4.83)

jer je AC − B2 > 0. Neka je φ netrivijalno rješenje karakteristične jednadžbe

φx = λ1φy. (4.84)

Onda je

Aφ2
x + 2Bφxφy + Cφ2

y = (Aλ2
1 + 2Bλ1 + C)φ2

y = 0 (4.85)

što znači da su za ovaj izbor funkcije φ vrijedi Ā = C̄ i B̄ = 0. Definirajmo a = −B/A

i b =
√

AC − B2/A tako da je λ1 = a+ ib. Jednadžba (4.84) ima rješenje φ = λ1x+y

odakle slijedi da je tražena transformacija dana sa

α = Re(φ) = ax + y, β = Im(φ) = bx. (4.86)

Tranformacija je regularna u R2 jer je

J =

∣
∣
∣
∣
∣
αx αy

βx βy

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
a 1

b 0

∣
∣
∣
∣
∣
= −b 6= 0. (4.87)
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Za koeficijente Ā i C̄ imamo

Ā = Aa2 + 2Ba + C = A
AC − B2

A2
= Ab2, C̄ = Ab2, (4.88)

stoga je transformirana jednadžba dana sa Ab2wαα + Ab2wββ + L1[w] = Ḡ. Sada

dijeljenjem s Ab2 6= 0 dobivamo kanonski oblik (4.76). �

Napomenimo da se eliptička jednadžba može svesti na kanonski oblik i ako za φ

odaberemo φx = λ2φy. U tom slučaju jednadžbe se razlikuju samo u diferencijalnom

operatoru L1, ali rješenje u(x, y) ima isti oblik.

Primjer 4.3 Oredite kanonski oblik jednadžbe

uxx + uxy + uyy + ux = 0. (4.89)

Koeficijenti glavnog dijela jednadžbe su A = 1, B = 1/2 i C = 1. Jednadžba je

eliptička u R2 jer je

Δ = B2 − AC = −
3

4
< 0. (4.90)

Rješenja jednadžbe Aλ2 + 2Bλ + C = 0 su

λ1,2 =
−1 ± i

√
3

2
(4.91)

pa prema jednadžbi (4.86) transformirane varijable imaju oblik

α = −
1

2
x + y, β =

√
3

2
x. (4.92)

Odavde dobivamo

ux = −
1

2
wα +

√
3

2
wβ, (4.93)

uxx =
1

4
wαα −

√
3

2
wαβ +

3

4
wββ, (4.94)

uxy = −
1

2
wαα +

√
3

2
wαβ, (4.95)

uyy = wββ. (4.96)
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Supstitucijom izraza (4.93)–(4.95) u jednadžbu (4.89) nalazimo

3

4
wαα +

3

4
wββ −

1

2
wα +

√
3

2
wβ = 0, (4.97)

odnosno

wαα + wββ −
2

3
wα +

2
√

3
wβ = 0. (4.98)

Ako umjesto λ1 odaberemo rješenje λ2 = −1
2
− i

√
3

2
, onda su transformirane varijable

dane sa

α = −
1

2
x + y, β = −

√
3

2
x. (4.99)

Pripadni kanonski oblik je u tom slučaju

wαα + wββ −
2

3
wα −

2
√

3
wβ = 0. (4.100)

Uočimo da je glavni dio kanonskog oblika jedinstven, ali preostali dio ovisi o izboru

korijena λ1 ili λ2.

Zadaci

1. Neka je u rješenje jednadžbe

uxx + 2uxy + uyy = 0. (4.101)

Napǐsite jednadžbu u koordinatama s = x, t = x − y i odredite opće rješenje.

2. Jednadžbu

uxx − 2uxy + 5uyy = 0 (4.102)

napǐsite u koordinatama s = x + y, t = 2x, i odredite opće rješenje jednadžbe.

3. Klasificirajte sljedeće jednadžbe:

x2uxy − y uyy + ux − 4u = 0, (4.103)

xy uxx + 4uxy − (x2 + y2)uyy − u = 0. (4.104)
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4. Za svaku od sljedećih jednadžbi odredite područja u ravnini gdje su jednadžbe

hiperboličke, paraboličke ili eliptičke:

2uxx + 4uxy + 3uyy − u = 0, (4.105)

uxx + 2xuxy + uyy + sin(xy)u = 5, (4.106)

yuxx − 2uxy + exuyy + x2ux − u = 0. (4.107)

5. Reducirajte na kanonski oblik sljedeće jednadžbe:

c2uxx − uyy = 0, (4.108)

2uxx + uxy + y uyy = 0, y > 1, (4.109)

x2uxx − 2xy uxy + y2uyy = 0, (4.110)

xuxx − 4uxy = 0, x > 0. (4.111)



Poglavlje 5

Jednadžba provodenja topline

Jednadžba provodenja topline ili difuzijska jednadžba opisuje distribuciju tempera-

ture u toplinski vodljivom tijelu. To je najvažniji primjer diferencijane jednadžbe

paraboličkog tipa. Prvi dio poglavlja posvećen je proučavanju kvalitativnih svojstava

rješenja jednadžbe, principa maksimuma i stabilnosti rješenja obzirom na početne i

rubne uvjete. U drugom dijelu poglavlja ćemo konstruirati rješenje difuzijske jednadže

metodom separacije varijabli i Fourierovih redova.

5.1 Princip maksimuma i jedinstvenost rješenja

Promotrimo jednadžbu provodenja topline na konačnom intervalu:

ut − kuxx = 0, 0 < x < L, t > 0. (5.1)

Funkcija u(x, t) opisuje temperaturu u tankom, homogenom, toplinski vodljivom

štapu u točki x u trenutku t. Pretpostavljamo da je štap izoliran osim eventualno na

krajevima x = 0 i x = L i da nema izvora koji griju ili hlade štap. Konstanta k > 0

ovisi o materijalu tijela i naziva se toplinska vodljivost. Fizikalna intuicija sugerira

da je raspodjela temperature poznata ako je poznata početna temperatura u(x, 0)

i temperatura na krajevima štapa u(0, t) i u(L, t). Ovo nas vodi na razmatranje

59
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početno–rubnog problema s Dirichletovim uvjetima

ut − kuxx = 0, 0 < x < L, t > 0, (5.2)

u(x, 0) = f(x), 0 ≤ x ≤ L, (5.3)

u(0, t) = a(t), u(L, t) = b(t), t ≥ 0. (5.4)

U daljnjem teksu pretpostavljamo da su f , a i b neprekidne funkcije. Kompatibilnost

početnih i rubnih uvjeta implicira da je f(0) = a(0) i f(L) = b(0). Ako je umjesto

temperature na krajevima štapa poznat njezin gradijent, onda funkcija u zadovoljava

Neumannove uvjete

ux(0, t) = a(t), ux(0, t) = b(t), t ≥ 0. (5.5)

U tom slučaju funkcije f , a i b zadovoljavaju uvjete kompatilnosti f ′(0) = a(0) i

f ′(L) = b(0). Funkcija u je definirana na domeni (vidi sliku 5.1)

Ω =
{
(x, t) | 0 < x < L, t > 0

}
, (5.6)

a rubni i početni uvjeti su zadani na rubu domene

∂Ω = {(x, 0) | a ≤ x ≤ b} ∪ {(0, t) | t ≥ 0} ∪ {(L, t) | t ≥}. (5.7)

Naš zadatak je odrediti funkciju u ∈ C2(Ω) ∩C(Ω) koja zadovoljava jednadžbu (5.2)

s početnim i rubnim uvjetima (5.3)–(5.4).

Teorem 5.1 (Jedinstvenost rješenja) Ako su u1 i u2 C2 rješenja problema (5.2)–

(5.4), onda je u1 = u2.

Dokaz. Neka je w = u1 − u2. Funkcija w zadovoljava jednadžbu

wt − kwxx = 0, 0 < x < L, t > 0, (5.8)

w(x, 0) = 0, 0 ≤ x ≤ L, (5.9)

w(0, t) = w(L, t) = 0, t ≥ 0. (5.10)

Definirajmo pomoćnu funkciju

J(t) =
1

2k

∫ L

0

w2(x, t)dx. (5.11)



POGLAVLJE 5. JEDNADŽBA PROVODENJA TOPLINE 61

Slika 5.1: Domena za jednadžbu provodenja topline.

Kako je (w2)t = 2w wt neprekidna funkcija, prema Leibnizovom pravilu J(t) možemo

derivirati pod znakom integrala pa dobivamo

J ′(t) =
1

2k

∫ L

0

∂

∂t
w2dx =

1

k

∫ L

0

w wt dx =

∫ L

0

w wxx dx (5.12)

jer je wt = kwxx. Parcijalnom integracijom slijedi
∫ L

0

w wxx dx = w wx

∣
∣
∣
x=L

x=0
−
∫ L

0

w2
x dx = −

∫ L

0

w2
x dx (5.13)

gdje smo uzeli u obzir da je w(0, t) = w(L, t) = 0. Dakle,

J ′(t) = −
∫ L

0

w2
x dx ≤ 0, (5.14)

što povlači da J(t) nije strogo rastuća funkcija. Nadalje, početni uvjet w(x, 0) = 0

implicira J(0) = 0. Sada uvjeti J(0) = 0 i J ′(t) ≤ 0 zajedno povlače da je J(t) ≤ 0

za svaki t ≥ 0. Medjutim, iz definicije (5.11) imamo J(t) ≥ 0, što implicira da je

J(t) =
1

2k

∫ L

0

w2 dx = 0 (5.15)
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za svaki t ≥ 0. Kako je w2 ≥ 0, ovo povlači w = 0, odnosno u1 = u2. �

Primijetimo da prema istom dokazu Neumannov problem takoder ima jedinstveno

rješenje jer slobodni član u jednadžbi (5.13) isčezava kada je wx(0, t) = wx(L, t) = 0.

Sada ćemo dokazati zanimljivi rezultat prema kojem u svakom konačnom vremenskom

intervalu [0, T ] rješenje homogene jednadžbe (5.1) ima maksimum na paraboličkom

rubu pravokutnika D = [0, L] × [0, T ],

∂pD = {(0, t) | 0 ≤ t ≤ T} ∪ {(x, 0) | 0 ≤ x ≤ L} ∪ {(L, t) | 0 ≤ t ≤ T}. (5.16)

Parbolički rub ∂pD je unija stranica x = 0, t = 0 i x = L.

Teorem 5.2 (Princip maksimuma) Neka je funkcija u C2 rješenje jednadžbe

ut − kuxx = 0, 0 < x < L, t > 0. (5.17)

Neka je T > 0 i neka je D zatvoreni pravokutnik [0, L] × [0, T ]. Tada funkcija u ima

maksimum po D na paraboličkom rubu ∂pD, odnosno

max
(x,t)∈D

u(x, t) = u(x0, t0) (5.18)

za neku točku (x0, t0) ∈ ∂pD.

Dokaz. Neka je M = max(x,t)∈D u(x, t). Kako je u neprekidna na D, postoji točka

(x0, t0) ∈ D takva da je M = u(x0, t0). Pretpostavimo da funkcija nema maksimum

na paraboličkom rubu, odnosno (x0, t0) ∈ D \ ∂pD. Onda je

max
(x,t)∈∂pD

u(x, t) = M − ε (5.19)

za neki ε > 0. Uvedimo pomoćnu funkciju

v(x, t) = u(x, t) +
ε

2L2
(x − x0)

2. (5.20)

Za točke paraboličkog ruba vrijedi |x − x0| < L pa jednakost (5.19) povlači

v(x, t) ≤ u(x, t) +
ε

2
≤ M −

ε

2
, (x, t) ∈ ∂pD. (5.21)

S druge strane,

v(x0, t0) = u(x0, t0) = M > M −
ε

2
(5.22)
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pa zaključujemo da max(x,t)∈D v(x, t) nije dosegnut na paraboličkom rubu ∂pD. Dakle,

max
(x,t)∈D

v(x, t) = v(x1, t1) u nekoj točki (x1, t1) ∈ D \ ∂pD. (5.23)

U točki (x1, t1) funkcija v zadovoljava nužni uvjet za postojanje maksimuma:

vt(x1, t1) = 0, vxx(x1, t1) ≤ 0 ako je 0 < t1 < T, (5.24)

ili

vt(x1, t1) ≥ 0, vxx(x1, t1) ≤ 0 ako je t1 = T. (5.25)

U oba slučaja vrijedi

vt(x1, t1) − kvxx(x1, t1) ≥ 0. (5.26)

Medutim, iz definicije funkcije v imamo

vt(x1, t1) − kvxx(x1, t1) = ut(x1, t1) − kuxx(x1, t1) −
kε

L2
< 0 (5.27)

jer je ut(x1, t1)−kuxx(x1, t1) = 0 i kε > 0, što vodi na kontradikciju s relacijom (5.26).

Zaključujemo da funkcija u ima maksimum po skupu D u nekoj točki paraboličkog

ruba ∂pD. �

Fizikalna interpretacija ovog principa je sljedeća. Temperatura u unutrašnjosti štapa

(u točki x ∈ (0, L)) je u svakom trenutku 0 ≤ t ≤ T manja od maksimalne početne

temperature ili maksimalne temperature na rubovima štapa. U geometrijskim termi-

nima, ploha u = u(x, t) ima maksimalnu visinu na jednoj od stranica x = 0, x = L

ili t = 0 pravokutnika [0, L] × [0, T ].

Korolar 5.1 (Princip minimuma) Ako funkcija u zadovoljava pretpostavke iz te-

orema 5.2, onda u ima minimum u nekoj točki paraboličkog ruba ∂pD.

Dokaz. Funkcija w = −u zadovoljava jednadžbu provodenja u teoremu 5.2 pa w ima

maksimum u nekoj točki (x0, t0) ∈ ∂pD. Ovo povlači da u = −w ima minimum u

(x0, t0). �

Principi maksimuma i minimuma imaju za posljedicu stabilnost rješenja jednadžbe

provodenja. Preciznije, u svakom konačnom vremenskom intervalu [0 , T ] mala pro-

mjena u početnim ili rubnim uvjetima rezultira malom promjenom u rješenju. Ovaj
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rezultat je važan jer u primijenjenim problemima početni i rubni uvjeti nisu uvijek

egzaktno poznati.

Teorem 5.3 (Stabilnost rješenja) Neka su u1 i u2 C2 rješenja početno–rubnih

problema

∂ui

∂t
− k

∂2ui

∂x2
= 0, 0 < x < L, t > 0, (5.28)

ui(x, 0) = fi(x), 0 ≤ x ≤ L, (5.29)

ui(0, t) = ai(t), ui(L, t) = bi(t), t ≥ 0 (5.30)

za i = 1, 2. Neka je T > 0 i neka je D = [0, L] × [0, T ]. Ako je

max
0≤x≤L

|f1(x) − f2(x)| < ε, (5.31)

max
0≤t≤T

|a1(t) − a2(t)| < ε, max
0≤t≤T

|b1(t) − b2(t)| < ε (5.32)

za neki ε > 0, onda je

max
(x,t)∈D

|u1(x, t) − u2(x, t)| < ε. (5.33)

Dokaz. Funkcija v = u1 −u2 zadovoljava jednadžbu vt − kvxx = 0 i na paraboličkom

rubu od D vrijedi

|v(x, 0)| = |f1(x) − f2(x)| < ε, 0 ≤ x ≤ L, (5.34)

|v(0, t)| = |a1(t) − a2(t)| < ε, 0 ≤ t ≤ T, (5.35)

|v(L, t)| = |b1(t) − b2(t)| < ε, 0 ≤ t ≤ T. (5.36)

Ovo povlači da je

|v(x, t)| < ε, (x, t) ∈ ∂pD, (5.37)

odnosno

−ε < v(x, t) < ε, (x, t) ∈ ∂pD. (5.38)

Prema principu maksimuma i minimuma imamo

−ε < min
(x,t)∈D

v(x, t) i max
(x,t)∈D

v(x, t) < ε (5.39)

što implicira

max
(x,t)∈D

|u1(x, t) − u2(x, t)| = max
(x,t)∈D

|v(x, t)| < ε. (5.40)

�
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5.2 Separacija varijabli za homogenu jednadžbu

U ovom poglavlju ćemo odrediti rješenje jednadžbe provodenja topline metodom sepa-

racije varijabli i Fourierovih redova. Ovom metodom se rješenje dobiva u obliku reda

po vlastitim funkcijama pridruženog Sturm–Liouvilleovog problema. Pokazat ćemo

da uz odredene pretpostavke na početne uvjete dobiveni red konvergira i predstavlja

klasično rješenje jednadžbe. Promotrimo za početak rubni problem s Dirichletovim

uvjetima.

Dirichletovi rubni uvjeti

Odredimo rješenje jednadžbe provodenja

ut − kuxx = 0, 0 < x < L, t > 0, (5.41)

s početnim i rubnim uvjetima

u(x, 0) = f(x), 0 ≤ x ≤ L, (5.42)

u(0, t) = u(L, t) = 0, t ≥ 0. (5.43)

Kompatibilnost uvjeta (5.42) i (5.43) implicira da je f(0) = f(L) = 0. Rješenje ćemo

potražiti u separiranom obliku

u(x, t) = P (x)Q(t). (5.44)

Supstitucijom jednadžbe (5.44) u (5.41) dobivamo

Qt

kQ
=

Pxx

P
. (5.45)

Kako su x i t nezavisne varijable, iz (5.45) slijedi da su obje strane jednadžbe kons-

tantne. Stoga je
Qt

kQ
=

Pxx

P
= −λ (5.46)

za neki λ ∈ R. Konstantu λ nazivamo separacijska konstanta, a negativni predznak

je odabran radi konvencije. Dakle, funkcije P i Q su rješenja običnih diferencijalnih

jednadžbi

Pxx + λP = 0, 0 < x < L, (5.47)

Qt + kλQ = 0, t > 0. (5.48)



POGLAVLJE 5. JEDNADŽBA PROVODENJA TOPLINE 66

Rubni uvjeti

u(0, t) = P (0)Q(t) = 0, u(L, t) = P (L)Q(t) = 0 (5.49)

povlače da je P (0) = P (L) = 0. Rubni problem za funkciju P ,

Pxx + λP = 0, (5.50)

P (0) = P (L) = 0, (5.51)

naziva se Sturm–Liouvilleov problem pridružen jednadžbi (5.41)–(5.43). Ako jed-

nadžba (5.50) s rubnim uvjetom (5.51) ima netrivijalno rješenje P 6= 0 za neki λ ∈ R,

onda se P naziva vlastita funkcija, a λ vlastita vrijednost Sturm-Liouvilleovog pro-

blema. Prvi korak u rješavanju jednadžbe provodenja je odrediti vlastite funkcije i

vlastite vrijednosti ovog problema. Obzirom da priroda rješenja ovisi o predznaku

konstante λ, posebno ćemo razmatrati slučajeve λ < 0, λ = 0 i λ > 0. Uvedimo

oznaku λ = ±c2, c ≥ 0.

Slučaj λ = −c2 < 0. Opće rješenje jednadžbe (5.50) je dano sa

P (x) = Aecx + Be−cx. (5.52)

Rubni uvjeti impliciraju da A i B zadovoljavaju sustav jednadžbi

P (0) = A + B = 0, (5.53)

P (L) = AecL + Be−cL = 0. (5.54)

Determinanta matrice ovog sustava je

∣
∣
∣
∣
∣

1 1

ecL e−cL

∣
∣
∣
∣
∣
6= 0 (5.55)

pa sustav ima samo trivijalno rješenje A = B = 0. Stoga λ < 0 nije vlastita vrijed-

nost Sturm–Liouvilleovog problema.

Slučaj λ = 0. U ovom slučaju imamo

P (x) = A + Bx (5.56)
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što daje

P (0) = A = 0, (5.57)

P (L) = A + BL = 0. (5.58)

Očigledno je A = B = 0 pa slijedi da λ = 0 nije vlastita vrijednost problema (5.50)–

(5.51).

Slučaj λ = c2 > 0. Opće rješenje jednadžbe (5.50) je linearna kombinacija

P (x) = A cos(cx) + B sin(cx). (5.59)

Iz rubnih uvjeta dobivamo

P (0) = A = 0, (5.60)

P (L) = A cos(cL) + B sin(cL) = 0. (5.61)

Ovaj sustav ima netrivijalno rješenje B 6= 0 samo ako konstanta c zadovoljava

sin(cL) = 0. (5.62)

Jednadžba ima diskretna rješenja

cn =
nπ

L
, n = ±1,±2, . . . (5.63)

pa su vlastite vrijednosti Sturm–Liouvilleovog problema dane sa

λn =
(nπ

L

)2

, n ≥ 1. (5.64)

Svakoj vrijednosti λn pripada vlastita funkcija

Pn(x) = Bn sin
(nπ

L
x
)
, n ≥ 1. (5.65)

Zaključujemo da Sturm–Liouvilleov problem (5.50)–(5.51) ima beskonačno mnogo

rješenja (5.65) s pripadnim vlastitim vrijednostima (5.64).

Za svaku vlastitu vrijednost λn funkcija Q zadovoljava pripadnu jednadžbu

Qt + kλnQ = 0 (5.66)
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koja ima eksponencijalno rješenje

Qn(t) = e−k
(

nπ
L

)2

t, n ≥ 1. (5.67)

Ovom metodom dobivamo niz separiranih rješenja

un(x, t) = Qn(t)Pn(x) = Bne−k
(

nπ
L

)2

t sin
(nπ

L
x
)
, n ≥ 1 (5.68)

koji zadovoljavaju rubne uvjete un(0, t) = un(L, t) = 0. Prema principu superpozicije,

svaka linearna kombinacija

u(x, t) =
N∑

n=1

un(x, t) =
N∑

n=1

Bne−k
(

nπ
L

)2

t sin
(nπ

L
x
)

(5.69)

je takoder rješenje jednadžbe provodenja sa svojstvom da je u(0, t) = u(L, t) = 0.

U početnom trenutku t = 0 imamo u(x, 0) = f(x). Ako se zadana funkcija f može

napisati kao linearna kombinacija

f(x) =
N∑

n=1

Bn sin
(nπ

L

)
, 0 ≤ x ≤ L. (5.70)

onda je funkcija (5.69) rješenje našeg problema (5.41)–(5.43).

Primjer 5.1 Odredite rješenje problema

ut − 2uxx = 0, 0 < x < π, t > 0, (5.71)

u(x, 0) = 5 sin(2x) − 10 sin(3x), 0 ≤ x ≤ π (5.72)

u(0, t) = u(π, t) = 0, t ≥ 0. (5.73)

U ovom primjeru je L = π i k = 2, stoga rješenje ima oblik

u(x, t) =
N∑

n=1

Bne−2n2t sin(nx). (5.74)

Iz početnog uvjeta

u(x, 0) =
N∑

n=1

Bn sin(nx) = 5 sin(2x) − 10 sin(3x) (5.75)

zaključujemo da je N = 3, B1 = 0, B2 = 5 i B3 = −10. Supstitucijom ovih vrijednosti

u jednadžbu (5.74) dobivamo

u(x, t) = 5e−8t sin(2x) − 10e−18t sin(3x). (5.76)
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Očigledno je da se proizvoljna funkcija f ne možemo napisati kao linearnu kombinaciju

(5.70). Medutim, ako se f može razviti u Fourierov red

f(x) =
∞∑

n=1

Bn sin
(nπ

L
x
)

(5.77)

na intervalu [0, L], onda očekujemo da je rješenje problema dano u obliku reda

u(x, t) =
∑∞

n=1 un(x, t). Sljedeći teorem daje uvjete koji garantiraju da je red
∑∞

n=1 un(x, t) klasično rješenje jednadžbe provodenja.

Teorem 5.4 (Egzistencija rješenja) Pretpostavimo da je funkcija f : [0, L] → R

(i) neprekidna na [0, L] i po dijelovima C1 na [0, L],

(ii) f(0) = f(L) = 0.

Tada je funkcija

u(x, t) =
∞∑

n=1

Bne−k( nπ
L

)2t sin
(nπ

L
x
)
, Bn =

2

L

∫ L

0

f(x) sin
(nπx

L

)
dx (5.78)

klasično rješenje početno–rubnog problema

ut − kuxx = 0, 0 < x < L, t > 0, (5.79)

u(x, 0) = f(x), 0 ≤ x ≤ L, (5.80)

u(0, t) = u(L, t) = 0, t ≥ 0. (5.81)

Dokaz. Neka je f̃ neparno proširenje funkcije f ,

f̃(x) =






f(x), 0 ≤ x ≤ L,

−f(−x), −L ≤ x < 0.
(5.82)

Funkcija f̃ je neprekidna i po dijelovima C1 na [−L,L] i očigledno je f̃(−L) = f̃(L) =

0. Prema teoremu 2.4 Fourierov red

f̃(x) =
A0

2
+

∞∑

n=1

An cos
(nπx

L

)
+ Bn sin

(nπx

L

)
(5.83)
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konvergira uniformno ka f̃ na [−L,L]. Fourierovi koeficijenti su dani sa

An =
1

L

∫ L

−L

f̃(x) cos
(nπx

L

)
dx = 0, n ≥ 0, (5.84)

Bn =
1

L

∫ L

−L

f̃(x) sin
(nπx

L

)
dx =

2

L

∫ L

0

f(x) sin
(nπx

L

)
dx, n ≥ 1, (5.85)

i vrijedi
∑∞

n=1 |Bn| < ∞. Funkcije

un(x, t) = Bne−k( nπ
L

)2t sin
(nπ

L
x
)
, n ≥ 1 (5.86)

zadovoljavaju jednadžbu provodenja i rubne uvjete un(0, t) = un(L, t) = 0. Kako su

un(x, t) ograničene konvergentnim redom,

|un(x, t)| ≤ |Bn| za sve 0 ≤ x ≤ L, t ≥ 0, (5.87)

prema Weierstrassovom kriteriju red
∑∞

n=1 un(x, t) konvergira uniformno na zatvore-

nom skupu Ω̄ = {(x, t) | 0 ≤ x ≤ L, t ≥ 0}. Funkcije un(x, t) su neprekidne na Ω̄ pa

je suma reda neprekidna funkcija

u(x, t) =
∞∑

n=1

un(x, t), (x, t) ∈ Ω̄. (5.88)

Pokažimo sada da funkcija u(x, t) zadovoljava jednadžbu provodenja na skupu Ω.

Neka je ε > 0 i neka je Ωε = {(x, t) | 0 < x < L, t > ε}. Funkcija f je ograničena pa

vrijedi

|Bn| =
2

L

∣
∣
∣
∣

∫ L

0

f(x) sin
(nπ

L
x
)
dx

∣
∣
∣
∣ ≤

2

L

∫ L

0

|f(x)|dx ≤ 2M (5.89)

gdje je M = maxx∈[−L,L] |f(x)|. Deriviranjem po varijabli t dobivamo

∂un

∂t
= −Bnk

(nπ

L

)2

e−k( nπ
L

)2t sin
(nπ

L
x
)
. (5.90)

Stoga je u svakoj točki (x, t) ∈ Ωε derivacija ograničena sa
∣
∣
∣
∣
∂un

∂t

∣
∣
∣
∣ ≤ |Bn|k

(nπ

L

)2

e−k( nπ
L

)2t ≤ 2Mk
(π

L

)2

n2e−k( nπ
L

)2ε. (5.91)

Lako se provjeri da red
∑∞

n=1 n2e−k( nπ
L

)2ε konvergira što prema Weierstrassovom kri-

teriju povlači da red
∑∞

n=1 ∂un/∂t konvergira uniformno na Ωε. Stoga funkciju u

možemo derivirati po članovima pa imamo

∂u

∂t
=

∞∑

n=1

∂un

∂t
, (x, t) ∈ Ωε. (5.92)
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Slično se pokaže da vrijedi

∂2u

∂x2
=

∞∑

n=1

∂2un

∂x2
, (x, t) ∈ Ωε. (5.93)

Sada iz jednadžbi (5.92) i (5.93) slijedi da u zadovoljava

ut − kuxx =
∂

∂t

( ∞∑

n=1

un

)
− k

∂2

∂x2

( ∞∑

n=1

un

)
=

∞∑

n=1

(
∂un

∂t
− k

∂2un

∂x2

)

= 0 (5.94)

na skupu Ωε. Kako je ε > 0 odabran proizvoljno, zaključujemo da je u rješenje

jednadžbe provodenja na otvorenom skupu Ω = {(x, t) | 0 < x < L, t > 0}. Funkcija

u očigledno zadovoljava rubne uvjete u(0, t) = u(L, t) = 0 i početni uvjet

u(x, 0) =
∞∑

n=1

Bn sin
(nπ

L
x
)

= f(x), 0 ≤ x ≤ L, (5.95)

jer Fourierov red (5.95) konvergira uniformno ka f na skupu [0, L]. �

Primjer 5.2 Odredite rješenje problema

ut − uxx = 0, 0 < x < π, t > 0 (5.96)

u(0, t) = u(L, t) = 0, (5.97)

u(x, 0) =






x, 0 ≤ x ≤ π
2

π − x, π
2

< x ≤ π.
(5.98)

Rješenje Duljina intervala je L = π pa je funkcija u dana sa

u(x, t) =
∞∑

n=1

Bne−n2t sin(nx). (5.99)

Funkcija f(x) = u(x, 0) je neprekidna i po dijelovima C1 na [0, π]. Stoga je prema

Dirichletovom teoremu

f(x) =
∞∑

n=1

Bn sin(nx) za svaki 0 ≤ x ≤ π (5.100)

Fourierovi koeficijenti su dani sa
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Slika 5.2: Graf funkcije (5.104).

Bn =
2

π

∫ π

0

f(x) sin(nx)dx =
2

π

∫ π
2

0

x sin(nx)dx +
2

π

∫ π

π
2

(π − x) sin(nx)dx

=
2

π

[
−

x cos(nx)

n
+

sin(nx)

n2

]π
2

0
+

2

π

[
−

(π − x) cos(nx)

n
−

sin(nx)

n2

]π
π
2

=
4

πn2
sin
(nπ

2

)
. (5.101)

Kako je

sin
(nπ

2

)
=






0, n = 2m,

(−1)m+1, n = 2m − 1,
(5.102)

samo koeficijenti

B2m−1 =
4

π

(−1)m+1

(2m − 1)2
, m ≥ 1, (5.103)

su različiti od nule. Stoga je

u(x, t) =
4

π

∞∑

m=1

(−1)m+1

(2m − 1)2
e−(2m−1)2t sin

(
(2m − 1)x

)
. (5.104)
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Rješenje u(x, t) prikazano je na slici 5.2. Primijetimo da za svaki T > 0 funkcija u

ima maksimum na stranici t = 0 pravokutnika [0, π] × [0, T ], u skladu s principom

maksimuma. �

Neumannovi rubni uvjeti

Na sličan način se metodom separacije može izvesti rješenje Neumannovog problema

ut − kuxx = 0, 0 < x < L, t > 0, (5.105)

ux(0, t) = ux(L, t) = 0, t ≥ 0, (5.106)

u(x, 0) = f(x), − L ≤ x ≤ L. (5.107)

Funkcija f zadovoljava uvjete kompatibilnosti početnih i rubnih uvjeta f ′(0) = f ′(L) =

0. Pokazuje se da je rješenje dano redom

u(x, t) =
A0

2
+

∞∑

n=1

Ane−k(nπ
L

)2t cos
(nπ

L
x
)
, (5.108)

An =
2

L

∫ L

0

f(x) cos
(nπ

L
x
)
dx, n ≥ 0. (5.109)

Periodični rubni uvjeti

Pretpostavimo da je žica duljine 2L savijena u obliku kružnice. U točkama x = −L

i x = L temperatura i njezin gradijent imaju iste vrijednosti pa funkcija u(x, t)

zadovoljava jednadžbu

ut − kuxx = 0, − L < x < L, t > 0, (5.110)

u(x, 0) = f(x), − L ≤ x ≤ L, (5.111)

s periodičkim rubnim uvjetima

u(−L, t) = u(L, t), ux(−L, t) = ux(L, t), t ≥ 0. (5.112)

Separacijom varijabli se može pokazati da je opće rješenje dano sa

u(x, t) =
A0

2
+

∞∑

n=1

e−k( nπ
L

)2t
[
An cos

(nπ

L
x
)

+ Bn sin
(nπ

L
x
)]

(5.113)
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gdje su

An =
1

L

∫ L

−L

f(x) cos
(nπ

L
x
)
dx, n ≥ 0, (5.114)

Bn =
1

L

∫ L

−L

f(x) sin
(nπ

L
x
)
dx, n ≥ 1. (5.115)

Primjer 5.3 Odredite rješenje problema

ut − kuxx = 0, −L < x < L, t > 0, (5.116)

u(x, 0) = cos3
(π
L

x
)
, −L ≤ x ≤ L, (5.117)

u(−L, t) = u(L, t), ux(−L, t) = ux(L, t), t ≥ 0. (5.118)

Funkciju f(x) = cos3( π
L
x) možemo razviti u Fourierov red na [−L,L] koristeći trigo-

nometrijski identitet

cos(x) cos(y) =
1

2

[
cos(x + y) + cos(x − y)

]
. (5.119)

Iz jednadžbe (5.119) dobivamo

cos3(x) = cos(x) cos2(x) =
1

2
cos(x)

[
cos(2x) + 1

]

=
1

2
cos(x) cos(2x) +

1

2
cos(x)

=
1

4

[
cos(3x) + cos(x)

]
+

1

2
cos(x)

=
3

4
cos(x) +

1

4
cos(3x). (5.120)

Dakle,

cos3
(π
L

x
)

=
3

4
cos
(π
L

x
)

+
1

4
cos
(3π

L
x
)
. (5.121)

Jednadžba (5.121) predstavlja razvoj fukcije cos3(πx/L) u Fouerierov red

cos3
(π
L

x
)

=
A0

2
+

∞∑

n=1

[
An cos

(nπ

L
x
)

+ Bn sin
(nπ

L
x
)]

(5.122)

gdje su A1 = 3
4

i A3 = 1
4

dok svi ostali koeficijenti An i Bn isčezavaju. Uvrštavanjem

ovih koeficijenata u izraz (5.113) dobivamo

u(x, t) =
3

4
e−k( π

L
)2t cos

(π

L
x
)

+
1

4
e−k( 3π

L
)2t cos

(3π

L
x
)
. (5.123)
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Ostali rubni uvjeti

Na kraju navedimo da se metodom separacije varijabli mogu konstruirati rješenja

jednadžbe provodenja za različite kombinacije rubnih uvjeta. Na primjer, na jednom

kraju intervala može biti zadan Dirichletov a na drugom Neuannov rubni uvjet,

ut − kuxx = 0, 0 < x < L, t > 0, (5.124)

u(0, t) = 0, ux(L, t) = 0, t ≥ 0, (5.125)

u(x, 0) = f(x), 0 ≤ x ≤ L. (5.126)

U tom slučaju rješenje je dano sa

u(x, t) =
∞∑

n=1

Cne−k( π
2L

)2(2n−1)2t sin
((2n − 1)π

2L
x
)

(5.127)

gdje je

Cn =
2

L

∫ L

0

f(x) sin
((2n − 1)π

2L
x
)
dx. (5.128)

Koeficijenti Cn se mogu odrediti tako da se funkcija f proširi sa intervala [0, L] na

[0, 2L]. Proširena funkcija

f̃(x) =






f(x), 0 ≤ x ≤ L,

f(2L − x), L ≤ x ≤ 2L.
(5.129)

se razvije u Fourierov red po funkcijama sin
(
nπx/(2L)

)
na intervalu [0, 2L] (koristeći

neparno proširenje na interval [−2L, 2L]) iz čega se potom dobiju koeficijenti Cn.

5.3 Separacija varijabli za nehomogenu jednadžbu

Modifikacijom prethodne metode moguće je odrediti rješenje nehomogene jednadžbe

provodenja

ut − kuxx = F (x, t), 0 < x < L, t > 0, (5.130)

u(x, 0) = f(x), 0 ≤ x ≤ L, (5.131)

u(0, t) = u(L, t) = 0, t ≥ 0. (5.132)
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Ako je F = 0, onda znamo da je rješenje dano sa

u(x, t) =
∞∑

n=1

Bne−k( nπ
L

)2t sin
(nπ

L
x
)

(5.133)

što možemo interpretirati kao Fourireov red čiji koeficijenti Bn(t) = Bn e−k(nπ
L )

2
t ovise

o paremetru t. Ovo sugerira da rješenje nehomogene jednadžbe potražimo metodom

varijacije parametara u obliku

u(x, t) =
∞∑

n=1

Tn(t) sin
(nπ

L
x
)

(5.134)

gdje su Tn(t) nepoznate funkcije. Funkcije Tn(t) možemo odrediti ako se F (x, t) može

razviti u Fourierov red istog oblika kao (5.134). Pretpostavimo da je F (x, t) nepre-

kidna i po dijelovima C1 u varijabli x ∈ [0, L] za svaki t ≥ 0. Obzirom da funkcija

F (x, t) modelira unutarnji izvor koji grije ili hladi štap, razumno je pretpostaviti da

je F (0, t) = F (L, t) = 0. Tada Fourierov red

F (x, t) =
∞∑

n=1

Fn(t) sin
(nπ

L
x
)

, (5.135)

uniformno konvergira ka F (x, t) na intervalu [0, L] za svaki t ≥ 0. Supstitucijom

izraza (5.134) i (5.135) u jednadžbu provodenja dobivamo

∞∑

n=1

(

T ′
n(t) + k

(nπ

L

)2

Tn(t)

)

sin
(nπ

L
x
)

=
∞∑

n=1

Fn(t) sin
(nπ

L
x
)

. (5.136)

Odavde slijedi da funkcije Tn(t) zadovoljavaju diferencijalne jednadžbe

T ′
n(t) + k

(nπ

L

)2

Tn(t) = Fn(t), n ≥ 1. (5.137)

Opće rješenje jednadžbe (5.137) je dano sa

Tn(t) = Bn e−k(nπ
L )

2
t + T p

n(t) (5.138)

gdje je Bn konstanta integracije, a T p
n(t) je partikularno rješenje koje ovisi o funkciji

Fn(t). Uvrštenjem rješenja (5.138) u jednadžbu (5.78) dobivamo

u(x, t) =
∞∑

n=1

Bn e−k(nπ
L )

2
t sin

(nπ

L
x
)

+
∞∑

n=1

T p
n(t) sin

(nπ

L
x
)

. (5.139)
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Prvi član u jednadžbi (5.139) prepoznajemo kao rješenje homogenog problema,

uh(x, t) =
∞∑

n=1

Bn e−k(nπ
L )

2
t sin

(nπ

L
x
)

, (5.140)

dok je drugi član partikularno rješenje

up(x, t) =
∞∑

n=1

T p
n(t) sin

(nπ

L
x
)

(5.141)

koje ovisi o funkciji F (x, t). Koeficijente Bn odredujemo iz početnog uvjeta u(x, 0) =

f(x),
∞∑

n=1

(
Bn + T p

n(0)
)
sin
(nπ

L
x
)

= f(x), 0 ≤ x ≤ L, (5.142)

odakle dobivamo

Bn + T p
n(0) =

2

L

∫ L

0

f(x) sin
(nπ

L
x
)

dx. (5.143)

Time je rješenje nehomogene jednadžbe provodjenja potpuno odredeno.

Primjer 5.4 Riješite nehomogenu jednadžbu

ut − uxx = e−t sin(3x), 0 < x < π, t > 0, (5.144)

u(0, t) = u(π, t) = 0, t ≥ 0, (5.145)

u(x, 0) = x sin(x), 0 ≤ x ≤ π. (5.146)

Nehomogeni član F (x, t) = e−t sin(3x) zadovoljva uvjet F (0, t) = F (π, t) = 0 pa

rješenje tražimo u obliku

u(x, t) =
∞∑

n=1

Tn(t) sin(nx). (5.147)

Supstitucijom izraza (5.147) u jednadžbu (5.144) dobivamo

∞∑

n=1

(
T ′

n(t) + n2Tn(t)
)
sin(nx) = e−t sin(3x). (5.148)

Ovo povlači da funkcije Tn(t) zadovoljavaju diferencijalne jednadžbe

T ′
n(t) + n2Tn(t) = 0, n 6= 3, (5.149)

T ′
3(t) + 9T3(t) = e−t. (5.150)
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Rješenje prve jednadžbe je dano sa

Tn(t) = Bne−n2t, n 6= 3. (5.151)

Drugu jednadžbu možemo riješiti medotom varijacije konstanti, T3(t) = C3(t)e
−9t.

Tada iz (5.150) slijedi da je C ′
3(t) = e8t što povlači C3(t) = 1

8
e8t + B3. Dakle,

T3(t) = B3e
−9t +

1

8
e−t. (5.152)

Stoga u(x, t) možemo zapisati kao

u(x, t) =
∞∑

n=1

Bne−n2t sin(nx) +
1

8
e−t sin(3x). (5.153)

Iz početnog uvjeta (5.146) dobivamo

∞∑

n=1

Bn sin(nx) +
1

8
sin(3x) = x sin(x), 0 ≤ x ≤ π. (5.154)

Definirajmo koeficijente B̃n = Bn za n 6= 3 i B̃3 = B3 + 1
8

tako da je

∞∑

n=1

B̃n sin(nx) = x sin(x), 0 ≤ x ≤ π. (5.155)

B̃n su Fourierovi koeficijenti

B̃n =
2

π

∫ π

0

x sin(x) sin(nx)dx, n ≥ 1. (5.156)

Za n = 1 imamo

B̃1 =
2

π

∫ π

0

x sin2(x)dx =
π

2
. (5.157)

Za n ≥ 2 dobivamo

B̃n =
2

π

∫ π

0

x sin(x) sin(nx)dx

=
2

π

∫ π

0

x
1

2

[
cos
(
(n − 1)x

)
− cos

(
(n + 1)x

)]
dx

=
1

π

1

(n − 1)2

[
cos
(
(n − 1)x

)
+ (n − 1)x sin(x) sin

(
(n − 1)x

)]π

0

−
1

π

1

(n + 1)2

[
cos
(
(n + 1)x

)
+ (n + 1)x sin(x) sin

(
(n + 1)x

)]π

0

=
1

π

(−1)n−1 − 1

(n − 1)2
−

1

π

(−1)n+1 − 1

(n + 1)3
= −

4

π

n
(
(−1)n + 1

)

(n2 − 1)2
. (5.158)
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Primijetimo da je B̃n = 0 za neparni n > 1, dok je za parne indekse

B̃2n = −
16

π

n

(4n2 − 1)2
, n = 1, 2, 3, . . . (5.159)

Iz jednadžbi (5.157) i (5.159) dobivamo

B1 =
π

2
, B3 = −

1

8
, Bn = 0 za neparni n > 3, (5.160)

B2n = −
16

π

n

(4n2 − 1)2
, n = 1, 2, 3, . . . (5.161)

Supstitucijom koeficijenata Bn u jednadžbu (5.153) nalazimo rješenje problema

u(x, t) =
π

2
e−t sin(x) +

1

8
(e−t − e−9t) sin(3x) −

16

π

∞∑

n=1

n

(4n2 − 1)2
e−4n2t sin(2nx).

(5.162)

Graf funkcije u je prikazan na slici 5.3. �
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Slika 5.3: Graf funkcije (5.162).



Poglavlje 6

Valna jednadžba

6.1 Valno gibanje i d’Alembertovo rješenje

Valna jednadžba ima istaknuto mjesto u primjenama jer opisuje titranje kontinuiranih

mehaničkih sredina, širenje elektromagnetskih i zvučnih valova, a nalazi primjene i

u kvantnom opisu elementarnih čestica. U ovom poglavlju razmatrat ćemo valnu

jednadžbu u jednoj prostornoj dimenziji

utt − c2uxx = 0. (6.1)

Jednadžba (6.1) opisuje tiranje elastične žice u idealiziranom slučaju kada možemo

zanemariti disipativne efekte kao što su unutarnje trenje žice ili trenje zraka. Žica je

položena duž osi x, a otklon žice u(x, t) od ravnotežnog položaja je okomit na os x.

Ovakvo titranje se naziva transferzalno za razliku od logitudinalnog titranja koje se

odvija duž osi x. Konstanta c > 0 predstavlja brzinu širenja vala.

Proučavanje valne jednadžbe počinjemo nekim općim zapažanjima o valnim giba-

njima. Uvedimo nove variable

α = x + ct, β = x − ct (6.2)

i funkciju w(α, β) = u
(
x(α, β), t(α, β)

)
. Tada je

utt − c2uxx = −4c2wαβ (6.3)

81
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pa u novim varijablama jednadžba ima kanonski oblik

wαβ = 0. (6.4)

Integracijom ove jednadžbe dobivamo

w(α, β) = A(α) + B(β), (6.5)

stoga je opće rješenje dano sa

u(x, t) = A(x + ct) + B(x − ct) (6.6)

gdje su A i B proizvoljne funkcije klase C2. Funkcija A(x + ct) predstavlja val koji

se kreće brzinom c u negativnom smjeru, dok B(x − ct) predstavlja val koji se kreće

istom brzinom u pozitivnom smjeru. Dakle, opće rješenje valne jednadžbe je super-

pozicija dvaju valova koji se gibaju u suprotnim smjerovima.

Pretpostavimo da valna jednadžba opisuje titranje vrlo dugačke žice. Kako se valno

gibanje širi konačnom brzinom, možemo zanemariti rubne uvjete na krajevima žice

barem u nekom vremenskom interalu. U tom slučaju titranje žice možemo modelirati

jednadžbom

utt − c2uxx = 0, x ∈ R, t > 0, (6.7)

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R, (6.8)

gdje funkcije f(x) i g(x) predstavljaju početni otklon i početnu brzinu u točki x,

redom. Supsitucijom općeg rješenja u početne uvjete (6.8) dobivamo

u(x, 0) = A(x) + B(x) = f(x), (6.9)

ut(x, 0) = cA′(x) − cB′(x) = g(x). (6.10)

Integracijom jednadžbe (6.10) slijedi

A(x) − B(x) =
1

c

∫ x

0

g(s)ds + D (6.11)

gdje je D konstanta integracije. Dakle, funkcije A i B zaodovljavaju sistem jednadžbi

A(x) + B(x) = f(x), (6.12)

A(x) − B(x) =
1

c

∫ x

0

g(s)ds + D (6.13)
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koji ima jedinstveno rješenje

A(x) =
1

2
f(x) +

1

2c

∫ x

0

g(s)ds +
D

2
, (6.14)

B(x) =
1

2
f(x) −

1

2c

∫ x

0

g(s)ds −
D

2
. (6.15)

Dakle, rješenje valne jednadžbe je dano sa

u(x, t) = A(x + ct) + B(x − ct) (6.16)

=
1

2

[
f(x + ct) + f(x − ct)

]
+

1

2c

∫ x+ct

x−ct

g(s)ds. (6.17)

Ovo rješenje nazivamo d’Alembertovo rješenje s početnom amplitudom f ∈ C2(R)

i brzinom g ∈ C(R). Intuitivno je jasno da je gibanje žice jedinstveno odredeno

ako su poznati početni položaj i brzina. Takoder je razumno očekivati da male pro-

mjene u početnim uvjetima uzrokuju male promjene u rješenju u(x, t) kada titranje

promatramo u konačnom vremenskom intervalu. Dokažimo ove tvrdnje u sljedećem

teoremu.

Teorem 6.1 Neka su f ∈ C2(R) i g ∈ C1(R). Tada valna jednadžba (6.7)-(6.8) ima

jedinstveno rješenje

u(x, t) =
1

2

[
f(x + ct) + f(x − ct)

]
+

1

2c

∫ x+ct

x−ct

g(s)ds (6.18)

koje je u svakom konačnom intervalu 0 ≤ t ≤ T stabilno obzirom na početne uvjete

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R.

Dokaz. Koristeći formulu

d

dx

∫ ϕ2(x)

ϕ1(x)

f(u)du = f(ϕ2(x)) ϕ′
2(x) − f(ϕ1(x)) ϕ′

1(x) (6.19)

lako se provjeri da funkcija (6.18) zadovoljava jednadžbu (6.7) i početne uvjete (6.8).

Iz konstrukcije rješenja slijedi da je svaka funkcija koja zadovoljava jednadžbe (6.7)-

(6.8) nužno oblika (6.18) pa je rješenje jedinstveno.
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Pokažimo da je rješenje (6.18) stabilno. Neka su u1 i u2 rješenja pridružena početnim

uvjetima f1, g1 i f2, g2, redom. Promotrimo u1 i u2 u vremenskom intervalu [0, T ].

Odaberimo ε > 0 i pretpostavimo da početni uvjeti zadovoljavaju

sup
x∈R

|f1(x) − f2(x)| <
ε

1 + T
, sup

x∈R
|g1(x) − g2(x)| <

ε

1 + T
. (6.20)

Razlika rješenja jednaka je

u1(x, t) − u2(x, t) =
1

2

[
f1(x + ct) − f2(x + ct) + f1(x − ct) − f2(x − ct)

]

+
1

2c

∫ x+ct

x−ct

(g1(s) − g2(s)) ds, (6.21)

pa iz nejednakosti (6.20) slijedi

|u1(x, t) − u2(x, t)| ≤
1

2

(
|f1(x + ct) − f2(x + ct)| + |f1(x − ct) − f2(x − ct)|

)

+
1

2c

∫ x+ct

x−ct

|g1(s) − g2(s)| ds

≤
1

2

(
ε

1 + T
+

ε

1 + T

)

+
1

2c

∫ x+ct

x−ct

ε

1 + T
ds

=
ε

1 + T
(1 + t) ≤ ε (6.22)

za svaki 0 ≤ t ≤ T . Ovo implicira da je

sup
x∈R

0≤t≤T

|u1(x, t) − u2(x, t)| ≤ ε. (6.23)

Pokazali samo da za svaki ε > 0 postoji δ = 2ε/(1 + T ) takav da

sup
x∈R

(
|f1(x)−f2(x)|+ |g1(x)−g2(x)|

)
< δ ⇒ sup

x∈R
0≤t≤T

|u1(x, t)−u2(x, t)| < ε. (6.24)

Dakle, u svakom konačnom intervalu 0 ≤ t ≤ T mala promjena u početnim uvjetima

uzrokuje malu promjenu u rješenju pa je rješenje valne jednadžbe stabilno. �

Primjer 6.1 Riješite valnu jednadžbu

utt − c2uxx = 0, x ∈ R, t > 0, (6.25)

u(x, 0) =
1

1 + x2
, ut(x, 0) = 0. (6.26)
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(a) Početni profil f(x) = 1
1+x2 . (b) Funkcija u(x, t) kao superpozicija dva

putujuća vala.

Slika 6.1:

U ovom problemu je f(x) = 1
1+x2 i g(x) = 0. D’Alembertovo rješenje je dano sa

u(x, t) =
1

2

[ 1

1 + (x + ct)2
+

1

1 + (x − ct)2

]
. (6.27)

Slika 6.1 prikazuje početni profil vala i rješenje u(x, t). �

Primjer 6.2 Odredite rješenje problema

utt − c2uxx = 0, x ∈ R, t > 0, (6.28)

u(x, 0) = sin(x), ut(x, 0) = cos(x). (6.29)

Prema d’Alembertovoj formuli imamo

u(x, t) =
1

2
[sin(x + ct) + sin(x − ct)] +

1

2c

∫ x+ct

x−ct

cos(s)ds

= sin(x) cos(ct) +
1

2c
[sin(x + ct) − sin(x − ct)]

= sin(x) cos(ct) +
1

c
cos(x) sin(ct). (6.30)

Koristeći identitet sin(α) cos(β) = 1
2
[sin(α+β)+sin(α−β)], rješenje možemo zapisati

kao superpoziciju valova koji putuju u suprotnim smjerovima

u(x, t) =
c + 1

2c
sin(x + ct) +

c − 1

2c
sin(x − ct). (6.31)

�
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6.2 D’Alembertovo rješenje za nehomogenu valnu

jednadžbu

U ovom poglavlju ćemo d’Alembertovo rješenje proširiti na nehomogenu valnu jed-

nadžbu

utt − c2uxx = F (x, t), x ∈ R, t > 0, (6.32)

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R. (6.33)

Funkcija F (x, t) modelira vanjsku silu koja djeluje na žicu u točki x u trenutku t. Uve-

dimo varijablu y = ct i definirajmo funkciju w(x, y) = u(x, t). Ovom transformacijom

dobivamo ekvivalentni problem

wxx − wyy = F ∗(x, y), x ∈ R, y > 0, (6.34)

w(x, 0) = f(x), wy(x, 0) = g∗(x), x ∈ R (6.35)

gdje su

F ∗(x, y) = −
1

c2
F (x, t), g∗(x) =

1

c
g(x). (6.36)

Neka je (x0, y0) proizvoljna točka u poluravnini x ∈ R, y > 0. Promotrimo trokut

D kojeg tvore vrhovi P0 = (x0, y0), P1 = (x0 − y0, 0) i P2 = (x0 + y0, 0). Označimo

stranice trokuta s B0, B1 i B2 kao na slici 6.2. Ideja za rješenje problema (6.34)–

(6.35) je sljedeća. Jednadžbu (6.34) ćemo integrirati po trokutu D i primjenom

Greenovog teorema integral zamijeniti krivuljnim integralom po stranicama trokuta.

Računanjem krivuljnih integrala dobit ćemo vrijednost funkcije w u točki (x0, y0).

Time je rješenje odredeno jer je točka (x0, y0) odabrana proizvoljno. Integracijom

jednadžbe (6.34) po trokutu D dobivamo
∫∫

D

(wxx − wyy)dx dy =

∫∫

D

F ∗(x, y)dx dy. (6.37)

Prema Greenovom teoremu integral na lijevoj strani jednak je
∫∫

D

(wxx − wyy)dx dy =

∫

∂D

(wydx + wxdy) (6.38)

gdje je ∂D pozitivno orijentirani rub trokuta D sastavljen od segemenata B0, B1 i

B2. Integral po segmentu B0 iznosi
∫

B0

(wydx + wxdy) =

∫ x0+y0

x0−y0

wy(x, 0)dx =

∫ x0+y0

x0−y0

g∗(x)dx. (6.39)



POGLAVLJE 6. VALNA JEDNADŽBA 87

Slika 6.2: Područje integracije za nehomogenu valnu jednadžbu.

Integral po segmentu B1 se može izračunati uvodeći parametrizaciju

x(t) = x0 + (1 − t)y0, y(t) = ty0, t ∈ [0, 1] (6.40)

gdje smo vodili računa o orijentaciji segmenta. Sada je
∫

B1

(wydx + wxdy) =

∫ 1

0

[
wy(x(t), y(t)) x′(t) + wx(x(t), y(t)) y′(t)

]
dt. (6.41)

Primijetimo da je x′(t) = −y′(t) = −y0, stoga zamjenom x′(t) sa y′(t) u integralu

(6.41) dobivamo

∫

B1

(wydx + wxdy) = −
∫ 1

0

[
wx(x(t), y(t)) x′(t) + wy(x(t), y(t)) y′(t)

]
dt

= −
∫ 1

0

d

dt
w(x(t), y(t))dt = −w(x(t), y(t))

∣
∣
∣
t=1

t=0

= w(x0 + y0, 0) − w(x0, y0). (6.42)

Slično se pokazuje da je integral po segmentu B2 jednak
∫

B2

(wydx + wxdy) = w(x0 − y0, 0) − w(x0, y0). (6.43)



POGLAVLJE 6. VALNA JEDNADŽBA 88

Kako je w(x, 0) = f(x), zbrajanjem integrala po segmentima B0, B1 i B2 dobivamo

∫

∂D

(wydx + wxdy) = f(x0 + y0) + f(x0 − y0) − 2w(x0, y0) +

∫ x0+y0

x0−y0

g∗(x)dx. (6.44)

Iz jednadžbi (6.37), (6.38) i (6.44) slijedi da je
∫∫

D

F ∗(x, y)dxdy =

∫

∂D

(wydx + wxdy)

= f(x0 + y0) + f(x0 − y0) − 2w(x0, y0) +

∫ x0+y0

x0−y0

g∗(x)dx. (6.45)

Odavde nalazimo

w(x0, y0) =
1

2

[
f(x0 + y0) + f(x0 − y0)

]
+

1

2

∫ x0+y0

x0−y0

g∗(x)dx −
1

2

∫∫

D

F ∗(x, y)dx dy.

Funkcija w u točki (x0, y0) je potpuno odredjena funkcijama f , g i F . Kako je točka

(x0, y0) ∈ R2
+ odabrana proizvoljno, možemo pisati

w(x, y) =
1

2

[
f(x + y)+ f(x− y)

]
+

1

2

∫ x+y

x−y

g∗(x′)dx′−
1

2

∫∫

D

F ∗(x′, y′)dx′dy′ (6.46)

gdje podrazumijevamo da se vrh trokuta D nalazi u točki (x, y). Početno rješenje

nalazimo iz jednadžbe u(x, t) = w(x, ct). Primijetimo da su prva dva člana u gornjoj

jednadžbi rješenja homogene valne jednadžbe dok je treći član partikularno rješenje

koje ovisi o funkciji F (x, t).

Primjer 6.3 Odredite rješenje problema

wxx − wyy = 1, x ∈ R, y > 0, (6.47)

w(x, 0) = sin(x), wy(x, 0) = x. (6.48)

U ovom problemu je F ∗(x, y) = 1, f(x) = sin(x) i g∗(x) = x. Iz d’Alembertove

formule slijedi

w(x, y) =
1

2

[
sin(x + y) + sin(x − y)

]
+

1

2

∫ x+y

x−y

x′dx′ −
1

2

∫∫

D

dx′ dy′ (6.49)

= sin(x) cos(y) +
1

4
(x′)2

∣
∣
∣
x+y

x=y
−

1

2
(2y)y (6.50)

= sin(x) cos(y) + xy −
1

2
y2. (6.51)
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Primjer 6.4 Riješite jednadžbu

utt − c2uxx = xet, x ∈ R, t > 0, (6.52)

u(x, 0) = sin(x), ut(x, 0) = 0. (6.53)

Definirajmo funkcije F (x, t) = xet, f(x) = sin(x) i g(x) = 0. Tada su

F ∗(x, y) = −
1

c2
x ey/c i g∗(x) = 0 (6.54)

pa je prema d’Alembertovoj formuli

w(x, y) =
1

2

[
sin(x + y) + sin(x − y)

]
+

1

2c2

∫∫

D

x′ ey′/cdx′dy′. (6.55)

Označimo vrh trokuta D s (x, y) (vidi sliku 6.2). Tada je

∫∫

D

x′ ey′/cdx′dy′ =

∫ y

0

∫ −y′+(x+y)

y′+(x−y)

x′ ey′/cdx′dy′ =

∫ y

0

ey′/c
(1

2
(x′)2

∣
∣
∣
x′=−y′+(x+y)

x′=y′+(x−y)

)
dy′

=
1

2

∫ y

0

ey′/c
[
(−y′ + x + y)2 − (y′ + x − y)2

]
dy′

= 2x

∫ y

0

ey′/c(−y′ + y) dy′ = 2c2x
(
ey/c −

y

c
− 1
)
. (6.56)

Supstitucijom jednadžbe (6.56) u (6.55) dobivamo

w(x, y) = sin(x) cos(y) + x
(
ey/c −

y

c
− 1
)
. (6.57)

Dakle, rješenje u(x, t) je dano sa

u(x, t) = w(x, ct) = sin(x) cos(ct) + x
(
et − t − 1

)
. (6.58)

6.3 Početno–rubni problem za valnu jednadžbu

Razmotrimo sada titranje žice duljine L na koju djeluje vanjska sila F (x, t). Ovaj

problem je opisan valnom jednadžbom

utt − c2uxx = F (x, t), 0 < x < L, t > 0, (6.59)

i početnim uvjetima

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L. (6.60)
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Ako su krajevi žice učvršćeni, onda u zadovoljava Dirichletove uvjete

u(0, t) = u(L, t) = 0, t ≥ 0. (6.61)

Ako krajevi žice slobodno titraju okomito na os x, onda se žica postavlja tako da je

tangenta na nju horizontalna u točkama x = 0 i x = L. U tom slučaju funkcija u

zadovoljava Neumannove uvjete

ux(0, t) = ux(L, t) = 0, t ≥ 0. (6.62)

Očigledno, ako je žica učvršćena u jednom kraju, a u drugom kraju slobodno titra,

onda u zadovoljava kombinirane Dirichletove i Neumannove uvjete. Rješenje valne

jednadžbe promatramo na domeni Ω = {(x, t) | 0 < x < L, t > 0}.

Teorem 6.2 (Jedinstvenost rješenja) Neka su u1 i u2 C2 rješenja problema (6.59)–

(6.61). Tada je u1 = u2.

Dokaz. Neka je w = u1 − u2. Tada je w rješenje homogene jednadžbe

wtt − c2wxx = 0, 0 < x < L, t > 0, (6.63)

w(x, 0) = wt(x, 0) = 0, 0 ≤ x ≤ L, (6.64)

w(0, t) = w(L, t) = 0, t ≥ 0. (6.65)

Pokazat ćemo da problem (6.63)-(6.65) ima samo trivijalno rješenje w = 0. Defini-

rajmo pomoćnu funkciju

E(t) =
1

2

∫ L

0

(c2w2
x + w2

t )dx. (6.66)

Funkcija E(t) predstavlja ukupnu energiju titrajuće žice u trenutku t. Funkcije

(wx)
2
t = 2wxwxt i (wt)

2
t = 2wtwtt su neprekidne, pa prema Leibnizovom pravilu za

deriviranje pod integralom dobivamo

dE

dt
=

∫ L

0

(c2wx wxt + wt wtt)dt. (6.67)

Parcijalnom integracijom prvog člana nalazimo
∫ L

0

wxwxt dx = wxwt

∣
∣
∣
x=L

x=0
−
∫ L

0

wtwxx dx

= wx(L, t)wt(L, t) − wx(0, t)wt(0, t) −
∫ L

0

wtwxx dx. (6.68)
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Fukcija w zadovoljava rubni uvjet w(0, t) = 0 za svaki t ≥ 0 što implicira

wt(0, t) = lim
Δt→0

w(0, t + Δt) − w(0, t)

Δt
= 0. (6.69)

Slično, iz uvjeta w(L, t) = 0 za svaki t ≥ 0 slijedi

wt(L, t) = 0. (6.70)

Stoga je ∫ L

0

wxwxt dx = −
∫ L

0

wtwxx dx (6.71)

pa je derivacija energije dana sa

dE

dt
=

∫ L

0

wt (wtt − c2wxx) dx = 0 (6.72)

jer je wtt − c2wxx = 0. Zaključujemo da je funkcija E(t) konstantna, odnosno

E(t) = E(0) za svaki t ≥ 0. (6.73)

U početnom trenutku je

E(0) =
1

2

∫ L

0

[
c2w2

x(x, 0) − w2
t (x, 0)

]
dx =

1

2

∫ L

0

c2w2
x(x, 0) dx (6.74)

zbog početnog uvjeta wt(x, 0) = 0. Kako je w(x, 0) = 0 za svaki x ∈ [0, L], vrijedi

wx(x, 0) = lim
Δx→0

w(x + Δx, 0) − w(x, 0)

Δx
= 0. (6.75)

Zaključujemo da je E(0) = 0 što povlači

E(t) =
1

2

∫ L

0

(
c2w2

x + w2
t

)
dx = 0. (6.76)

Odavde slijedi da je

wx(x, t) = wt(x, t) = 0 (6.77)

pa je funkcija w konstantna jer ne ovisi o varijablama x i t. Sada iz početnog uvjeta

w(x, 0) = 0 zaključujemo w(x, t) = 0 za svaki x ∈ [0, L] i t ≥ 0. Dakle, u1 = u2 čima

je pokazano da je rješenje problema jedinstveno. �

Primijetimo da iz istog dokaza slijedi jedinstvenost rješenja valne jednadžbe s Ne-

umannovim rubnim uvjetima ux(0, t) = 0 i ux(L, t) = 0.
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6.3.1 Separacija varijabli za homogenu jednadžbu

Dirichletovi rubni uvjeti

Razmotrimo sada rješenje homogene valne jednadžbe s Dirichletovim rubnim uvje-

tima

utt − c2uxx = 0, 0 < x < L, t > 0, (6.78)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L, (6.79)

u(0, t) = u(L, t) = 0, t ≥ 0. (6.80)

Kompatibilnost početnih i rubnih uvjeta zahtijeva da f i g zadovoljavaju f(0) =

f(L) = 0 i g(0) = g(L) = 0 jer su početna amplituda i brzina u točkama x = 0 i

x = L jednake nuli. Rješenje problema tražimo u separiranom obliku

u(x, t) = P (x)Q(t). (6.81)

Supstitucijom izraza (6.81) u jednadžbu (6.78) dobivamo PQtt = c2PxxQ, odnosno

Pxx

P
=

1

c2

Qtt

Q
. (6.82)

Varijable x i t su nezavisne pa obje strane u jednadžbi (6.82) moraju biti konstantne.

Dakle,
Pxx

P
=

1

c2

Qtt

Q
= −λ (6.83)

za neki λ ∈ R koji nazivamo separacijska konstanta. Odavde slijedi da su funkcije P

i Q rješenja običnih diferencijalnih jednadžbi

Pxx + λP = 0, 0 < x < L, (6.84)

Qtt + λc2Q = 0, t > 0. (6.85)

Rubni uvjeti u(0, t) = P (0)Q(t) = 0 i u(L, t) = P (L)Q(t) = 0 povlače P (0) = 0 i

P (L) = 0. Stoga funkcija P zadovoljava pridruženi Sturm–Liouvilleov problem

Pxx + λP = 0, (6.86)

P (0) = P (L) = 0. (6.87)
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U poglavlju 5.2 je pokazano da jednadžba (6.86)-(6.87) ima netrivijalna rješenja samo

za vlastite vrijednosti

λn =
(nπ

L

)2

, n ≥ 1, (6.88)

kojima pripadaju vlastite funkcije

Pn(x) = Bn sin
(nπ

L
x
)
, n ≥ 1. (6.89)

Za svaku vlastitu vrijednost λn možemo odrediti funkciju Q(t) iz jednadžbe (6.85).

Opće rješenje je dano sa

Qn(t) = Cn cos
(nπc

L
t
)

+ Dn sin
(nπc

L
t
)
, n ≥ 1. (6.90)

Time dobivamo niz funkcija

un(x, t) = Pn(x)Qn(t) =
[
an cos

(nπc

L
t
)

+ bn sin
(nπc

L
t
)]

sin
(nπ

L
x
)
, (6.91)

gdje su an i bn neodredene konstante. Funkcije un(x, t) zadovoljavaju valnu jednadžbu

(6.78) i rubne uvjete (6.80), a svaka linearna kombinacija

u(x, t) =
N∑

n=1

[
an cos

(nπc

L
t
)

+ bn sin
(nπc

L
t
)]

sin
(nπ

L
x
)

(6.92)

je takoder rješenje istog problema.

Funkciju un(x, t) nazivamo harmonik n-tog reda za žicu s učvršćenim krajevima u

x = 0 i x = L. Ako an i bn nisu oba nula, onda se harmonik un(x, t) može zapi-

sati u sljedećem obliku. Definirajmo Rn =
√

a2
n + b2

n. S obzirom da je (an/Rn)2 +

(bn/Rn)2 = 1, postoji θn ∈ R takav da je

an = Rn sin(θn) i bn = Rn cos(θn). (6.93)

Tada je

un(x, t) = Rn

[
sin(θn) cos

(nπc

L
t
)

+ cos(θn) sin
(nπc

L
t
)]

sin
(nπ

L
x
)

= Rn sin
(nπ

L
x
)

sin
(nπc

L
t + θn

)
. (6.94)
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(a) n = 1 (b) n = 2 (c) n = 3

Slika 6.3: Prva tri harmonika za titranje žice s učvršćenim krajevima.

U točki x harmonik un(x, t) ima amplitudu Rn| sin(nπ
L

x)| i fazu θn. Period harmonika,

odnosno vrijeme potrebno za jednu oscilaciju, dobivamo iz jednadžbe nπcT/L = 2π

što daje

Tn =
2L

nc
. (6.95)

Frekvencija titranja fn je broj oscilacija u jedinici vremena,

fn =
1

Tn

=
nc

2L
. (6.96)

Slika 6.3 prikazuje prva tri harmonika za titrajuću žicu s učvršćenim krajevima.

Titranje žice je općenito superpozicija harmonika svakog reda, odnosno svih mogućih

frekvencija, pa očekujemo da se opće rješenje valne jednadžbe može zapisati u obliku

u(x, t) =
∞∑

n=1

[
an cos

(nπc

L
t
)

+ bn sin
(nπc

L
t
)]

sin
(nπ

L
x
)

(6.97)

Konstante an i bn su odredene početnim uvjetima u(x, 0) = f(x) i ut(x, 0) = g(x).

Ako pretpostavimo da se red (6.97) može derivirati po članovima, onda dobivamo

u(x, 0) =
∞∑

n=1

an sin
(nπ

L
x
)

= f(x), 0 ≤ x ≤ L, (6.98)

ut(x, 0) =
∞∑

n=1

(nπc

L

)
bn sin

(nπ

L
x
)

= g(x), 0 ≤ x ≤ L. (6.99)
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Neparnim proširenjem funkcija f i g na [−L,L] možem odrediti Fourierove koeficijente

an =
2

L

∫ L

0

f(x) sin
(nπ

L
x
)

dx, (6.100)

bn =
2

nπc

∫ L

0

g(x) sin
(nπ

L
x
)

dx. (6.101)

Iz dobivenog rješenja se vidi da je titranje žice potpuno odredeno početnim i rubnim

uvjetima. Ovo rješenje je formalno jer je potrebno odrediti uvjete pod kojima red

(6.97) predstavlja C2 funkciju koja zadovoljava valnu jednadžbu.

Teorem 6.3 (Egzistencija rješenja) Neka su f ∈ C4([0, L]) i g ∈ C3([0, L]). Pret-

postavimo da funkcije f i g zadovoljavaju uvjete

(i) f(0) = f(L) = 0, f ′′(0) = f ′′(L) = 0,

(ii) g(0) = g(L) = 0.

Tada je funkcija (6.97), gdje su Fourierovi koeficijenti dani relacijama (6.100) i

(6.101), klasično rješenje valne jednadžbe s Dirichletovim uvjetima

utt − c2uxx = 0, 0 < x < L, t > 0, (6.102)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L, (6.103)

u(0, t) = u(L, t) = 0, t ≥ 0. (6.104)

Dokaz. Pokažimo da koeficijenti an i bn teže k nuli dovoljno brzo tako da je suma

reda (6.97) neprekidna funkcija koja se može derivirati po članovima. Parcijalnom

intregracijom relacije (6.100) dobivamo

an =
2

nπ

∫ L

0

f ′(x) cos
(nπ

L
x
)
dx (6.105)

jer je f(0) = f(L) = 0. Koristeći pretpostavku f ′′(0) = f ′′(L) = 0, iteracijom

parcijalne integracije tri puta nalazimo

an =
2L3

(nπ)4

∫ L

0

f (4)(x) sin
(nπ

L
x
)
dx. (6.106)

Odavde slijedi da je
∣
∣
∣
(nπ

L

)2

an

∣
∣
∣ ≤

2L

(nπ)2

∫ L

0

|f (4)(x)|dx. (6.107)
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Kako je f (4) neprekidna na [0, L], to je f (4) ograničena na [0, L] pa možemo definirati

konstantu

C1 =
2L

π2

∫ L

0

|f (4)(x)|dx. (6.108)

Tada je ∣
∣
∣
(nπ

L

)2

an

∣
∣
∣ ≤

C1

n2
, n ≥ 1. (6.109)

Slično se pokazuje da koristeći uvjete g(0) = g(L) = 0 i g ∈ C3([0, L]), iz relacije

(6.101) dobivamo ∣
∣
∣
(nπ

L

)2

bn

∣
∣
∣ ≤

C2

n2
, n ≥ 1, (6.110)

gdje je

C2 =
2L

cπ2

(
|g′′(0)| + |g′′(L)| +

∫ L

0

|g(3)(x)|dx
)
. (6.111)

Definirajmo funkcije

un(x, t) =
[
an cos

(nπc

L
t
)

+ bn sin
(nπc

n
t
)]

sin
(nπ

L
x
)
, n ≥ 1. (6.112)

Nejednakosti (6.109) i (6.110) povlače da su redovi
∑∞

n=1 |an| i
∑∞

n=1 |bn| konvergenti.

Kako je

|un(x, t)| ≤ |an| + |bn| (6.113)

za svaki 0 ≤ x ≤ L i t ≥ 0, prema Weierstrassovom kriteriju red
∑∞

n=1 un(x, t)

konvergira uniformno na skupu Ω̄ = {(x, t) | 0 ≤ x ≤ L, t ≥ 0} ka neprekidnoj

funkciji

u(x, t) =
∞∑

n=1

[
an cos

(nπc

L
t
)

+ bn sin
(nπc

L
t
)]

sin
(nπ

L
x
)

(6.114)

Pokažimo da se red (6.114) može derivirati po članovima na otvorenom skupu Ω =

{(x, t) | 0 < x < L, t > 0}. Deriviranjem funkcije (6.114) dobivamo

∂2un

∂x2
= −

(nπ

L

)2[
an cos

(nπc

L
t
)

+ bn sin
(nπc

L
t
)]

sin
(nπ

L
x
)

(6.115)

pa nejednakosti (6.109) i (6.110) povlače

∣
∣
∣
∂2un

∂x2

∣
∣
∣ ≤

(nπ

L

)2

|an| +
(nπ

L

)2

|bn| ≤
C1 + C2

n2
(6.116)
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za svaki 0 < x < L i t > 0. Red
∑∞

n=1 1/n2 je konvergentan pa prema Weierstrasso-

vom kriteriju red funkcija
∑∞

n=1 ∂2un/∂x2 konvergira uniformno na Ω. Stoga se red

u(x, t) =
∑∞

n=1 un(x, t) može derivirati po članovima i vrijedi

∂2u

∂x2
=

∞∑

n=1

∂2un

∂x2
, (x, t) ∈ Ω. (6.117)

Deriviranjem po varijabli t dobivamo

∣
∣
∣
∂2un

∂t2

∣
∣
∣ ≤ c2 C1 + C2

n2
(6.118)

za svaki 0 < x < L i t > 0 pa prema istom argumentu zaključujemo

∂2u

∂t2
=

∞∑

n=1

∂2un

∂t2
, (x, t) ∈ Ω. (6.119)

Funkcije un zadovoljavaju valnu jednadžbu (un)tt − c2(un)xx = 0 i rubne uvjete

un(0, t) = un(L, t) = 0. Odavde slijedi da u zadovoljava

utt − c2uxx =
∞∑

n=1

∂2un

∂t2
− c2

∞∑

n=1

∂2un

∂x2
=

∞∑

n=1

(∂2un

∂t2
− c2 ∂2un

∂x2

)
= 0 (6.120)

i rubne uvjete u(0, t) = u(L, t) = 0. Promotrimo sada početne uvjete

u(x, 0) =
∞∑

n=1

an sin
(nπ

L
x
)

= f(x), (6.121)

ut(x, t) =
∞∑

n=1

(nπc

L

)
bn sin

(nπ

L
x
)

= g(x), 0 ≤ x ≤ L. (6.122)

Ako su f̃ i g̃ neparna proširenja funkcija f i g na [−L,L], onda su f̃ i g̃ neprekidne i

po dijelovima C1 na [−L,L], i vrijedi f̃(−L) = f̃(L) = 0, g̃(−L) = g̃(L) = 0. Prema

teoremu 2.4 Fourierovi redovi (6.121) i (6.122) konvergiraju uniformno ka f i g na

intervalu [0, L], a Fourierovi koeficijenti su dani sa

an =
2

L

∫ L

0

f(x) sin
(nπ

L
x
)
dx, (6.123)

nπc

L
bn =

2

L

∫ L

0

g(x) sin
(nπ

L
x
)
dx, (6.124)
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odnosno

bn =
2

nπc

∫ L

0

g(x) sin
(nπ

L
x
)
dx. (6.125)

Time je pokazano da funkcija u zadovoljava početne uvjete (6.121) i (6.122). �

U dokazu teorema 6.3 smo pretpostavili da funkcije f i g zadovoljavaju uvjete koji

u primjenama ne moraju biti ispunjeni. Na primjer, ako je u početnom trenutku

žica transferzalno zategnuta u točki 0 < x0 < L i puštena da slobodno titra, onda je

početni položaj trokutasta funkcija

f(x) =






u0

x0
x, 0 ≤ x ≤ x0,

u0
x−L
x0−L

, x0 ≤ x ≤ L,
(6.126)

(vidi sliku 6.4). Funkcija f nema derivaciju u x0 pa f /∈ C4([0, L]). Za opis ovakvih

početnih uvjeta prirodno je pretpostaviti da je početni položaj definiran samo ne-

prekidnom funkcijom f ∈ C([0, L]) takvom da je f(0) = f(L) = 0. Takoder bismo

htjeli uzeti u obzir da početna brzina g ima eventualno prekide prve vrste kako bismo

mogli opisati titranje žice koja je pokrenuta udarcem oštrog predmeta. Sljedeći pri-

mjer pokazuje da pod ovakvim slabijim pretpostavkama rješenje valne jednadžbe nije

C2 funkcija, odnosno nije klasično rješenje u smislu definicije 1.3. U ovom slučaju

potrebno je proširiti koncept rješenja diferencijalne jednadžbe na tzv. slaba rješenja

koja se prirodno javljaju u formulaciji parcijalnih diferencijalnih jednadžbi primjenom

varijacijskog računa. Razmatranje slabih rješenja prelazi okvire ove skripte.

Primjer 6.5 (Gibanje transferzalno zategnute žice) Odredite formalno rješenje

valne jednadžbe

utt − c2uxx = 0, 0 < x < L, (6.127)

u(0, t) = u(L, t) = 0, t ≥ 0, (6.128)

u(x, 0) = f(x), ut(x, 0) = 0, 0 ≤ x ≤ L (6.129)

gdje je funkcija f(x) dana jednadžbom (6.126). Kako je ut(x, 0) = 0, to je bn = 0 za

svaki n. Stoga formalno rješenje ima oblik

u(x, t) =
∞∑

n=1

an cos
(nπc

L
t
)

sin
(nπ

L
x
)

(6.130)
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Slika 6.4: Graf funkcije (6.126).

gdje je

an =
2

L

∫ L

0

f(x) sin
(nπ

L
x
)
dx

=
2

L

∫ x0

0

u0

x0

x sin
(nπ

L
x
)
dx +

2

L

∫ L

x0

u0
x − L

x0 − L
sin
(nπ

L
x
)
dx. (6.131)

Parcijalnom integracijom dobivamo
∫ x0

0

x sin
(nπ

L
x
)
dx =

( L

nπ

)2

sin
(nπ

L
x0

)
−

Lx0

nπ
cos
(nπ

L
x0

)
, (6.132)

∫ L

x0

(x − L) sin
(nπ

L
x
)
dx =

L

nπ
(x0 − L) cos

(nπ

L
x0

)
−
( L

nπ

)2

sin
(nπ

L
x0

)
. (6.133)

Supstitucijom (6.132) i (6.133) u jednadžbu (6.131) nalazimo

an = 2
( L

nπ

)2 u0

x0(L − x0)
sin
(nπx0

L

)
(6.134)

Stoga je formalno rješenje dano sa

u(x, t) =
2L2

π2

u0

x0(L − x0)

∞∑

n=1

1

n2
sin
(nπx0

L

)
cos
(nπc

L
t
)

sin
(nπ

L
x
)
. (6.135)
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Primijetimo da red (6.135) konvergira uniformno za sve x ∈ [0, L] i t ≥ 0, ali u(x, t)

nije C2 funkcija (sto se dogada kada red deriviramo po članovima dva puta po x i t?).

Medutim, parcijalne sume reda uN(x, t) su glatke funkcije koje zadovoljavaju valnu

jednadžbu i rubne uvjete uN(0, t) = uN (L, t) = 0. Nadalje, uN (x, 0) → f(x) unifor-

mno na [0, L] kada N → ∞ pa je uN (x, t) aproksimativno rješenje našeg problema

čija se točnost povećava kako N raste.

Neumannovi rubni uvjeti

Titrajuća žica sa slobodnim krajevima zadovoljava valnu jednadžbu s Neumannovim

rubnim uvjetima

utt − c2uxx = 0, 0 < x < L, (6.136)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L, (6.137)

ux(0, t) = ux(L, t) = 0, t ≥ 0. (6.138)

Kompatibilnost početnih i rubnih uvjeta povlači da je

f ′(0) = f ′(L) = 0, g′(0) = g′(L) = 0. (6.139)

Postupak rješavanja problema (6.136)–(6.138) je sličan prethodnom slučaju s Diri–

chletovim rubnim uvjetima. Rješenje tražimo u obliku u(x, t) = P (x)Q(t). Iz rubnih

uvjeta ux(0, t) = Px(0)Q(t) = 0 i ux(L, t) = Px(L)Q(t) = 0 dobivamo sljeće jednadžbe

za funkcije P i Q:

P ′′(x) + λP (x) = 0, Px(0) = Px(L) = 0, (6.140)

Q′′(t) + λc2Q(t) = 0, (6.141)

gdje je λ ∈ R separacijska konstanta. Vlastite vrijednosti Sturm–Liouvilleovog pro-

blema (6.140) su diskretizirane, λn =
(

nπ
L

)2
, n ≥ 0, a vlastite funkcije Pn(x) su dane

sa

P0 = B0, Pn(x) = Bn cos
(nπ

L
x
)
, n = 1, 2, 3, . . . (6.142)

Za λ = λn jednadžba (6.141) ima rješenja

Q0 = C0 + D0t, (6.143)

Qn(t) = Cn cos
(nπc

L
t
)

+ Dn sin
(nπc

L
t
)
, n = 1, 2, 3, . . . (6.144)
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Time dobivamo niz funkcija un(x, t) = Pn(x)Qn(t) koje možemo zapisati u obliku

u0(x, t) =
a0 + b0t

2
, (6.145)

un(x, t) =
[
an cos

(nπc

L
t
)

+ bn sin
(nπc

L
t
)]

cos
(nπ

L
x
)
, n = 1, 2, 3, . . . (6.146)

za neke konstante an i bn. Dakle, rješenje u(x, t) =
∑∞

n=0 un(x, t) je dano sa

u(x, t) =
a0 + b0t

2
+

∞∑

n=1

[
an cos

(nπc

L
t
)

+ bn sin
(nπc

L
t
)]

cos
(nπ

L
x
)
, (6.147)

a Fourierovi koeficijenti an i bn su odredeni početnim uvjetima

u(x, 0) =
a0

2
+

∞∑

n=1

an cos
(nπ

L
x
)

= f(x), 0 ≤ x ≤ L, (6.148)

ut(x, 0) =
b0

2
+

∞∑

n=1

(nπc

L

)
bn cos

(nπ

L
x
)

= g(x), 0 ≤ x ≤ L. (6.149)

Parnim proširenjem funkcija f i g na interval [−L,L] dobivamo

a0 =
2

L

∫ L

0

f(x)dx, an =
2

L

∫ L

0

f(x) cos
(nπ

L
x
)
dx, (6.150)

b0 =
2

L

∫ L

0

g(x)dx, bn =
2

nπc

∫ L

0

g(x) cos
(nπ

L
x
)
dx. (6.151)

Time je rješenje problema poptuno odredeno.

6.3.2 Separacija varijabli za nehomogenu jednadžbu

Metoda separacije varijabli se može prilagoditi za rješavanje nehomogene valne jed-

nadžbe. Ilustrirajmo postupak rješavanja na Neumannovom problemu

utt − c2uxx = F (x, t), 0 < x < L, t > 0, (6.152)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L, (6.153)

ux(0, t) = ux(L, t) = 0, t ≥ 0. (6.154)

Iz prethodnih razmatranja znamo da ako je F = 0, onda je rješenje dano sa

u(x, t) =
a0 + b0t

2
+

∞∑

n=1

[
an cos

(nπc

L
t
)

+ bn sin
(nπc

L
t
)]

cos
(nπ

L
x
)
. (6.155)
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Ovo sugerira da rješenje nehomogene jednadžbe potražimo u obliku

u(x, t) =
1

2
Q0(t) +

∞∑

n=1

Qn(t) cos
(nπ

L
x
)

(6.156)

gdje su Qn(t) nepoznate funkcije. Supstitucijom relacije (6.156) u valnu jednadžbu

(6.152) dobivamo

1

2
Q′′

0(t) +
∞∑

n=1

[
Q′′

n(t) +
(nπc

L

)2

Qn(t)
]
cos
(nπ

L
x
)

= F (x, t). (6.157)

Ako funkciju F (x, t) možemo razviti u Fourierov red u varijabli x po kosinusima, onda

Qn(t) možemo odrediti usporedjivanjem koeficijenata dvaju Fourierovih redova. Ovo

će biti moguće ako F (x, t) zadovoljava rubne uvjete

Fx(0, t) = Fx(L, t) = 0, t ≥ 0. (6.158)

Tada je

F (x, t) =
1

2
C0(t) +

∞∑

n=1

Cn(t) cos
(nπ

L
x
)
, 0 ≤ x ≤ L, (6.159)

gdje Fourierovi koeficijenti Cn ovise o varijabli t. Supstitucijom ovog izraza u jed-

nadžbu (6.157) dobivamo

1

2

(
Q′′

0(t) − C0(t)
)

+
∞∑

n=1

[
Q′′

n(t) +
(nπc

L

)2

Qn(t) − Cn(t)
]
cos
(nπ

L
x
)

= 0. (6.160)

Ovo povlači da funkcije Qn(t) zadovoljavaju diferencijalne jednadžbe

Q′′
0(t) = C0(t), (6.161)

Q′′
n(t) +

(nπc

L

)2

Qn(t) = Cn(t), n ≥ 1. (6.162)

Rješenja ovih jednadžbi možemo zapisati kao zbroj rješenja pripadne homogene jed-

nadžbe i partikularnog rješenja Qp
n(t):

Q0(t) = a0 + b0t + Qp
0(t), (6.163)

Qn(t) = an cos
(nπc

L
t
)

+ bn sin
(nπc

L
t
)

+ Qp
n(t). (6.164)
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Funkcije Qp
n(t) su jedinstveno odredene Fourierovim koeficijentima Cn(t). Supstitu-

cijom rješenja za Qn(t) u jednadžbu (6.156) nalazimo da je

u(x, t) = uh(x, t) + up(x, t) (6.165)

gdje je uh(x, t) dano izrazom (6.155) rješenje pripadne homogene jednadžbe, a

up(x, t) =
1

2
Qp

0(t) +
∞∑

n=1

Qp
n(t) cos

(nπ

L
x
)

(6.166)

je partikularno rješenje. Koeficijenti an i bn su odredeni početnim uvjetima u(x, 0) =

f(x) i ut(x, 0) = g(x).

Primjer 6.6 Odredite rješenje valne jednadžbe

utt − uxx = cos(2πx) cos(2πt), 0 < x < 1, t > 0, (6.167)

u(x, 0) = cos2(πx), 0 ≤ x ≤ 1, (6.168)

ut(x, 0) = 2 cos(2πx), 0 ≤ x ≤ 1, (6.169)

ux(0, t) = ux(1, t) = 0. (6.170)

Ovdje je L = c = 1 pa opće rješenje ima oblik

u(x, t) =
1

2
Q0(t) +

∞∑

n=1

Qn(t) cos(nπx). (6.171)

Supstitucijom izraza (6.171) u jednadžbu (6.167) dobivamo

1

2
Q′′

0(t) +
∞∑

n=1

(
Q′′

n(t) + (nπ)2Qn(t)
)
cos(nπx) = cos(2πt) cos(2πx). (6.172)

Za n = 0, 2 funkcije Qn zadovoljavaju

Q′′
0(t) = 0, (6.173)

Q′′
2(t) + 4π2Q2(t) = cos(2πt), (6.174)

dok za n 6= 0, 2 vrijedi

Q′′
n(t) + (nπ)2Qn(t) = 0. (6.175)
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Rješenja jednadžbi (6.173) i (6.175) su dana sa

Q0(t) = a0 + b0t, Qn(t) = an cos(nπt) + bn sin(nπt). (6.176)

Partikularno rješenje jednadžbe (6.174) ima oblik

Qp
2(t) =

t

4π
sin(2πt) (6.177)

jer su prirodna frekvencija i frekvencija prisilnih titraja jednake 2π. Stoga je

Q2(t) = a2 cos(2πt) + b2 sin(2πt) +
t

4π
sin(2πt). (6.178)

Dakle, rješenje jednadžbe je dano redom

u(x, t) =
a0 + b0t

2
+

∞∑

n=1

(
an cos(nπt) + bn sin(nπt)

)
cos(nπx) +

t

4π
sin(2πt) cos(2πx)

(6.179)

gdje su koeficijenti an i bn odredeni početnim uvjetima. Iz uvjeta (6.168) dobivamo

u(x, 0) =
a0

2
+

∞∑

n=1

an cos(nπx) = cos2(πx). (6.180)

Koristeći identitet cos2(πx) = 1
2

+ 1
2
cos(2πx) i usporedivanjem Fourierovih koeficije-

nata u gornjoj jednadžbi zaključujemo da je

a0 = 1, a2 =
1

2
, an = 0, n 6= 0, 2. (6.181)

Slično, iz uvjeta (6.169) slijedi

ut(x, 0) =
b0

2
+

∞∑

n=1

nπbn cos(nπx) = 2 cos(2πx) (6.182)

odakle dobivamo

b2 =
1

π
, bn = 0, n 6= 2. (6.183)

Uvrštavanjem Fourierovih koeficijenata an i bn u izraz za u(x, t) nalazimo rješenje

problema

u(x, t) =
1

2
+
(1

2
cos(2πt) +

4 + t

4π
sin(2πt)

)
cos(2πx). (6.184)

�



Poglavlje 7

Laplaceova jednadžba

Jedan od najvažnijih primjera eliptičkih jednadžbi je Laplaceova jednadžba nazvana

po francuskom matematičaru i fizičaru Pierre Simon de Laplaceu (1749–1827) koji

je zaslužan za razvoj teorije potencijala. Laplaceova jednadžba ima primjene u elek-

trostatici, teoriji gravitacije, mehanici fluda i drugim problemima fizike i tehnike. U

ovom poglavlju proučavamo Laplaceovu jednadžbu u dvije dimenzije

uxx + uyy = 0, (x, y) ∈ Ω, (7.1)

gdje je Ω ⊂ R2 ograničena domena. Diferencijalni operator

Δ =
∂2

∂x2
+

∂2

∂y2
(7.2)

naziva se Laplaceov operator. Laplaceova jednadžba je posebni slučaj Poissonove

jednadžbe

Δu = f(x, y), (x, y) ∈ Ω (7.3)

za f = 0. U prvom dijelu izlaganja razmatrat ćemo opća svojstva Laplaceove jed-

nadžbe od kojih su najvažniji principi maksimuma i princip srednje vrijednosti. Me-

todom separacije varijabli ćemo konstruirati rješenja Laplaceove jednadžbe za pravo-

kutne i kružne domene. Na kraju, izvest ćemo rješenje Laplaceove jednadžbe u obliku

Poissonove formule i proširiti metodu separacije varijabli na Poissonovu jednadžbu.

105



POGLAVLJE 7. LAPLACEOVA JEDNADŽBA 106

7.1 Opća svojstva Laplaceove jednadžbe

Funkciju u ∈ C2(Ω) koja zadovoljava Laplaceovu jednadžbu u području Ω ⊆ R2

nazivamo harmonijska funkcija u Ω. Harmonijske funkcije se prirodno javljaju u

teoriji funkcija kompleksne varijable. Ako je f(z) = u(x, y) + iv(x, y) analitička

funkcija u Ω ⊆ C, onda u i v zadovoljavaju Cauchy–Riemannove jednadžbe ux = vy

i uy = −vx. Stoga je

uxx + uyy =
∂

∂x
(vy) −

∂

∂y
(vx) = 0. (7.4)

Slično se pokazuje da v zadovoljava vxx + vyy = 0. Dakle, realni i imaginarni dio

analitičke funkcije f = u + iv je harmonijska funkcija. Na primjer,

ez = ex(cos(y) + i sin(y)) (7.5)

je analitička funkcija u C. Lako se provjeri da su u(x, y) = ex cos(y) i v(x, y) =

ex sin(y) harmonijske funkcije u R2.

U daljnjem tekstu pretpostavljamo je rub ograničenog područja Ω unija ∂Ω = ∪n
i=1Ci

po dijelovima glatkih jednostavnih zatvorenih krivulja C1, C2, . . . , Cn. Jedinični nor-

malni vektor ~n je definiran u svakoj točki na rubu ∂Ω osim eventualno u točkama

gdje se krivulje Ci nastavljaju jedna na drugu.

Definicija 7.1 Neka je u rješenje Poissonove jednadžbe (7.3) na domeni Ω, i neka

je funkcija g definirana na ∂Ω. Kažemo da funkcija u zadovoljava

(i) Dirichletov uvjet na Ω ako je

u(x, y) = g(x, y) za svaki (x, y) ∈ ∂Ω, (7.6)

(ii) Neumannov uvjet na Ω ako je

∂u

∂~n
(x, y) = g(x, y) za svaki (x, y) ∈ ∂Ω (7.7)

gdje je ~n jedinični vektor normale na ∂Ω usmjeren prema van, a ∂u/∂~n = ∇u ∙~n

je usmjerena derivacija funkcije u u smjeru vektora ~n.
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Ako rješenje Poissonove jednadžbe zadovoljava Neumannov uvjet, onda funkcije f i

g moraju zadovoljavati tzv. uvjet konzistentnosti.

Lema 7.1 Neka je Ω ograničena domena u R2. Nužni uvjet za egistenciju rjevšenja

Neumannovog problema

uxx + uyy = f(x, y), (x, y) ∈ Ω, (7.8)

∂u

∂~n
(x, y) = g(x, y), (x, y) ∈ ∂Ω, (7.9)

je uvjet konzistentnosti ∫

∂Ω

gds =

∫∫

Ω

fdxdy. (7.10)

Dokaz. Koristeći vektorski identitet za Laplaceov operator

Δu = ∇ ∙ (∇u) (7.11)

Poissonovu jednadžbu možemo zapisati u obliku

∇ ∙ (∇u) = f. (7.12)

Ako je ~G vektorsko polje klase C1 na Ω, onda je prema Gaussovom teoremu

∫

Ω

∇ ∙ ~Gdxdy =

∫

∂Ω

( ~G ∙ ~n)ds (7.13)

gdje je ~n jedinični vektor normale na ∂Ω usmjeren prema van. Integracijom jednadžbe

(7.12) po Ω i primjenom Gaussovog teorema dobivamo

∫∫

Ω

f dxdy =

∫∫

Ω

∇ ∙ (∇u) dxdy

=

∫

∂Ω

(∇u ∙ ~n)ds =

∫

∂Ω

∂u

∂~n
ds =

∫

∂Ω

gds.

�

Primijetimo da u slučaju kada je u rješenje Laplaceove jednadžbe (f = 0), tada je

nužan uvjet za egistenciju rješenja

∫

∂Ω

gds = 0. (7.14)



POGLAVLJE 7. LAPLACEOVA JEDNADŽBA 108

Drugim riječima, integral normalne derivacije harmonijske funkcije u po ∂Ω isčezava,
∫

∂Ω

∂u

∂~n
ds = 0. (7.15)

Ako uvjet konzistentnosti nije ispunjen, onda Neumannov problem nije rješiv.

Sljedeći rezultat pokazuje da harmonijska funkcija na ograničenoj domeni doseže svoju

maksimalnu i minimalnu vrijednost na rubu te domene. Ovaj zaključak je sličan

principu maksimuma za jednadžbu provodjenja topline.

Teorem 7.1 (Slabi princip maksimuma) Neka je Ω ograničena domena u R2 i

neka je u ∈ C2(Ω) ∩ C(Ω̄) harmonijska funkcija na Ω. Tada je

max
(x,y)∈Ω̄

u(x, y) = u(x′, y′) (7.16)

za neku točku (x′, y′) ∈ ∂Ω. Drugim riječima, funkcija u doseže maksimum po Ω̄ u

nekoj točki ruba ∂Ω.

Dokaz. Neka je ε > 0. Definirajmo funkciju

v(x, y) = u(x, y) + ε(x2 + y2), (x, y) ∈ Ω̄. (7.17)

Funkcija v je neprekidna na kompaktnom skupu Ω̄, pa v doseže maksimum u nekoj

točki (x0, y0) ∈ Ω̄. Ako je (x0, y0) unutarnja točka skupa Ω̄, odnosno (x0, y0) ∈ Ω,

onda je v(x0, y0) lokalni maksimum pa vrijedi

vxx(x0, y0) < 0 i vyy(x0, y0) < 0. (7.18)

Medjutim,

vxx + vyy = uxx + uyy + 4ε = 4ε > 0 (7.19)

u svakoj točki (x, y) ∈ Ω, pa zaključujemo da (x0, y0) /∈ Ω. Dakle, v doseže maksi-

malnu vrijednost na rubu ∂Ω, stoga je

max
(x,y)∈Ω̄

v(x, y) = v(x0, y0) za neku točku (x0, y0) ∈ ∂Ω. (7.20)

Neka su

M = max
(x,y)∈∂Ω

u(x, y) i K = max
(x,y)∈∂Ω

(x2 + y2). (7.21)
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Sada iz relacija (7.20) i (7.21) slijedi da za svaki (x, y) ∈ Ω imamo

v(x, y) ≤ max
(x,y)∈∂Ω

v(x, y) = max
(x,y)∈∂Ω

(
u(x, y) + ε(x2 + y2)

)
= M + εK. (7.22)

Stoga za svaki (x, y) ∈ Ω vrijedi nejednakost

u(x, y) = v(x, y) − ε(x2 + y2) ≤ M + εK − ε(x2 + y2) ≤ M + εK. (7.23)

Kako je ε > 0 odabran proizvoljno, zaključujemo da je

u(x, y) ≤ M za svaki (x, y) ∈ Ω. (7.24)

Ovo povlači da je

max
(x,y)∈Ω̄

u(x, y) = M = max
(x,y)∈∂Ω

u(x, y). (7.25)

Funkcija u je neprekidna na kompaktnom skupu ∂Ω, pa postoji (x′, y′) ∈ ∂Ω takav

da je

max
(x,y)∈Ω̄

u(x, y) = u(x′, y′). (7.26)

�

Primijetimo da slabi princip maksimuma ne isključuje mogućnost da u(x, y) ima mak-

simum u nekoj točki (x, y) ∈ Ω, na primjer ako je u(x, y) konstantna funkcija.

Ako je u harmonijska funkcija na Ω, tada je v = −u takodjer harmonijska na Ω.

S obzirom da je max(x,y)∈Ω̄ v(x, y) = min(x,y)∈Ω̄ u(x, y), prema prethodnom teoremu

zaključujemo da vrijedi

Teorem 7.2 (Slabi princip minimuma) Neka je u ∈ C2(Ω) ∩ C(Ω̄) harmonijska

funkcija na ograničenoj domeni Ω ⊆ R2. Tada postoji (x′, y′) ∈ ∂Ω takav da je

min
(x,y)∈Ω̄

u(x, y) = u(x′, y′). (7.27)

Iz principa maksimuma i minimuma neposredno slijedi

Korolar 7.1 Ako je u ∈ C2(Ω)∩C(Ω̄) harmonijska funkcija na ograničenoj domeni

Ω ⊆ R2 i u(x, y) = 0 za svaki (x, y) ∈ ∂Ω, tada je u = 0.
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Dokaz. Prema slabom principu maksimuma i minimuma imamo

0 = min
(x,y)∈∂Ω

u(x, y) ≤ u(x, y) ≤ max
(x,y)∈∂Ω

u(x, y) = 0 (7.28)

za svaki (x, y) ∈ Ω̄, pa je u = 0. �

Jedna od važnih posljednica principa maksimuma je jedinstvenost rješenja Dirichle-

tovog problema za Poissonovu jednadžbu.

Teorem 7.3 Neka je Ω ograničena domena u R2. Tada postoji najvǐse jedno rješenje

u ∈ C2(Ω) ∩ C(Ω̄) Dirichletovog problema

Δu(x, y) = f(x, y), (x, y) ∈ Ω, (7.29)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω. (7.30)

Dokaz. Pretpostavimo da postoje dva rješenja u1 i u2 problema (7.29)–(7.30). Tada

je u = u1 − u2 harmonijska funkcija koja zadovoljava problem

Δu(x, y) = 0, (x, y) ∈ Ω, (7.31)

u(x, y) = 0, (x, y) ∈ ∂Ω. (7.32)

Prema korolaru 7.1 je u = 0, što povlači u1 = u2. �

Naglasimo da je ograničenost domene Ω važna pretpostavka u teoremu 7.3. Promo-

trimo Dirichletov problem na neograničenoj domeni Ω = {(x, y) | x2 + y2 > 4}:

Δu(x, y) = 0, (x, y) ∈ Ω, (7.33)

u(x, y) = 1, x2 + y2 = 4. (7.34)

Lako se provjeri da su funkcije u1(x, y) = 1 i u2(x, y) = 1
ln(2)

ln
√

x2 + y2 rješenja

problema (7.33)–(7.34), pa rješenje Laplaceove jednadžbe na Ω nije jedinstveno.

Princip maksimuma takodjer ima za posljedicu da su rješenja Dirichletovog problema

za Poissonovu jednadžbu stabilna u odnosu na rubne uvjete. Drugim riječima, male

promjene u rubnim uvjetima rezultiraju malim promjenama u rješenju Poissonove

jednadžbe.
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Teorem 7.4 Neka je Ω ograničena domena u R2, i neka su u1, u2 ∈ C2(Ω) ∩ C(Ω̄)

rješenja Poissonove jednadžbe

Δu1(x, y) = f(x, y), Δu2(x, y) = f(x, y), (x, y) ∈ Ω, (7.35)

koje zadovoljavaju rubne uvjete

u1(x, y) = g1(x, y) u2(x, y) = g(x, y), (x, y) ∈ ∂Ω, (7.36)

gdje su g1 i g2 neprekidne funkcije na ∂Ω. Ako je

max
∂Ω

|g1 − g2| < ε, (7.37)

onda je

max
Ω̄

|u1 − u2| < ε. (7.38)

Dokaz. Definirajmo u = u1 − u2. Tada je u rješenje Laplaceove jednadžbe∇2u = 0

u Ω koje zadovoljava rubni uvjet u(x, y) = g1(x, y) − g2(x, y), (x, y) ∈ ∂Ω. Na rubu

domene vrijedi

|u(x, y)| = |g1(x, y) − g2(x, y)| < ε, (x, y) ∈ ∂Ω, (7.39)

što povlači

−ε < min
∂Ω

u i max
∂Ω

u < ε. (7.40)

Prema slabom principu maksimuma i minimuma imamo

−ε < min
∂Ω

u ≤ u(x, y) ≤ max
∂Ω

u < ε, ∀ (x, y) ∈ Ω. (7.41)

dakle,

|u(x, y)| =
∣
∣u1(x, y) − u2(x, y)

∣
∣ < ε za svaki (x, y) ∈ Ω̄. (7.42)

�

Teorem 7.5 (Princip srednje vrijednosti) Neka je u harmonijska funkcija u do-

meni Ω (koja nije nužno ograničena), i neka je K̄r(x0, y0) ⊂ Ω zatvoreni krug radijusa

r > 0 sa sredǐstem u (x0, y0) ∈ Ω. Tada je

u(x0, y0) =
1

2πr

∫

Cr

u ds (7.43)

gdje je Cr kružnica radiju r > 0 sa sredǐstem u (x0, y0).
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Prema ovom principu, vrijednost harmonijske funkcije u sredǐstu kružnice jednaka je

srednjoj vrijednosti funkcije po kružnici.

Dokaz. Neka je 0 < ρ ≤ r i neka je Cρ kružnica radijusa ρ sa sredǐstem u (x0, y0).

Definirajmo funkciju

V (ρ) =
1

2πρ

∫

Cρ

u ds =
1

2π

∫ 2π

0

u(x0 + ρ cos(ϕ), y0 + ρ sin(ϕ)) dϕ. (7.44)

Funkcija V (ρ) ima uklonjivi prekid u ρ = 0 jer je

lim
ρ→0+

V (ρ) = lim
ρ→0+

1

2π

∫ 2π

0

u(x0 + ρ cos(ϕ), y0 + ρ sin(ϕ)) dϕ = u(x0, y0). (7.45)

Pokažimo da je V (ρ) konstanta. Deriviranjem dobivamo

V ′(ρ) =
1

2π

∫ 2π

0

∂

∂ρ
u(x0 + ρ cos(ϕ), y0 + ρ sin(ϕ)) dϕ,

=
1

2π

∫ 2π

0

[
ux(x0 + ρ cos(ϕ), y0 + ρ sin(ϕ)) sin(ϕ)

+ uy(x0 + ρ cos(ϕ), y0 + ρ sin(ϕ)) cos(ϕ)
]
dϕ

=
1

2π

∫ 2π

0

∂u

∂~n
dϕ =

1

2πρ

∫

Cρ

∂u

∂~n
ds (7.46)

gdje je ∂u
∂~n

= ∇u ∙ ~n usmjerena derivacija u smjeru jediničnog radijalnog vektora

~n = cos(ϕ)~i + sin(ϕ)~j. Prema jednadžbi (7.15) imamo
∫

Cρ

∂u

∂~n
ds = 0 (7.47)

jer je u harmonijska funkcija na krugu Kρ(x0, y0). Stoga je V ′(ρ) = 0, što povlači da

je V (ρ) konstantna funkcija. Odavde slijedi da je

V (r) = lim
ρ→0+

V (ρ) = u(x0, y0) (7.48)

što implicira
1

2πr

∫

Cr

u ds = u(x0, y0). (7.49)

�

Princip srednje vrijednosti karakterizira harmonijske funkcije jer vrijedi i obrat ovog

teorema.
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Teorem 7.6 Pretpostavimo da funkcija u ∈ C2(Ω) zadovoljava princip srednje vri-

jednosti u svakoj točki domene Ω. Tada je u harmonijska funkcija u Ω.

Dokaz. Pretpostavimo da postoji (x0, y0) ∈ Ω takav da je Δu(x0, y0) 6= 0. Bez

gubitka općenitosti možemo pretpostaviti Δu(x0, y0) > 0. Kako je Δu neprekidna

na Ω, postoji r > 0 takav da je Δu(x, y) > 0 na krugu Kr radijusa r sa sredǐstem u

(x0, y0). Neka je Cr rub kruga Kr. Iz Gaussovog teorema (vidi (7.13)) slijedi

0 <
1

2π

∫

Kr

Δu dxdy =
1

2π

∫

Cr

∂u

∂~n
ds =

1

2π

∫ 2π

0

(∇u ∙ ~n) rdϕ

=
r

2π

∫ 2π

0

[
ux

(
x0 + r cos(ϕ), y0 + r sin(ϕ)

)
cos(ϕ)

+ uy

(
x0 + r cos(ϕ), y0 + r sin(ϕ)

)
sin(ϕ)

]
dϕ

=
r

2π

∫ 2π

0

∂

∂r
u
(
x0 + r cos(ϕ), y0 + r sin(ϕ)

)
dϕ

= r
r

∂r

1

2π

∫ 2π

0

u
(
x0 + r cos(ϕ), y0 + r sin(ϕ)

)
dϕ (7.50)

gdje je ~n = cos(ϕ)~i + sin(ϕ)~j jedinični normalni vektor na Cr. Prema pretpostavci u

zadovoljava princip srednje vrijednosti na Ω, pa je

1

2π

∫ 2π

0

u
(
x0 + r cos(ϕ), y0 + r sin(ϕ)

)
dϕ = u(x0, y0). (7.51)

Ovo vodi na kontradikciju jer iz jednadžbe (7.50) dobivamo

r
r

∂r

1

2π

∫ 2π

0

u
(
x0 + r cos(ϕ), y0 + r sin(ϕ)

)
dϕ = r

∂

∂r
u(x0, y0) = 0. (7.52)

Dakle, Δu(x0, y0) = 0 za svaki (x0, y0) ∈ Ω pa zaključujemo da je u harmonijska

funkcija na Ω. �

Iz principa srednje vrijenodsti može se dokazati

Teorem 7.7 (Jaki princip maksimuma) Neka je u harmonijska funkcija u do-

meni Ω (koja nije nužno ograničena). Ako u ima minimum ili maksimum u unu-

trašnjosti područja Ω, onda je u konstantna funkcija.
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Jaki princip maksimuma garantira da harmonijske funkcije koje nisu konstantne ne

mogu doseći svoju minimalnu ili maksimalnu vrijednost u unutrašnjosti domene Ω.

Ako je Ω ograničena domena, tada znamo da je minimum ili maksimum dosegnut

u nekoj točki na rubu ∂Ω. Medjutim, ako Ω nije ograničen skup, tada harmonijska

funkcija u ne mora dosegnuti svoj maksimum ili minimum u Ω̄ = Ω∪∂Ω. Na primjer,

u(x, y) = ln(x2 + y2) je harmonijska funkcija u domeni Ω = {(x, y) | x2 + y2 ≥ 1} i

u(x, y) = 0 u svakoj točki (x, y) ∈ ∂Ω, ali u ne doseže maksimum u Ω̄.

7.2 Separacija varijabli za Laplaceovu jednadžbu

Metoda separacije varijabli se može primijeniti na Laplaceovu jednadžbu ako domena

Ω ima odredjenu simetriju. U ovom poglavlju ćemo proučiti metode rješavanja La-

placeove jednadžbe za pravokutne i kružne domene. Formalno rješenje Laplaceove

jednažbe je dano u obliku reda u =
∑∞

n=1 un gdje su un harmonijske funkcije u Ω.

Stoga je potrebno znati pod kojim uvjetima red
∑∞

n=1 un konvergira prema harmo-

nijskoj funkciji, odnosno koji uvjeti garantiraju da je u =
∑∞

n=1 un klasično rješenje

Laplaceove jednadžbe.

Teorem 7.8 Neka je Ω ograničena domena u R2. Neka je u =
∑∞

n=1 un formalno

rješenje Dirichletovog problema

Δu(x, y) = 0, (x, y) ∈ Ω, (7.53)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω, (7.54)

gdje je g neprekidna funkcija na ∂Ω i un ∈ C2(Ω) ∩ C(Ω̄) je harmonijska funkcija u

Ω za svaki n ∈ N. Ako red
∑∞

n=1 un konvergira uniformno ka funkciji g na ∂Ω, tada
∑∞

n=1 un konvergira uniformno u Ω̄, i u je klasično rješenje problema (7.53)-(7.54).

Dokaz. Definirajmo parcijalne sume sn =
∑n

k=1 uk. Tada je sn ∈ C2(Ω) ∪ C(Ω̄) niz

harmonijskih funkcija koji konvergira uniformno ka g na ∂Ω. Neka je ε > 0. Prema

Cauchyevom kriteriju za uniformnu konvergenciju postoji n0 ∈ N takav da

n,m > n0 ⇒ sup
(x,y)∈∂Ω

|sn(x, y) − sm(x, y)| < ε. (7.55)
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Kako je sn − sm ∈ C2(Ω)∩C(Ω̄) harmonijska funkcija u Ω, slabi princip maksimuma

povlači da je

sup
(x,y)∈Ω̄

|sn(x, y) − sm(x, y)| < ε. (7.56)

Prema Cauchyevom kriteriju niz {sn} konvergira uniformno na Ω̄, pa red
∑

k=1 uk

konvergira uniformno na Ω̄.

Pokažimo da je u =
∑∞

k=1 uk harmonijska funkcija u Ω. Neka je (x0, y0) ∈ Ω i neka je

Kr(x0, y0) ⊂ Ω krug radijusa r > 0 sa sredǐstem u (x0, y0). Funkcije un su harmonijske

u Ω pa zadovoljavaju princip srednje vrijednosti

un(x0, y0) =
1

2πr

∫

∂Kr

un ds (7.57)

za svaki n ∈ N. Sada je

u(x0, y0) =
∞∑

n=1

un(x0, y0) =
∞∑

n=1

1

2πr

∫

∂Kr

un ds

=
1

2πr

∞∑

n=1

∫

∂Kr

∞∑

n=1

un ds =
1

2πr

∫

∂Kr

u ds (7.58)

gdje se integral i suma smiju zamijeniti zbog uniformne konvergencije reda. Dakle,

funkcija u zadovoljava princip srednje vrijednosti u svakoj točki (x0, y0) ∈ Ω, pa je

prema teoremu 7.6 u harmonijska funkcija u Ω. Nadalje, u zadovoljava rubni uvjet

u(x, y) =
∑∞

k=1 uk(x, y) = g(x, y), (x, y) ∈ ∂Ω, stoga je u klasično rješenje problema

(7.53)-(7.54). �

7.2.1 Pravokutne domene

U ovom poglavlju ćemo razviti metodu separacije varijabli za Laplaceovu jednadžbu

na pravokutnoj domeni. Translacijom koordinatnog sustava možemo pretpostaviti da

je domena definirana sa Ω = (0, b) × (0, d). Promotrimio Laplaceovu jednadžbu

Δu(x, y) = 0, (x, y) ∈ Ω (7.59)

s Dirichletovim rubnim uvjetima

u(x, 0) = h(x), u(x, d) = k(x), 0 ≤ x ≤ b, (7.60)

u(0, y) = f(y), u(b, y) = g(y), 0 ≤ y ≤ d. (7.61)
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Slika 7.1:

Da bismo riješili problem potrebno je Laplaceovoj jednadžbi pridružiti odgovarajući

Sturm-Lioiuvilleov problem koje daje bazne funkcije po kojima se rješenje u razvija

u red. Prisjetimo se da Sturm-Liouvilleov problem zahtijeva homogene rubne uvjete.

Stoga je rješenje u potrebno rastaviti na zbroj u = u1 +u2 gdje su u1 i u2 harmonijske

funkcije koje zadovoljavaju sljedeće rubne uvjete (vidi sliku 7.1):

u1(x, 0) = 0, u1(x, d) = 0, 0 ≤ x ≤ b, (7.62)

u1(0, y) = f(y), u1(b, y) = g(y), 0 ≤ y ≤ d, (7.63)

u2(x, 0) = h(x), u2(x, d) = k(x), 0 ≤ x ≤ b, (7.64)

u2(0, y) = 0, u2(b, y) = 0, 0 ≤ y ≤ d. (7.65)

Rubni uvjeti u teoremu 7.8 su definirani neprekidnom funkcijom na ∂Ω. Da bi

rubni uvjeti za funkcije u1 i u2 bili neprekidni, potrebno je pretpostaviti da funkcije

f , g, h i k zadovoljavaju uvjete kompatibilnosti

f(0) = f(d) = 0, g(0) = g(d) = 0, (7.66)

h(0) = h(b) = 0, k(0) = k(b) = 0. (7.67)

Očigledno je da u = u1 + u2 zadovoljava rubne uvjete (7.60)-(7.61) pa je prema te-

oremu 7.3 funkcija u = u1 + u2 jedinstveno rješenje problema (7.59)-(7.61).
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Pokažimo kako se nalazi funkcija u1. Rješenje tražimo u separiranom obliku u1(x, y) =

P (x)Q(y). Iz Laplaceove jednadžbe dobivamo

P ′′(x)

P (x)
= −

Q′′(y)

Q(y)
= λ (7.68)

za neki λ ∈ R. Dakle, funkcije P i Q zadovoljavaju jednadžbe

P ′′(x) − λP (x) = 0, 0 < x < b, (7.69)

Q′′(y) + λQ(y) = 0, 0 < y < d. (7.70)

Rubni uvjeti (7.62) povlače

Q(0) = Q(d) = 0 (7.71)

pa funkcija Q zadovoljava pridruženi Sturm-Liouvilleov problem (7.70)-(7.71). Vlas-

tite vrijednosti i funkcije su dane sa

λn =
(nπ

d

)2

, Qn(y) = sin
(nπ

d
y
)

, n ∈ N. (7.72)

Sada jednadžba za funkciju P ima oblik

P ′′(x) −
(nπ

d

)2

P (x) = 0, 0 < x < b. (7.73)

Zbog rubnih uvjeta na stranicama pravokutnika x = 0 i x = b opće rješenje zapǐsimo

kao

Pn(x) = An sh
(nπ

d
x
)

+ Bn sh
(nπ

d
(x − b)

)
, n ∈ N. (7.74)

Primijetimo da su hiperbolne funkcije sh(nπx/d) i sh(nπ(x−b)/d) linearno nezavisna

rješenja jednadžbe (7.73). Prema principu superpozicije, formalno rješenje u1 je dano

u obliku reda

u1(x, y) =
∞∑

n=1

[
An sh

(nπ

d
x
)

+ Bn sh
(nπ

d
(x − b)

)]
sin
(nπ

d
y
)

. (7.75)

Supstitucijom izraza (7.75) u rubne uvjete (7.63) dobivamo

u1(0, y) =
∞∑

n=1

−Bn sh

(
nπb

d

)

sin
(nπ

d
y
)

= f(y), 0 ≤ y ≤ d, (7.76)

u1(b, y) =
∞∑

n=1

An sh

(
nπb

d

)

sin
(nπ

d
y
)

= g(y), 0 ≤ y ≤ d. (7.77)
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Definirajmo koeficijente

αn = An sh

(
nπb

d

)

, βn = −Bn sh

(
nπb

d

)

. (7.78)

Jednadžbe (7.76) i (7.77) predstavljaju razvoj funkcija f i g u Fourierov red po

sinusima na intervalu [0, d],

g(y) =
∞∑

n=1

αn sin
(nπ

d
y
)

, f(y) =
∞∑

n=1

βn sin
(nπ

d
y
)

, 0 ≤ y ≤ d, (7.79)

gdje su Fourierovi koeficijenti dani sa

αn =
2

d

∫ d

0

g(y) sin
(nπ

d
y
)

dy, βn =
2

d

∫ d

0

f(y) sin
(nπ

d
y
)

dy. (7.80)

Sada iz jednadžbe (7.78) dobivamo

An =
2

d sh
(

nπb
d

)
∫ d

0

g(y) sin
(nπ

d
y
)

dy, (7.81)

Bn = −
2

d sh
(

nπb
d

)
∫ d

0

f(y) sin
(nπ

d
y
)

dy. (7.82)

Sličnim računom se može pokazati da je rješenje za u2(x, y) dano sa

u2(x, y) =
∞∑

n=1

[
Cnsh

(nπ

b
y
)

+ Dnsh
(nπ

b
(y − d)

)]
sin
(nπ

b
x
)

(7.83)

gdje je

Cn =
2

b sh
(

nπd
b

)
∫ b

0

k(x) sin
(nπ

b
x
)

dx, (7.84)

Dn = −
2

b sh
(

nπd
b

)
∫ b

0

h(x) sin
(nπ

b
x
)

dx. (7.85)

U ovom postupku pretpostavili smo da rubne funkcije f , g, h i k zadovoljavaju uvjete

kompatibilnosti (7.66)-(7.67). U primjenama ova pretpostavka često nije opravdana

pa je potrebno modificirati postupak kako bi obuhvatili rubne uvjete koji ne isčezavaju

u vrhovima pravokutnika. To se može napraviti dodavanjem harmonijskih polinoma

funkcijama koje definiraju rubne uvjete. Promotrimo Dirichletov problem

Δu(x, y) = 0, (x, y) ∈ Ω, (7.86)

u(x, y) = G(x, y), (x, y) ∈ ∂Ω (7.87)
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gdje je G(x, y) neprekidna funkcija na rubu pravokutnika Ω = (0, b) × (0, d). Naš

zadatak je transformirati problem (7.86)-(7.87) u Dirichletov problem s neprekidnim

rubnim uvjetima koji isčezavaju u vrhovima pravokutnika Ω. Rastavimo funkciju u

na zbroj u(x, y) = v(x, y)+P2(x, y) gdje je P2(x, y) harmonijski polinom drugog reda.

Opći oblik polinoma P2 je

P2(x, y) = a1(x
2 − y2) + a2xy + a3x + a4y + a5 (7.88)

gdje su a1, . . . , a5 proizvoljni koeficijenti. Funkcija v je harmonijska u Ω i u vrhovima

pravokutnika zadovoljava

v(0, 0) = G(0, 0) − P2(0, 0), (7.89)

v(0, d) = G(0, d) − P2(0, d), (7.90)

v(b, 0) = G(b, 0) − P2(b, 0), (7.91)

v(b, d) = G(b, d) − P2(b, d). (7.92)

Ako koeficijene polinoma P2 odaberemo tako da je

P2(0, 0) = G(0, 0), P2(0, d) = G(0, d), (7.93)

P2(b, d) = G(b, 0), P2(b, d) = G(b, d), (7.94)

tada funkcija v(x, y) zadovoljava Dirichletov problem

∇2v(x, y) = 0, (x, y) ∈ Ω, (7.95)

v(x, y) = G̃(x, y), (x, y) ∈ ∂Ω, (7.96)

gdje je G̃(x, y) = G(x, y)−P2(x, y) neprekidna funkcija na ∂Ω koja zadovoljava uvjete

kompatibilnosti jer isčezava u vrhovima pravokutnika. Funkcija v se može odrediti

postupkom kako je opisano ranije. Time dobivamo rješenje problema (7.86)-(7.87) u

obliku

u(x, y) = v(x, y) + P2(x, y). (7.97)

Primijetimo da uvjeti (7.93)-(7.94) daju četiri jednadžbe za pet nepoznanica a1, . . . , a5

što daje beskonačno mnogo harmonijskih polinoma P2(x, y). Ovo nije u kontradikciji

s činjenicom da je rješenje Dirichletovog problema jedinstveno jer izbor polinoma P2

mijenja rubne uvjete za funkciju v pa time i samu funkciju v. Medjutim, rješenje

(7.97) ostaje nepromijenjeno.
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Primjer 7.1 Odredite rješenje Laplaceove jednadžbe na pravokutniku Ω = (0, 1) ×

(0, 1) s rubnim uvjetima

u(x, 0) = 1 + sin(πx), u(0, y) = 1 + y, (7.98)

u(x, 1) = 2, u(1, y) = 1 + y. (7.99)

Primijetimo da su rubni uvjeti danu neprekidnom funkcijom na rubu pravokutnika,

ali ne ispunjavaju uvjet kompatibilnosti. Neka je u(x, y) = v(x, y) + P2(x, y) gdje je

P2(x, y) = a1(x
2 − y2) + a2xy + a3x + a4y + a5. Funkcija v(x, y) zadovoljava rubne

uvjete

v(x, 0) = 1 + sin(πx) − P2(x, 0), v(0, y) = 1 + y − P2(0, y), (7.100)

v(x, 1) = 2 − P2(x, 1), v(1, y) = 1 + y − P2(1, y). (7.101)

Polinom P2(x, y) ćemo odabrati tako da rubni uvjeti za v(x, y) ǐsčezavaju u vrhovima

pravokutnika:

v(0, 0) = 1 − P2(0, 0) = 0, (7.102)

v(0, 1) = 2 − P2(0, 1) = 0, (7.103)

v(1, 0) = 1 − P2(1, 0) = 0, (7.104)

v(1, 1) = 2 − P2(1, 1) = 0. (7.105)

Odavde slijedi da koeficijenti polinoma zadovoljavaju sustav jednadžbi

a5 = 1, −a1 + a4 + a5 = 2, a1 + a3 + a5 = 1, a2 + a3 + a4 + a5 = 2. (7.106)

Jedan od koeficijenata možemo odabrati po volji. Ako odaberemo a1 = 0, onda je

a2 = a3 = 0 i a4 = 1 pa dobivamo

P2(x, y) = 1 + y. (7.107)

Sada su rubni uvjeti za funkciju v(x, y) dani sa

v(x, 0) = sin(πx), v(0, y) = 0, (7.108)

v(x, 1) = 0, v(1, y) = 0. (7.109)
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Rubni uvjeti na stranicama pravokutnika x = 0 i x = 1 su homogeni pa metodu sepra-

cije konstanti možemo primijeniti na funkciju v(x, y). Neka je v(x, y) = P (x)Q(y).

Tada Δv = 0 povlači

P ′′(x) − λP (x) = 0, Q′′(y) + λQ = 0, λ ∈ R. (7.110)

Iz rubnih uvjeta na stranicama x = 0 i x = 1 dobivamo

v(0, y) = P (0)Q(y) = 0, v(1, y) = P (1)Q(y) = 0, (7.111)

odnosno P (0) = P (1) = 0. Stoga funkcija P (x) zadovoljava Sturm–Liouvilleov pro-

blem

P ′′(x) − λP (x) = 0, P (0) = P (1) = 0, (7.112)

čije rješenje je dano sa

λn = −(nπ)2, Pn(x) = sin(nπx), n ≥ 1. (7.113)

Odavde slijedi da funkcija Q(y) zadovoljava jednadžbu

Q′′(y) − (nπ)2Q(y) = 0. (7.114)

Opće rješenje jednadžbe (7.114) možemo zapisati kao superpoziciju linearno nezavis-

nih rješenja

Qn(y) = An sh(nπy) + Bn sh(nπ(y − 1)), n ≥ 1. (7.115)

Sada je rješenje Laplaceove jednadžbe dano u obliku reda

v(x, y) =
∞∑

n=1

Pn(x)Qn(y) (7.116)

=
∞∑

n=1

[
An sh(nπy) + Bn sh(nπ(y − 1))

]
sin(nπx). (7.117)

Iz rubnog uvjeta na stranici y = 0 dobivamo

v(x, 0) =
∞∑

n=1

Bn sh(−nπ) sin(nπx) = sin(πx) (7.118)

što povlači B1 = −1/sh(π) i Bn = 0 za n ≥ 2. Slično, na stranici y = 1 imamo

v(x, 1) =
∞∑

n=1

An sh(nπ) sin(nπx) = 0 (7.119)
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pa je An = 0 za sve n ≥ 1. Dakle, funkcija v(x, y) ima jednostavni oblik

v(x, y) = −
1

sh(π)
sh(π(y − 1)) sin(πx). (7.120)

Konačno, rješenje početnog problema je dano sa

u(x, y) = v(x, y) + P2(x, y) = 1 + y −
1

sh(π)
sh(π(y − 1)) sin(πx). (7.121)

7.2.2 Kružne domene

Drugi primjer domene na kojoj Laplaceovu jednadžbu možemo riješiti separacijom

varijabli je krug. Neka je Ka ⊂ R2 krug radijusa a > 0 sa sredǐstem u ishodǐstu.

Promotrimo Dirichletov problem

Δu(x, y) = 0, (x, y) ∈ Ka, (7.122)

u(x, y) = g(x, y), (x, y) ∈ ∂Ka, (7.123)

gdje je g neprekidna funkcija na ∂Ka. Zbog simetrije domene uvedimo polarne koorid-

nate x = r cos(θ), y = r sin(θ) i definirajmo funkciju w(r, θ) = u(r sin(θ), r cos(θ)).

Laplaceovu jednadžbu u polarnom sustavu možemo dobiti na sljedeći način. Deriva-

cije funkcije w(r, θ) su dane sa

∂w

∂r
= ux cos(θ) + uy sin(θ), (7.124)

∂2w

∂r2
= uxx cos2(θ) + 2uxy sin(θ) cos(θ) + uyy sin2(θ), (7.125)

∂w

∂θ
= −uxr sin(θ) + uyr cos(θ), (7.126)

∂2w

∂θ2
= r2

(
uxx sin2(θ) + uyy cos2(θ)

)
− 2uxyr

2 sin(θ) cos(θ)

− r
(
ux cos(θ) + uy sin(θ)

)
. (7.127)

Iz jednadžbi (7.125) i (7.127) slijedi

∂2w

∂r2
+

1

r2

∂2w

∂θ2
= uxx + uyy −

1

r

(
ux cos(θ) + uy sin(θ)

)
. (7.128)

Supstitucijom jednadžbe (7.124) u (7.128) dobivamo

uxx + uyy =
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2
. (7.129)
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Dakle, Laplaceov operator u polarnom sustavu ima oblik

Δ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
(7.130)

pa Dirichletov problem glasi

∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2
= 0, 0 ≤ θ ≤ 2π, 0 < r < a. (7.131)

Na rubu kruga funkcija w(r, θ) zadovoljava uvjet

w(a, θ) = g(a cos(θ), a sin(θ)), 0 ≤ θ ≤ 2π. (7.132)

Obzirom da nas zanimaju neprekidna rješenja na krugu Ka (koja nemaju singularitet

u ishodǐstu), potrebno je dodati uvjet da je limt→0+ w(r, θ) konačan. Rješenje tražimo

u obliku w(r, θ) = P (r)Q(θ). Supstitucijom u jednadžbu (7.131) i separacijom vari-

jabli dobivamo

r2P ′′(r) + rP ′(r)

P (r)
= λ,

Q′′(θ)

Q(θ)
= −λ, λ ∈ R. (7.133)

Slijedi da funkcije P (r) i Q(θ) zadovoljavaju obične diferencijalne jednadžbe

r2P ′′(r) + rP ′(r) − λP (r) = 0, 0 < r < a, (7.134)

Q′′(θ) + λQ(θ) = 0, 0 ≤ θ ≤ 2π. (7.135)

Granice θ = 0 i θ = 2π predstavljaju istu točku na kružnici, stoga Q(θ) zadovoljava

periodički rubni uvjet Q(0) = Q(2π). Sturm–Liouvilleov problem (7.135) ima rješenja

za vlastite vrijednosti λn = n2, n = 0, 1, 2, . . . kojima su pridružene vlastite funkcije

Q0(θ) = A0, n = 0, (7.136)

Qn(θ) = An cos(nθ) + Bn sin(nθ), n = 1, 2, 3, . . . (7.137)

Ovo povlači da radijalni dio rješenja zadovoljava jednadžbu

r2P ′′(r) + rP ′(r) + n2P (r) = 0. (7.138)

Za n = 0 rješenje dobivamo direktnom integracijom,

P0(r) = C0 + D0 ln(r). (7.139)
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Za n > 0 rješenje tražimo u obliku P (r) = rk čime dobivamo indicijalnu jednadžbu

k2 − n2 = 0, odnosno k = ±n. Odavde slijedi da jednadžba ima opće rješenje

Pn(r) = Cnrn + Dnr−n, n = 1, 2, 3, . . . . (7.140)

Obzirom da traženo rješenje nema singularitet u r = 0, koeficijenti Dn isčezavaju pa

dobivamo

P0(r) = C0, n = 0, (7.141)

Pn(r) = Cnrn, n = 1, 2, 3, . . . . (7.142)

Opće rješenje Laplaceovu jednadžbe na krugu je dano superpozicijom

w(r, θ) =
∞∑

n=0

Pn(r)Q(θ) =
α0

2
+

∞∑

n=1

rn
(
αn cos(nθ) + βn sin(nθ)

)
(7.143)

gdje su α0 = 2A0C0, αn = AnCn i βn = BnCn koeficijenti koji su odredeni rubnim

uvjetom (7.132). Definirajmo funkciju h(θ) = g(a cos(θ), a sin(θ)). Tada iz jednadžbi

(7.132) i (7.143) slijedi

α0

2
+

∞∑

n=1

an
(
αn cos(nθ) + βn sin(nθ)

)
= h(θ), 0 ≤ θ ≤ 2π. (7.144)

Ako je h neprekidna i po dijelovima C1 na [0, 2π], onda iz uvjeta h(0) = h(2π) slijedi

da Fourierov red (7.144) konvergira uniformno ka h. Fourierovi koeficijenti su dani sa

αn =
1

πan

∫ 2π

0

h(ϕ) cos(nϕ)dϕ, n = 0, 1, 2, . . . , (7.145)

βn =
1

πan

∫ 2π

0

h(ϕ) sin(nϕ)dϕ, n = 1, 2, 3, . . . . (7.146)

Time je rješenje Dirichletovog problema na krugu potpuno odredeno.

7.2.3 Poissonova formula

Relacije (7.143) i (7.145)–(7.146) daju rješenje Laplaceove jednadžbe na krugu u

obliku beskonačnog reda. Isto rješenje se može napisati u integralnoj reprezentaciji

koju nazivamo Poissonova formula. U toj reprezentaciji rješenje je dano kao integral
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po rubu domene funkcije h(ϕ) pomnožene s Poissonovom jezgrom. Supstitucijom

jednadžbi (7.145) i (7.146) u (7.143) dobivamo

w(r, θ) =
1

2π

∫ 2π

0

h(ϕ)dϕ +
1

π

∞∑

n=1

∫ 2π

0

(r

a

)n

h(ϕ) cos(n(θ − ϕ))dϕ (7.147)

gdje smo koristili identitet cos(n(θ−ϕ)) = cos(nθ) cos(nϕ) + sin(nθ) sin(nϕ). Defini-

rajmo funkcije

fn(ϕ) =
(r

a

)n

h(ϕ) cos(n(θ − ϕ)), n ≥ 1. (7.148)

Funkcija h(ϕ) je neprekidna na zatvorenom skupu [0, 2π] pa postoji M > 0 takav da

je |h(ϕ)| ≤ M za svaki ϕ ∈ [0, 2π]. Stoga je fn(ϕ) ograničena sa

sup
0≤ϕ≤2π

|fn(ϕ)| ≤
(r

a

)n

M. (7.149)

Red
∑∞

n=1

(
r
a

)n
konvergira za svaki 0 ≤ r < a pa prema Weierstrassovom kriteriju

(7.149) red
∑∞

n=1 fn(ϕ) konvergira uniformno na [0, 2π]. Stoga smijemo zamijeniti

integral i sumu u jednadžbi (7.147) što povlači

w(r, θ) =
1

π

∫ 2π

0

h(ϕ)
[1
2

+
∞∑

n=1

(r

a

)n

cos(n(θ − ϕ))
]
dϕ. (7.150)

Naš sljedeći zadatak je odrediti sumu reda

1

2
+

∞∑

n=1

(r

a

)n

cos(n(θ − ϕ)). (7.151)

Definirajmo ρ = r/a, α = θ − ϕ i z = ρeiα. Prema Moivreovoj formuli je zn =

ρn(cos(nα) + i sin(α)) što povlači

1

2
+

∞∑

n=1

(r

a

)n

cos(n(θ − ϕ)) = Re

(
1

2
+

∞∑

n=1

zn

)

. (7.152)

Kako je |z| = r/a < 1, geometrijski red konvergira i vrijedi
∑∞

n=1 = z/(1− z). Stoga

je
1

2
+

∞∑

n=1

zn =
1 + z

2(1 − z)
=

1 − ρ2 + i2ρ sin(α)

2(1 − 2ρ cos(α) + ρ2)
(7.153)
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pa odvajanjem realnog dijela dobivamo

1

2
+

∞∑

n=1

(r

a

)n

cos(n(θ − ϕ)) =
1 − ρ2

2(1 − 2ρ cos(α) + ρ2)

=
a2 − r2

2(a2 − 2ar cos(θ − ϕ) + r2)
. (7.154)

Uvrštenjem jednadžbe (7.154) u (7.150) dobivamo Poissonovu formulu

w(r, θ) =
1

2π

∫ 2π

0

a2 − r2

a2 − 2ar cos(θ − ϕ) + r2
h(ϕ)dϕ. (7.155)

Jednadžba (7.155) daje harmonijsku funkciju w(r, θ) na krugu Ka u ovisnosti o nje-

zinim vrijednostima na rubu domene ∂Ka. Podintegralna funkcija

K(r, ϕ; a, θ) =
a2 − r2

a2 − 2ar cos(θ − ϕ) + r2
(7.156)

naziva se Poissonova jezgra. Primijetimo da za r = 0 dobivamo teorem srednje

vrijednosti za harmonijske funkcije jer je u ishodǐstu

w(r = 0) =
1

2π

∫ 2π

0

h(ϕ)dϕ =
1

2πa

∫

∂Ka

hds. (7.157)

Poissonova jezgra je primjer Greenove funkcije pomoću koje se rješenje diferencijalne

jednadžbe može napisati u integralnoj reprezentaciji koja uključuje rubne uvjete.

Greenove funkcije za Laplaceovu jednadžbu se mogu konstruirati za različite rubne

uvjete i različite domene, kako konačne tako i beskonačne.


