
The 8th INternational Conference on Software Process Improvement - Research into Education and training, Quality in
Teaching and Technology Based Learning, INSPIRE 2003, 23-25 April 2003, Glasgow, pp. 123-131

 1

A Systematic Approach in Object-Oriented Design

Heuristics Teaching

Ignatios Deligiannis1
, Ioannis Stamelos2, Kerstin V. Siakas1

1Dept. of Information Technology, Technological Education Institution
P.O BOX 14561 GR-54101, Thessaloniki, Greece

Tel/Fax: (+30)2310 791295, e-mail: igndel@it.teithe.gr
 Tel: (+30)2310 791296, e-mail: siaka@it.teithe.gr

2Department of Informatics, Aristotle University

54124 Thessaloniki, Greece
Tel:(+30)2310 998227, e-mail: stamelos@csd.auth.gr

Abstract

In the last few years, there has been growing enthusiasm, for object-
oriented (O-O) approaches to information systems. There have been
significant advancements in all areas of object-oriented information
systems from programming to analysis, design and development.
Considering the difficulty students face adopting the Object-Oriented
(OO) concepts and techniques, this paper presents a systematic teaching
approach aiming at applying efficiently and effectively these concepts.
The model, based on OO design heuristics, and the most significant OO
features, namely, abstraction, inheritance and composition, provides two
teaching directions. First, is the guidance role of a number of appropriate
design heuristics; Secondly, is the assessment role of a number of design
heuristics in order to provide confirmation of their appropriate application
on basic design structures. The proposed model is expected, first to guide
the students on how to apply a specific OO feature at a given situation,
and then to provide them with the ability to examine whether the chosen
design alternative was the most appropriate.

Keywords
Object-Oriented, education, design, heuristic

mailto:igndel@it.teithe.gr
mailto:siaka@it.teithe.gr
mailto:stamelos@csd.auth.gr

The 8th INternational Conference on Software Process Improvement - Research into
Education and training, Quality in Teaching and Technology Based Learning,
INSPIRE 2003, 23-25 April 2003, Glasgow, pp. 123-131

 2

1. Introduction

The OO paradigm has gained a broad acceptance during the last decade, mainly due to
C++ and more recently to Java and UML. Based on abstraction, it intends to analyse and
model real world problems, so that they can be implemented as software solutions,
without losing the semantics of the original problem domain. Such a modeling approach
raises the claims for higher productivity and increased quality in a number of significant
quality factors, such as understandability, , maintainability and reusability.

Understandability expresses how well different components of the software is understood
as requirements, design and dependencies between internal, external and shared
components [1] . Maintainability is the ease with which a program can be corrected if an
error is encountred, adapted if its environment changes or enhanced if the customer
desires a change in requirements [1].Maintainability is usually measured indirectly by
mean-time-to-change, which includes the time it takes to analyse a change request, design
the modification, implement and test the change and finally distribute the change to all
users. Reusability emphasizes creation and reuse of software building blocks [2]. Such
building blocks usually called components should be catalogued for easy reference,
standardized for easy application and validated for easy integration.

Nevertheless, some authors, providing empirical evidence, have expressed their doubts
concerning claims accredited to OO technology about higher productivity and increased
quality, in particular maintainability and reusability. Hatton [3], in a case study about
corrective maintenance issues, indicated a number of concerns about OO technology
having met its objectives. Jones [4], has identified a lack of empirical evidence to support
defect removal efficiency and reusability.
Defect Removal Efficiency (DRE) is a quality metric that provides benefit at both project
and process level.

However, others have shown positive effects concerning quality factors. Lewis [5], in his
experimental study, has indicated that the OO paradigm is particularly suited to reuse,
demonstrating a particular affinity to the reuse process. In a study by Briand et al [6]
examining the quality factor maintainability, it was shown that the OO techniques are
sensitive to bad and good design practices, and that OO design principles significantly
affect the design quality. Also, in two empirical studies performed by the authors of this
paper, examining the impact of a design heuristic on maintainability of OO designs, it was
found that a specific design heuristic, dealing with the “god class problem” significantly
affects maintainability as well as the design quality [7] [8].

The objective of this paper is to propose a systematic teaching approach, based on OO
design heuristics, of the most significant OO concept and mechanisms, such as
abstraction, inheritance and composition. The paper is structured as follows. Section 2
describes background and related work. Section 3 and 4 describes respectively, a

The 8th INternational Conference on Software Process Improvement - Research into
Education and training, Quality in Teaching and Technology Based Learning,
INSPIRE 2003, 23-25 April 2003, Glasgow, pp. 123-131

 3

systematic teaching approach and the education model, proposed by this paper. Finally,
section 5, presents the conclusions and future research aims.

2. Background

The need to investigate claims about OO success is growing. However, in a review,
examining the way experimentation was carried out, it was identified that in the majority
of the experiments, students were used as subjects, posing doubts concerning their
performance ability [9]. It is well known that the OO paradigm offers several mechanisms
and tradeoffs where decisions on best alternatives are usually fuzzy and mostly based on
expert judgment. In other words, cumulative knowledge is likely to play a very important
role in the design phase. Thus, it is questionable whether novice designers performing,
usually with cases, with limited time, are always the most appropriate subjects. The
difficulty of learning OO concepts for programmers new to OO techniques and
particularly for those having previously been exposed to traditional structured methods, is
well documented [10-12].

In order to speed up students’ familiarity with OO concepts, we believe emphasis should
be placed on two aspects: First, OO design heuristics, concentrating cumulative and
distilled knowledge based on experience, could improve students’ ability both in
understanding and successfully applying the OO mechanisms and concepts. Secondly,
there is a plethora of OO design heuristics found in the literature. Students of OO software
engineering courses could benefit from the systematic teaching of design heuristics.
Furthermore, the importance of education in OO concepts has been identified by Sheetz
[13] in his experimental investigation examining the difficulties OO practitioners of three
levels of experience (novices, intermediates and experts) face in software development,
when applying OO techniques and concepts. Here, “the core of meaning units” shared by
participants at all levels of experience, and the relationships common to both novices and
experts, provide the potential for the greatest return on education resources. The study
concludes confirming that organizations adopting OO techniques must provide education
programs across a range of topics.

On the other hand, heuristics are defined as ‘rules of thumb’, referring to the accumulated
and distilled knowledge gained from the experience [14]. Since they form pieces of advice
on detailed design aspects, claimed to be true in most cases, they can guide the designers
in choosing between various alternatives. Related to a multitude of software aspects, they
are aimed at enhancing software quality [14-17]. Furthermore, design heuristics provide
an additional means for design assessment [18]. In addition, when violating heuristics,
there is a risk of leading to complex and monolithic design structures.

In a few empirical studies, where the impact of heuristics was examined mainly on
understandability and maintainability, it has been shown that considerable advantages
could be gained when adhering to their guidance [6-8]. However, there is only one study

The 8th INternational Conference on Software Process Improvement - Research into
Education and training, Quality in Teaching and Technology Based Learning,
INSPIRE 2003, 23-25 April 2003, Glasgow, pp. 123-131

 4

related to the education of OO design heuristics, where the authors collected a number of
heuristics and embedded them into an educational tool in order to automate their use [19].

3. A systematic teaching approach

As mentioned earlier, the objective of this paper is to provide a teaching approach of a
few but important OO design aspects, based on OO design heuristics. Hence, it is
proposing two roles of heuristics’ use: First, it is the guidance role they might provide in
order to most effectively apply the OO mechanisms under consideration [20]. Secondly, it
is the assessment role they might provide in order to confirm their appropriate application,
based on objective assessment [18]. This is a clear improvement with respect to the most
relevant approach we found [19]. According to Kirsopp and Shepperd [18] OO design
heuristics, apart from the guidance role they provide to designers, they could also
effectively serve as an assessment mechanism between different design strategies. They
distinguish two types of assessment, stand-alone, in which a single version of a single
entity is evaluated in isolation, and the comparative o n e . The first one is further
distinguished in the threshold-based heuristics, and the rule-based heuristics. They are
described as follows:
a) I n t h e threshold-based assessment, each heuristic specifies a single value. An
example of a heuristic type is suggested by Coad & Yourdon [21], ‘Avoid having too
many services per class. Each class typically has no more than six or seven public
interfaces. In this case the heuristic contains its own threshold value;
b) In the rule-based assessment, the heuristics embody rules. An example of this type of
heuristic is suggested by Firesmith [16]: ‘subclasses should not delete features of their
superclasses’;
c) In the comparative assessment, another entity or another version of the same entity is
needed as the reference point for the assessment. An example of a heuristic of this type is:
‘Avoid having a large, central object which controls most of the functionality’ [15],
implying that relatively small and decentralized objects are preferable. This type of
heuristic is more likely to be useful in discriminating between designs.

Thus, these two mutually complementary roles, may guarantee the appropriate application
of the OO features: abstraction, inheritance, and composition, briefly described in the
following.

Software design is considered to be the skeleton of a software system. Consequently, its
quality significantly impacts the quality of the final products. An “ideal” OO design is one
that does not distort the conceptual reality of the domain. Success in this, as it is argued,
produces maintainable systems, because such models tend to be relatively easy to
understand, and therefore relatively easy to modify [22].

However, teaching the conceptualization of real-world problems, as key abstractions,
within the context of OO analysis and design remains an ongoing difficulty. A flawed

The 8th INternational Conference on Software Process Improvement - Research into
Education and training, Quality in Teaching and Technology Based Learning,
INSPIRE 2003, 23-25 April 2003, Glasgow, pp. 123-131

 5

abstraction does not closely resemble the original problem at both a semantic and
structural level, leading to tedious and error-prone software products [23]. On the other
side, there are two basic mechanisms for extending a design, namely class inheritance and
object composition. They are further the most common techniques for reusing
functionality in OO systems. Hence, they must be carefully applied since they can be
dangerous when used incorrectly [15].

In the next we describe an education model using these three major design aspects. Based
on a number of the most significant design heuristics proposed over recent years, the
model provides first a guidance module and secondly an assessment module.

Teaching with the model provided the opportunity to perform a formal experiment, using
the students as informed subjects. The significance of a single heuristic, called “god class
problem” (AA3 in Table 1) and dealing with poorly distributed system design
intelligence, as well as its impact on the quality factor maintainability, was examined in a
controlled experimental study [8]. It was found that violating the specific design heuristic,
the participants were forced to misuse the inheritance mechanism in their provided
solutions, thus additionally violating one of the three design heuristics presented in Table
1, namely IA1 to IA3.

Each design aspect, followed by a number of the appropriate design heuristics, is
described in the following section.

4. The education model

Next, each of the investigated OO features is described, followed by some related
empirical findings in order to further support our motivation for their inclusion to the
proposed model.

Abstraction. According to Whitmire [25], an abstraction is an element in the domain
model that represents all or part of a concrete or conceptual object in the domain model.
The primary purpose of OO analysis is to discover the essential abstractions in the
problem domain, while in the OO design is to implement these essential abstractions
correctly and efficiently.

Cockburn [26] considers abstraction as a major factor in predicting the robustness of the
design. A design property that most closely captures the abstraction feature is cohesion,
thus providing an efficient way of assessing it objectively. Cohesion is an attribute of
design rather than code that can be used to predict reusability, maintainability and
changeability [27]. Its contribution to maintainability was empirically supported by the
findings of an empirical study [7]. A number of proposed in the literature metrics are
aimed at quantifying cohesion assessment [28].

The 8th INternational Conference on Software Process Improvement - Research into
Education and training, Quality in Teaching and Technology Based Learning,
INSPIRE 2003, 23-25 April 2003, Glasgow, pp. 123-131

 6

Inheritance is a class-based relationship used to capture the ‘kind-of’ relationship
between classes. Its main purposes are twofold: it acts as a mechanism for expressing
commonality between two classes (generalisation), and it is used to specify that one class
is a special type of another (specialisation). In practice, it is just a mechanism for
extending an application’s functionality by reusing functionality in parent classes [29]. It
is argued that inheritance should be utilized to model commonality and specialization [30]
[20] [16]. Inheritance can also be used for sub-typing, when substitutability is guaranteed
[29].

The importance of the specific OO mechanism was the key motivator to its empirical
investigation of a considerable number of controlled experiments [9]. Furthermore, the
findings of a formal experiment, showed that it can effectively affect the quality factors
maintainability and reusability [31].

Composition is a kind of whole-part association. It forms object-based relationships
needed to model complex (part-of) hierarchies of objects. In composition the whole
strongly owns its parts (e.g., an Engine is part of a Car), implying that the lifetime of the
‘part’ is controlled by the ‘whole’. This control may be direct or transitive [32].

Based on the guidance module of the proposed model (Table 1), students may study the
concept underlying a design heuristic and develop their ability to avoid wrong design
decisions. Moreover, based on the assessment module they can easily evaluate their own
design decisions. It was observed that such a mental process greatly assisted the students
to develop analysis and design skills.

5. Conclusions

Conceptualizing real-world problems, within the context of OO analysis and design is not
an easy task. This is particularly true for students and practitioners, novices to OO
concepts and techniques, when challenged to choose the most appropriate among
alternative design solutions. The OO design heuristics capturing accumulated and distilled
knowledge gained from the experience provides valuable consultation on such decisions.
The paper argued about the benefits of transferring this knowledge to a teaching
environment and process. The paper suggested a teaching approach and a heuristic model,
in order to easier understand and faster and more appropriately apply the significant OO
concepts. This model, concentrated on the most important and often used OO concepts, is
also aiming to strengthen students’ confidence by providing an assessment means based
on heuristics.

Further research planned on the basis of this approach includes an empirical investigation,
examining the effects of the suggested education model on students’ understanding and
performance, within a formal experimentation environment.

The 8th INternational Conference on Software Process Improvement - Research into
Education and training, Quality in Teaching and Technology Based Learning,
INSPIRE 2003, 23-25 April 2003, Glasgow, pp. 123-131

 7

Table 1. The education model (Guidance heuristics in light gray are codified as XGn.
 Assessment heuristics in deep gray are codified as XAn. “X” = OO concept)

Heuristic

code
Abstraction

AG1 A class should capture one and only one key abstraction [13].
AG2 Keep related properties and behavior in one class [27]
AG3 Avoid ‘fuzzy’ class definitions. A class should be cohesive with a single, well defined and

clearly bounded purpose [19]
AA1 All data (no more than six data members) should be hidden (private) within its class [27].
AA2 Avoid having too many services per class. Each class typically has no more than six or

seven public interfaces [19]
AA3 Avoid having a large, central object which controls most of the functionality [13] [5].

 Inheritance

IG1 Inheritance should only be used for sub-typing (as opposed to implementation inheritance)
[28]

IG2 Inheritance should be used to model generalization - specialization (“a-kind-of”
taxonomies) relationships [29]

IA1 Only use inheritance when you want to inherit all the properties of a subclass, not just
some of them [30]

IA2 “Subclasses should not delete features of their super classes. Subclasses that delete features
probably are not specializations of their superclass(es) because they cannot do something
that their parent(s) can ”. [14]

IA3 It should be illegal for a derived class to override a base class method with a NOP method,
i.e. a method which does nothing [27].

 Composition

CG1 Aggregation (composition) should not be used to represent non-compositional
relationships, i.e., spatial/temporal inclusion, attribution, membership, attachment,
ownership [26]

CA1 Containment classes should know what they contain, but contained classes should have no
knowledge of who contains them [27].

CA2 Objects which share lexical scope, i.e. those contained in the same containing class, should
not have uses relationships between them [13].

The 8th INternational Conference on Software Process Improvement - Research into
Education and training, Quality in Teaching and Technology Based Learning,
INSPIRE 2003, 23-25 April 2003, Glasgow, pp. 123-131

 8

References

1. Pressman Roger S., Software Engineering, A Practioner's Approach,.
European Adaption, ed. Fifth edition. 2000: Darrel Ince.

2. Hooper J.W.E. and C. R.O, Software Reuse: Guidelines and Methods. 1991:
Plenum Press.

3. Hatton, L., Does OO Sync with How We Think? IEEE Software,
1998(May/June): p. 46-54.

4. Jones, G., Gaps in the object-oriented paradigm, in IEEE Computer. 1994.
p. 90-91.

5. Lewis, J., et al., An Empirical Study of the Object-Oriented Paradigm and
Software Reuse. OOPSLA '91, 1991: p. 184 - 196.

6. Briand, L., C. Bunse, and J. Daly, A Controlled Experiment for Evaluating
Quality Guidelines on The Maintainability of Object-Oriented Designs.
IEEE Trans. on Softw. Eng., 2001. 27(6): p. 513-530.

7. Deligiannis, I., et al., An empirical investigation of Object-Oriented Design
Heuristics for Maintainability. Journal of Systems and Software, 2002.

8. Deligiannis, I., et al. A Controlled Experiment Investigation of An Object-
Oriented Design Heuristic for Maintainability. 2002.

9. Deligiannis, I., et al., A Review of Experimental Investigations into Object-
Oriented Technology. Empirical Software Engineering Journal, 2002. 7(3):
p. 193-231.

10. Hillegersberg, J., K. Kuman, and R. Welke, An empirical analysis of the
performance and strategies of programmers new to object-oriented
techniques, in Psychology of Programming Interest Group: 7th Workshop.
1995.

11. Chandel, J. and S. Hand, Object-Oriented Concepts: Where Do People Go
Wrong? Object Manager, 1994. 10: p. 17-19.

12. Cohen, J., et al. PANEL: Training Professionals in Object Technology. in
OOPSLA'94. 1994.

13. Sheetz, S.D., Identifying the difficulties of object-oriented development. J. of
Systems and Software, 2002. to appear.

14. Booch, G., Rules of Thumb. ROAD, 1995. 2(4): p. 2-3.
15. Riel, A., Object-Oriented Design Heuristics, ed. Addison-Wesley. 1996.
16. Firesmith, D., Inheritance guidelines. JOOP, 1995(May): p. 67-72.
17. Lorenz, M. and J. Kidd, Object-Oriented Software Metrics. Object-Oriented

Series. 1994: Prentice Hall. 146.
18. Kirsopp, C. and M. Shepperd. Using heuristics to assess object-oriented

design quality. in 5th Int. Conf. on Empirical Assessment & Evaluation in
Softw. Eng.,. 2001. Keele University, Staffordshire, UK.

19. Gibbon, C. and C. Higgins, Teaching Object-Oriented Design with
Heurustics. ACM Sigplan Language Tips.

The 8th INternational Conference on Software Process Improvement - Research into
Education and training, Quality in Teaching and Technology Based Learning,
INSPIRE 2003, 23-25 April 2003, Glasgow, pp. 123-131

 9

20. Capretz, L. and P. Lee, Object-oriented design: guidelines and techniques.
Information and Software Technology, 1993. 35(April): p. 195-206.

21. Coad, P. and E. Yourdon, Object-Oriented Design. first ed. ed. 1991:
Prentice-Hall.

22. Pooley, R. and P. Stevens, Using UML: Software Engineering with Objects
and Components, ed. O.T. Series. 1999: Addison-Wesley.

23. Rumbaugh, M., et al., Object-Oriented Modeling and Design. 1991:
Prentice-Hall.

24. Bennet, S., S. McRobb, and R. Farmer, Object-Oriented Systems Analysis
and Design using UML. 1999: McGraw-Hill.

25. Whitmire, S., Object Oriented Design Measurement. 1997: John Wiley &
sons.

26. Cockburn, A., The Coffee Machine Design Problem: Part 1 & 2. C/C++
User's Journal, 1998(May/June).

27. Yourdon, E. and L. Constantine, Structured Design. 1979, Englewood
Cliffs, N.J.: Prentice-Hall.

28. Briand, L., J. Daly, and J. Wust, A Unified Framework for Cohesion
Measurement in Object-Oriented Systems (1997). Empirical Software
Engineering: An International Journal, 1997.

29. Amstrong, J. and R. Mitchell, Uses and abuses of inheritance. Softw. Eng.
J., 1994(Jan.): p. 19-26.

30. Lieberherr, K. and A. Riel. Contributions to Teaching Object-Oriented
Design and Programming. in OOPSLA. 1989.

31. Deligiannis, I., et al., A Controlled Experiment Investigation of an Object-
Oriented Design Heuristic for Maintainability. J. of Systems and Software,
2003. accepted.

32. Civelo, F. Roles for composite objects in object-oriented analysis and
design. in OOPSLA '93. 1993.

33. Riel, A. Introducing to Object-Oriented Design Heuristics. in OOPSLA'94.
1994. Portland, Oregon, USA.

34. Bar-David, T., Practical consequences of formal definitions of inheritance.
Journal of Object Oriented Programming, 1992(July/August): p. 43-49.

35. McGrecor, J.D. and T. Korson, Supporting dimensions of classification in
object-oriented design. JOOP, 1993(Feb): p. 25-30.

36. Rumbaugh, J., Disinherited! Examples of misuse of inheritance. JOOP,
1993(Jan): p. 19-24.

The 8th INternational Conference on Software Process Improvement - Research into
Education and training, Quality in Teaching and Technology Based Learning,
INSPIRE 2003, 23-25 April 2003, Glasgow, pp. 123-131

 10

The 8th INternational Conference on Software Process Improvement - Research into Education and training, Quality
in Teaching and Technology Based Learning, INSPIRE 2003, 23-25 April 2003, Glasgow, pp. 123-131

 11

	Abstract
	1. Introduction
	3. A systematic teaching approach
	Table 1. The education model (Guidance heuristics in light gray are codified as XGn.
	 Assessment heuristics in deep gray are codified as XAn. “X” = OO concept)
	Avoid having too many services per class. Each class typically has no more than six or seven public interfaces [19]
	Avoid having a large, central object which controls most of the functionality [13] [5].
	Inheritance

