
Teaching Object-Oriented
Software Engineering through

Problem-Based Learning
in the Context of Game Design

Jungwoo Ryoo
Information Sciences and Technology

The Pennsylvania State University-Altoona
Altoona, PA USA
jryoo@psu.edu

Frederico Fonseca
Information Sciences and Technology

The Pennsylvnaia State University-University Park
State College, PA USA

fredfonseca@ist.psu.edu

David S. Janzen
Computer Science Department

California Polytechnic State University
San Luis Obispo, CA USA
djanzen@calpoly.edu

Abstract

Although Object Orientation is emphasised in software engineering education, few have at-
tempted to alleviate the initial learning curve associated with an inexperienced audience in
non-computer science disciplines. The authors propose a Problem-Based Learning curricu-
lum centered on game development to deliver basic Object-Oriented programming concepts
in an interactive and engaging manner. Class activities occur within the context of the
Object-Oriented Rational Unified Process. One of the most significant contributions of this
paper lies in the design of class modules containing tasks intended to educate students on
Object-Oriented Software Engineering in an incremental and self-actuated way.

1: Introduction

It is often highly challenging to teach the concept of Object-Oriented Software Engi-
neering (OOSE) to students with minimal programming experience. This statement is
particularly true when the target audience of the instruction is those in disciplines other
than traditional Computer Science (i.e., Information Sciences and Technology, Computer

Information Systems, Management Information Systems, etc.). These non-Computer Sci-
ence majors attract many students whose ultimate goal may not be a software engineer, but
learning what is involved in developing software to help them pursue other career aspects
of the Information Technology (IT) industry. The students fitting this profile are less keen
on studying the theories of Object-Orientation in their first day of programming class and
are likely to be more enthused about the prospect of being exposed to practical, hands-on
programming experiences throughout the semester, especially when the course they are
taking is their first OOSE course.

There have been some significant efforts to rethink and renovate OOSE education [7, 9,
3, 4, 6] in Computer Science, but few have addressed the special needs of the non-computer
science majors requiring their students to possess working knowledge in OOSE.

2: Problem Context

What challenges educators the most is often not the lack of teaching materials, but the
constraints imposed upon a course. These include (1) type of audience, (2) the limited
amount of time available for a prearranged set of course objectives, (3) a rigid curriculum,
and (4) the choice of teaching methods.

More specifically, one of the unique set of challenges the authors face is the fact that they
work at an i-school (or information school) where students they teach are not traditional
computer science majors but a widely ranging array of technical and non-technical sub-
majors whose emphasis touches upon one or more aspects of information, technology, and
people, and relationships among them to promote “expertise in all forms of information,
required for progress in science, business, education, and culture” [10].

The particular course (a 200 level undergraduate course entitled “Introduction to Com-
puter Languages”: IST 240) this paper focuses on is an entry level programming course
that introduces Java and OOSE along with the Unified Modeling Language (UML) [8]. The
main focus of the course is Java and OOSE, and the coverage of UML is expected to be
rudimentary as shown in the following course objectives.

• Understand the basic principles of object-oriented programming including classes and
inheritance.

• Create UML class diagrams.
• Develop, test, and execute a Graphical User Interface (GUI)-based application in

Java.

The College of Information Science and Technology (IST) at the Pennsylvania State Uni-
versity where IST 240 is taught strongly promotes a pedagogical approach called Problem-
Based Learning (PBL) [14, 5, 1, 16]. PBL is discussed in detail later in this paper (Section
3.1).

3: Approach

To cope with the challenges mentioned in Section 2, the authors combined two exist-
ing pedagogical approaches (described in the ensuing sub-sections) in a learning context

especially appealing to students. The learning context of the authors’ choice is game de-
velopment [2, 12]. Almost every student is familiar with video games and plays them.
Therefore, the topic is highly tangible and engaging. Developing a game requires creativ-
ity. Creativity is somewhat stifled when a semester-long software project is given in other
more conventional education settings. For example, students may be asked to develop an
airline reservation system. In this scenario, requirements are provided, and students are
expected to strictly adhere to the requirements. In a game development project, students
can develop their own requirements for a domain in which they are experts. The creativity,
however, does not deviate students from a standard set of learning goals since the games
students develop are based on the mastery of a common set of OOSE skills carefully se-
lected and incrementally presented by the authors. The common OOSE skill set covers all
the major OOSE concepts as well as non-OOSE-specific, basic programming skills.

3.1: Problem-Based Learning (PBL)

PBL is a pedagogical model that emphasizes the role of a real-life problem and a collab-
orative discovery process in learning [14, 5, 1, 16]. Within a typical PBL setting, students
are first given a challenging but realistic problem of significant size, relevant to the learning
objectives of a given course. They are then encouraged to solve the problem in a group
throughout the semester as independently as possible with minimum help from the instruc-
tor of the course. Apart from the traditional lecture-oriented teaching approach, PBL puts
more emphasis on the instructors’ role as facilitators, to prepare meaningful and interesting
problems, and to create and organize course materials in a manner that students have a
just right dose of information in each class to incrementally develop a final solution to the
primary problem of the semester.

With the overarching framework of PBL, the authors partition their OOSE course into
four Rational Unified Process (RUP)-like phases (i.e., Inception, Elaboration, Construction,
and Transition) [13]. Students are also assigned into a group of three people to promote
their maximum participation and to provide a group project experience.

3.1.1: Inception Phase PBL Activities

During the inception phase (the first four weeks of the sixteen week course), each student
group is first given basic requirements. This initial set of requirements are intended to
guide the students into the right direction so that the target requirements are neither too
simplistic nor unreasonable for the skill sets expected to be obtained during the semester.
The requirements also dictate an overall plot for the game. For example, each game shall:

• start with a main menu screen that allows end users to choose the number of players,
levels of difficulty, a replay option, type of backdrops, etc.,

• have the flavor of a typical, interactive video game (players trying to either hit or
avoid randomly generated objects in a scene),

• keep and display scores for each player,
• have ability to record and replay,
• have multiple scenes demanding various skill levels, and
• have sound effects.

Based on the minimum requirements above, students develop their own customized re-
quirements. The sparse nature of the baseline requirements leaves ample room for creativity.
Although requirements elicitation is the most emphasized discipline during the inception
phase, students are given opportunities to refine their initial requirements throughout the
semester, which is consistent with RUP. Therefore, an expected deliverable by the end of
the inception phase is not a final product, but a collection of visual storyboards describing
each scene to appear in the envisioned game, along with textual descriptions on the desired
behaviors of individual Graphical User Interface (GUI) elements in each scene.

3.1.2: Elaboration Phase PBL Activities

The early portion of elaboration phase where analysis is emphasized is extremely ab-
breviated and given only a week or two since students create their own requirements as
opposed to receiving a big document discussing requirements collected for an unknown do-
main. Therefore, the rest of the elaboration phase is mainly used for providing constructive
feedback from instructors to students. The remainder of time (two to three weeks) before
the construction phase is dedicated to building rapid prototypes and developing a detailed
design document for the game. Although being helpful in the early stage of requirements
gathering, storyboards are not as effective as having a partially working program with
tangible behaviors to critique. The proposed curriculum is deliberately designed to equip
students with sufficient knowledge to be able to build the rapid prototypes by the later part
of the elaboration phase (sixth or seventh week of the semester). The prototypes involve:

• a fully functional initial menu window that stores and retains end user options, and
• transitions from the initial menu window to subsequent windows and proof-of-concept

mechanisms to pass values between the windows.

By completing the rapid prototyping, students and instructors can at least observe the
overall flow of the game program under development without worrying about the imple-
mentation details of each scene, with the exception of the main menu window. Note that
the rapid prototype is not meant to be throw-away code, and is expected to be reused in
the construction phase.

Based on their own observations and instructor feedback, students are now ready to
develop a detailed design that involves making specific decisions on how each scene of
the game will be implemented. Along with this information, the design details of the
rapid prototype also need to be documented using a design language like Unified Modeling
Language (UML). As a result, the documentation process must be preceded by a class
session on a modeling language. The theme of the game and what shall be carried out
concerning the contents of the game were already captured in a requirements document
during the inception phase.

3.1.3: Construction Phase PBL Activities

With their instructor-approved rapid prototypes, students are in a comfortable position
to smoothly switch to the construction phase. The already developed skeleton code during
prototyping can now be fleshed out with the specific design details of the game (e.g.,
defeating space invaders, hitting a baseball, etc.). Much of this phase is led by students
and run autonomously, unlike the earlier two other phases (i.e., inception and elaboration).
In the first two phases, some nurturing was necessary to motivate students due to the

initial difficulty associated with learning a new programming language (i.e., Java). At
the construction stage, more control over the project is intentionally relinquished to the
students since they should be self-actuated by now due to the excitement resulting from the
prospect of finishing their half-baked game invention with concrete visual behaviors and
other effects such as sound.

3.1.4: Transition Phase PBL Activities

This phase in RUP is originally intended to ensure that migration from a develop-
ment/testing environment to production is properly executed. Since the delivery of a final
product to customers does not occur in a class setting, the authors simulate this process
through peer reviews and demonstrations. Students review each other’s work and offer their
evaluations. In addition, external reviewers (instructors from the same or different disci-
plines, or school administrators) are invited to demonstration sessions and rate the games
based on evaluation criteria provided by the instructor. These opportunities for public
scrutiny seem to further increase the level of excitement and enthusiasm among students.

3.2: GUI-centered OOSE Education

The aforementioned PBL framework provides a nice vehicle for organizing a non-conventional,
student-actuated, and project-oriented course. However, it does not address the problem
of how to facilitate the students’ self-motivated learning process with what kinds of class
materials. Based on the authors’ experience, this curriculum design aspect of an entry-
level OOSE course is crucial in creating a highly effective PBL experience. In this section,
the authors present their novel approach in lesson planning that accommodates the PBL
objectives described in the previous section.

3.2.1: Laboratory Module Design

The authors’ solution to the PBL-compatible, class-by-class course material delivery is
the extensive use of hands-on laboratory modules. Each lab module is strategically aligned
with the RUP-based PBL tasks throughout the semester as shown in Table 1. Although
OOSE is explicitly dealt with only in the inception phase, it is practiced in the rest of the
phases. Our view is that before creating real applications, whether it is a toy program or
a functional game, it is necessary that students have at least a basic notion of OOSE. The
structure the authors propose tries to address this delicate balance between doing too much
theory and never creating a functional application, and creating a lot of small applications
and never really understanding the theory behind OOSE.

Since GUI-based game development is the central theme of the particular PBL approach
of the authors’ choice, the laboratory modules are carefully designed to incrementally in-
troduce key skills to manipulate GUI objects (such as windows, panels, buttons, etc.) in
the Java programming language. Each lab module is just enough to accomplish PBL tasks
for a given week. Students are also naturally exposed to OOSE concepts while obtaining
their GUI skills. For example, the concept of an object and its behaviors in OOSE is not
easy to understand at the abstract theory level, especially for the beginners, while the same
concept is much easier to absorb when put in the context of GUI components (that is, when
one can see the object like a window and observe its behavior such as minimizing, maximiz-
ing, and closing). Teaching OOSE using GUI is a well-established pedagogical approach as

demonstrated in the literature [9]. The authors’ contribution is putting the proven method
in an even more effective context (i.e., game development) and combining it with PBL.

4: Related Research

4.1: Alice

Alice [6] is a 3D programming environment developed to teach entry level Computer
Science students basic programming concepts without exposing them to all the intricate
details of a full-blown programming language. First-time programming students get easily
frustrated and quickly lose their interest when repeatedly confronted with syntax or logical
errors. Alice insulates students from this rather unpleasant experience by providing an
error-proof Integrated Development Environment (IDE). Using Alice, students accomplish
their programming tasks (usually manipulating 3D objects by calling their methods) by a
series of mouse clicks and drag-and-drop maneuvers.

Unlike the Alice approach, the authors, however, tried to avoid programming environ-
ments in our course. While it is important to keep students motivated throughout the
semester, the target curriculum could not afford to allot an entire semester for students
get acclimated to the world of programming. There are simply too many topics to cover,
and the simulated programming environment is not the same as actually dealing with a
programming language. In addition, “programming environments are often either overly
complex, incomplete in their language support, or do not provide good support for the
teaching and learning processes, thus hindering active assignment work early in the course
according to Kölling and Barnes [11].”

5: Conclusion

This paper proposed a novel approach in teaching OOSE through PBL and game devel-
opment. The approach has been successfully applied repeatedly over the course of multiple
years. Student responses have been very positive in general and have been quantified via
generic course evaluations. The authors intend to do more focused surveys in the future to
investigate exactly what aspects of the proposed curriculum are more efficient than others
and why, through a thorough data analysis. Another possibility of even further improving
the course design presented in this paper is incorporating robotics [4] into the curriculum.
This may further engage the students and make the process of learning OOSE even more
interesting.

References

[1] Howrd S. Barrows. A taxonomy of problem-based learning methods. Medical Education, 20:481–486,
1986.

[2] Jessica D. Bayliss and Sean Strout. Games as a flavor in CS1. In Proceedings of the 37th ACM SIGCSE
Technical Symposium on Computer Science Education, pages 500–504, Houston, Texas, USA, March
2006. ACM.

[3] Byron Weber Becker. Teaching CS1 with karel the robot in java. ACM SIGCSE Bulletin, 33(1):50–54,
March 2001.

[4] Joe Bergin. Karel universe drag and drop editor. ACM SIGCSE Bulletin, 38(3):307–307, September
2006.

[5] David Boud. The Challenge of Problem Based Learning. Routledge, August 1997.

[6] Matthew Conway, Steve Audia, Tommy Burnette, Dennis Cosgrove, Kevin Christiansen, Rob Deline,
Jim Durbin, Rich Gossweiler, Shuichi Kogi, Chris Long, Beth Mallory Steve Miale, Kristen Monkaitis,
James Patten, Jeffrey Pierce, Joe Schochet, David Staak, Brian Stearns, Richard Stoakley, Chris
Sturgill, John Viega, Jeff White, George Williams, and Randy Pausch. Alice: Lessons learned from
building a 3d system for novices. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 486–493, The Hague, The Netherlands, April 2000. ACM.

[7] Stephen Cooper, Wanda Dann, and Randy Pausch. Teaching objects-first in introductory computer sci-
ence. In Proceedings of the 34th ACM SIGCSE Technical Symposium on Computer Science Education,
Reno, Nevada, USA., February 2003. ACM.

[8] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language. Addison-
Wesley Professional, 3rd edition, September 2003.

[9] Jesse Heines and Martin Schedlbauer. Teaching object-oriented concepts through gui programming. In
Proceedings of the 11th Workshop on Pedagogies and Tools for the Teaching and Learning of Object-
Oriented Concepts, Berlin, Germany, July 2007.

[10] iSchool Deans. What are ischools? http://www.ischools.org/oc/field.html.

[11] Michael Kölling and David J. Barnes. Enhancing apprentice-based learning of java. In Proceedings of
the 35th ACM SIGCSE Technical Symposium on Computer Science Education, pages 286–290, Norfolk,
Virginia, March 2004. ACM.

[12] Michael Kölling and Poul Henrikson. Game programming in introductory courses with direct state
manipulation. In Proceedings of the 10th ACM SIGCSE Conference on Innovation and Technology in
Computer Science Education, pages 59–63, Monte de Caparica, Portugal, June 2005. ACM.

[13] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley Professional, 3rd
edition, December 2003.

[14] Lisa Lenze. What is problem-based learning?, 2007. http://pbl.ist.psu.edu/pbl/.

[15] Barb Moskal, Deborah Lurie, and Stephen Cooper. Evaluationg the effectiveness of a new instruc-
tional approach. In Proceedings of the 35th ACM SIGCSE Technical Symposium on Computer Science
Education, pages 75–79, Norfolk, Virginia, USA, March 2004. ACM.

[16] John R. Savery and Thomas M. Duffy. Problem based learning: An instructional model and its
constructivist framework. Technical report, The Center for Research on Learning and Technology
(CRLT), June 2001.

���� ���� ���� �	
� 	����� ���� ��� � �
����� � ����
��� ����� ��� ���� �
����� �� ��� ��� �	��� �! �	
� 	��������� ��� �" # 	� ��� $��%��" �&� ��
!�" �
����	 �������" ��� ��� �"���� ��� ��
�" '�� 	��� ��"$�� %
!�" �
��� 	���
	(�
�!�
��� �� �� ����� � ������ � ��� %
! ���
� %�	 ��� %
!) ��* �	����� ��
�� ��� ���
� %�	
�� ���+ ��%�	� ����, �

��� �
�� ���	� ��!�
��
���� �"- .	���" - $���"- �����" - ����
�"- �����/ $
!���� ���� ��� ��" ��* �!$
!���� ���� ��� � 0�$�1 ��&
�� �2 ' ��
���� ���	3 -� �4� .��!"- ��!�	 �	��� ��
��
�� ��� �� %�
� %�	
�� ��� ��!������ � 	�* �	�����
� %� ��5 �& �	��� �!
�� ����
 ��
� %�	6 	��
� �01"	��
� �' ��01"7��� ��&
��"� ����!�����8 $
������ ���	"$
���$
�
���� ���	"9�& ��� ���	�� $�	� �� ���� ��� �" �4� ������$�	� �� ���� ��� � 0: $�1 � ��	" �	
� 	�����	�(: $� ���
!�	": $� ;��
!�	�)�+�,�/
���! �	
�
�& ���

< =>?@AB C=
DE FG CHFAB C=
I C=JAHK>AB C=L HF=JB AB C=

Table 1. Lab Modules and their Relationship to Programming Language/OOSE/PBL
Learning Objectives

