
14 Research Article ─ SACJ, No. 46., December 2010

From Procedural to Object-Oriented Programming (OOP) -

An exploratory study of teachers’ performance

Irene Govender

School of IS & T, University of KwaZulu-Natal

Abstract

This exploratory study of introductory pre- and in-service teachers’ performance in object-oriented programming (OOP)

assessments reveals important issues with regard to learning and teaching OOP, using Java. The study is set against the

backdrop of the country’s transition of its national IT curriculum from a procedural to an object-oriented programming

language. The effect of prior programming experience and performances in different types of questions are examined. A

combination of quantitative and qualitative methods is used to analyse the data. The effect of prior programming experience

of a procedural kind and the type of assessments given is shown to have a marked influence on the performance in

programming assessments and teaching of OOP. Many introductory OOP courses are in effect taught procedurally as courses

in the small. Therefore educating teachers how to teach programming is an important educational challenge. Some

implications for teaching are therefore suggested.

CATEGORIES

 K.7.0, 1

KEYWORDS

Procedural programming; object-oriented programming; assessment; pedagogical content knowledge

1. INTRODUCTION

The national curriculum statement (NCS) for Information

Technology in South Africa [8] proposed a new

programming language that is object-oriented (OO). The

change in programming language has implications for

teacher-trainees and for many in-service teachers, who

learnt and were trained to teach a procedural language,

such as Pascal. Several studies (see, for example [13])

show that programming is a challenge for introductory

students. By studying the programming assessments of

pre- and in-service teachers during the transition from

procedural to object-oriented programming (OOP)

revealed the influences prior knowledge has on learning

and teaching OOP. Since learning and teaching could be

regarded as two sides of the same coin, knowledge of

students’ performance in programming assessments and

their thinking processes of learning to program can

inform teachers’ instruction. The purpose of this study is

therefore to explore the ways in which novice teachers

(includes both those teachers that are new to

programming and those that are new to OOP, but who

may have had experience in procedural programming) of

programming learn and perform in assessment questions

based on object oriented programming.

2. LITERATURE SURVEY

There is general agreement in the literature that learning

to program is not an easy task [13, 14]. Having to

program in a new style if one has prior programming

experience creates tensions between learning to program

and learning to teach programming. Teachers’

perceptions and behaviour are formed by their own

experiences, both their past experiences and current

views. Bergin and Winder [2], among others, believe that

OOP is a paradigm, different from procedural

programming, which requires a change in mental model

(a paradigm shift) in the practitioners. After being used

to a procedural style of programming, learning to

program in an object-oriented style seems to be very

difficult. For example, Stroustrup [21] indicates that it

takes an average programmer 6 to 18 months to switch

the mind-set from procedural to object-orientation. What

it may be pertinent to ask now is, will programming in

the new paradigm be just as, or less, difficult as it is in

the old paradigm, or does the shift in paradigm pose

additional difficulties?

The myth that “object-orientation and procedural

concepts are mutually exclusive” is refuted by Lewis

[15]. He argues that an object-oriented approach does not

throw out the concepts that are admired in a procedural

approach; rather it augments and strengthens them. A

number of recent studies [3, 5] explore issues relating to

the OOP paradigm. The argument presented for

Research Article ─ SACJ, No. 46., December 2010 15

embracing the OO approach is twofold. In the first

instance, it is argued that objects are natural features of

problem domains and can be represented as entities in

the programming domain. Secondly, the mapping

between the domains is simple and should, therefore,

support and facilitate OOP design. However, the

literature reviewed shows that identifying objects is not

an easy process for novices, and the mapping between

domains is not straight forward. While the literature on

expert programmers is supportive of the naturalness and

ease of OO design, it also shows that expert OO

programmers use both OO and procedural views of the

programming domain, and switch between them as and

when necessary [9]. However, this study is particularly

concerned with novice OO programmers.1 In their study,

Bergin and Reilly [3] found that among the factors that

influence programming success, self-perception of

course outcomes were the most strongly correlated to

performance.

 In a separate study, Wiedenbeck and Ramalingam

[23] found that first year tertiary students’ self-efficacy

of programming is influenced by their previous

secondary school programming experience, which in turn

influence their performance. In this study, however,

previous programming experience of the participants is

explored in relation to learning a different programming

paradigm, OOP. Therefore the experience reported in

this study would help further understand the learning of

OOP and the teaching of OOP by novices, which in turn

adds to the body of literature.

2.1 Teaching of OOP

Several studies have proposed approaches to teach OOP

[16, 11]. However, few have proved one method to be

more successful than another. Bennedsen and Caspersen

[1] believe that

…the learning of programming should be embedded

in a context where the primary focus is learning

systematic techniques to develop a program from a

conceptual model of the problem domain and to

apply these techniques [1]

 Kölling [14] agrees that teaching OOP seems to be more

difficult than teaching procedural programming.

Ritzhaupt and Zucker [17] further supports this notion by

advocating teaching OOP in a second programming

course in which the objects-first approach is used. While

the approach to follow when teaching the programming

language is of concern, it must be noted that it is a

national imperative to teach an OOP language.

An important trend in the literature is the distinction

between studies that explore program comprehension (in

which students are given the code of the program, and

for which they have to explain or demonstrate their

understanding of the code), and those studies that focus

on program generation (in which students have to create

a part of, or a whole program to perform a task or solve a

problem).

1 Note that novice OO programmers may have had experience in

procedural programming and are, therefore, not necessarily

the same as completely novice programmers.

Reading and understanding code is an important

aspect of learning to program. Deimel (cited in [22])

believes that this skill should be explicitly taught. Studies

to identify misconceptions in object-oriented courses

have received a great deal of attention recently. In their

study, Sanders and Thomas [19] have discussed

important misconceptions in OOP. I believe that the

exercise of reading and understanding code is important

in unveiling some of the misconceptions that would in

turn help alleviate the problem of understanding and

implementing OOP concepts

An examination of the literature indicates that there

are more studies of comprehension of programs than

there are of generation of programs [18]. Robins,

Rountree and Rountree [18] suggest that this might be

because comprehension studies are generally more

narrowly focused and controlled, and it is, therefore

easier to understand and explain the students’ behaviour.

However, it is clear that program comprehension and

program generation are related, because during

generation the development, debugging (and, in the long

term, maintenance) of code involves reviewing and

understanding it. One expects these abilities to be highly

correlated; however, there are more issues to consider

before a direct correspondence can be made. In terms of

drawing a direct comparison of comprehension and

generation (reading and writing) type questions, Simon,

et al. [20] acknowledges the difficulty of assessing the

comparability of reading and writing questions.

It is not clear to us that this distinction between line-

by-line understanding and big-picture understanding

has a parallel in code-writing questions [20].

This issue is still of concern in current studies. In

teaching students to program, it would therefore be

necessary to ask, which should be emphasized more. In

this study, the issue is explored again to see how this

particular experience with different programming

backgrounds adds to or detracts from the clarity referred

to by Simon, et al. [20]. Teaching and learning to

program in OO requires one to consider the efficacy of

the different types of assessment questions. This study is

crucial in that the transition from a procedural language

to an object-oriented language, as experienced by pre-

and in-service teachers can play a major part in our

understanding of the difficulties and successes in

learning and teaching the new language.

In order to gain insights into students’ performance

in object-oriented programming, I attempted to answer

the research questions stated in the next section.

3. RESEARCH METHODOLOGY

3.1 Research questions

1. Is prior programming experience a predictor

of success for teaching and learning the new

object-oriented language?

2. How do (pre- and in-service) teachers differ in

their ability to answer questions on

comprehension and generation of code?

16 Research Article ─ SACJ, No. 46., December 2010

3.2 Research participants

Convenience sampling of students was used in the study.

85 in-service teachers (most of whom were teaching

Pascal at secondary schools) enrolled for a year-long

course in Java at a distance learning institution, and 14

pre-service teachers that are studying towards a teaching

qualification at a local university and who chose to major

in computer science education studied programming over

two semesters (14 weeks per semester). These students

attended face-to-face lectures.

3.3 Format of course for both groups

The course consisted of general programming and basic

object-oriented concepts such as methods, objects,

classes, instantiation, constructors and program flow.

These topics were common to both courses, however, the

two groups were taught by different instructors.

Both groups wrote formal examinations at the end of the

course. These assessments, together with informal

discussions with instructors and journal writing were

used in the analysis. The duration of the examinations

was 3 hours for a total of 100 marks. Students were

expected to do the following:

• Understand Java code which was given;

• Write Java code

• Answer simple theoretical questions on Java

• Answer questions relating to pedagogical

content knowledge topics covered in the study

guide.

3.4 Data Collection

The primary data source for this study comprised the

examination paper for both groups of students and

journals that students were required to keep as part of

both courses.

Participants’ reflections of their experiences in

teaching programming and learning a new programming

language were reflected in their journals. The journals

served as records of growth and were the main source of

information about in-service teachers’ learning

processes. The journals were part of the compulsory

course assessment for the in-service teachers. Other than

the specific activities which had to be done in the

journal, students were asked to reflect on their

experiences as they worked through the course material.

Examples of entries to be written in the journals were

thoughts and ideas, questions and problems, feelings,

notes, ideas on how to teach, and specific comments on

the course material.

In assessing the journal, marks were awarded based

on how regularly they wrote in their journals, and how

much careful thought, honesty and effort went into

writing in the journal. There were no right or wrong

answers. Such journals are useful tools to understand the

mental processes that students engage in as they read,

write and problem solve [7].

With consent of the teachers, a background

questionnaire was used to draw responses with respect to

previous knowledge of programming, together with the

number of years either teaching or using the language

(with regard to in-service teachers). A similar

questionnaire was administered to the pre-service

teachers as well. The in-service teachers were also asked

to rate their experience of programming with a specific

language, as: limited knowledge, know the basics and

know the language well. Using SPSS, a statistical

analysis program, the data of students’ raw scores

obtained in the examination together with their

programming knowledge, were captured. Their

programming knowledge was coded according to the

level of experience and number of years teaching/using

the language and thereby rated on a scale from 0 to 5

according to Table 1.

I anticipated a deeper understanding of learning to

program as experienced by the candidates by including

both in-service and pre-service teachers in this study. In

general in-service teachers, who were experienced in

procedural programming (in this case, Pascal), are

insightful and contribute valuable material for

stimulating reflections on teaching [4].

Table 1: Rating scale of programming experience

Know

the

language

well –

teaching/

using

more

than 5

years

Know

the

language

well –

teaching/

using 1-

4 years

Know

the

basics –

teaching/

using

more

than 8

years

Know

the

basics-

teaching/

using

1-4 years

Know

the

basics-

teaching/

using 0

years

Limited

knowledge

of Pascal

Limited

knowledge

of any

other

language

none

5 4 4 3 2 2 1 0

3.5 Questions chosen for discussion

Because of the exploratory nature of this study, the

questions chosen for analysis and discussion were

limited to the examination paper. For the purposes of this

study 2 questions were selected from each examination

paper with the view of discussing the comprehension and

generation of code.

3.6 Analysis

Both quantitative and qualitative analysis was used in

this study. The informal discussions with instructors and

Research Article ─ SACJ, No. 46., December 2010 17

the journal writings were analysed for common themes

and issues regarding the aspects tested within the

examination. In the analysis and discussion sections

quotations from participants’ journals will be provided in

support of claims made.

4. ANALYSIS AND DISCUSSION

The assessments for the two sets of participants will be

dealt with separately.

4.1 Performance in assessments of in-service

teachers
The raw scores obtained in the examination of the (85)

in-service teachers, and the corresponding level of

programming background, are illustrated in the graph

below.

Figure 1: A scatterplot of percentage marks obtained

in relation to level of programming (refer to table

above) of in-service teachers

On close examination of the graph, it is evident that there

are general clusters of circles/points. The levels of

programming experience rated as 3, 4 and 5 are

associated with percentage marks above 50% and level

of programming experience rated as 0, 1 and 2, are

associated with percentage marks of below 50%. The

mean percentage marks for each level of programming

was calculated. It was found that there is an association

between the level of programming experience or

exposure, and the average percentage mark.

The mean percentage marks of 27, 39 and 40 correspond

to prior level of experiences rated as 0, 1 and 2

respectively, while the mean percentage marks of 55, 72

and 75 are associated with prior level of experiences

rated as 3, 4 and 5 respectively. This result seems to

indicate that previous programming experience or

knowledge is a predictor of success in learning a specific

new programming language, Java, which concurs with

the literature. It is important to note at this stage that the

participants’ previous programming experience is to a

large extent based on procedural programming using

Pascal. On the surface, it would appear that shifting from

a procedural paradigm to an objected-oriented paradigm

is achieved with relative ease. Those in-service teachers

who scored well had an advantage of past programming

concepts and principles as a kick start to the course.

Learning the details of programming, such as variables,

loops, if…then…else, arithmetic and Boolean operators

were familiar to them. In this regard, all they needed to

get used to was the new syntax. This result seems to fly

in the face of the general literature (see for example,

[21]) that indicates that students with a procedural

background will take a longer period of time to make a

shift to the object-oriented paradigm. However, a

detailed examination of the questions and data reveals

more than is immediately evident. The problem task

indicated breaks up the task into neat little units that need

to be implemented or if asked to solve a complete

problem (as in the case of question 2) then only a one-

class program is required. This certainly favours the

students who have had strong procedural programming

background knowledge.

The following quotations, from the journal entries

of in-service teachers, indicate the dependence on hints

and small chunks of code, which they have been using in

their teaching. Similar characteristics are used in the

examining process of the in-service teachers.

All pupils prefer, in a test situation, if

you break the problem into parts and/or

give hints. They are more stressed

when doing exams/tests than class-

work and giving them the “starting

board” to the solution reduces the

stress for them

I do break down the bigger problems

into parts – more to ensure clarity of

the question and to clearly set out the

major objectives of the problem.

What is pertinent to point out at this stage is that,

although the quotations above are from in-service

teachers studying this course, many of them are also

teachers of the subject matter, albeit of a procedural

language. There is a strong possibility that they will carry

this mode of teaching and assessment into their

classrooms. The students are still programming in the

small. It is not clear whether or not they have mastered

the true OO design principles and characteristics of OOP.

The graph does suggest that most participants who have

a level of experience of 3 and above seemed to have

scored above 50%. It is reasonable to assume, therefore,

that prior programming experience is helpful for

programming in the “small”.

The in-service teachers who did not score well (below

60), and who are associated with low levels of prior

programming experience, had to make an enormous

effort in order to pass. In addition to learning the basic

programming structures (looping, if ….then…else,

variables, etc), they had to learn the concepts of objects,

classes, inheritance, constructors etc. In a short space of

time, the novice learners needed to go through a steep

learning curve. Other contributory factors that may have

hindered their performance are the problems associated

with distance learning such as, being employed full-time

as teachers and not least of which is this novel way of

thinking in programming. Possibly, given a longer period

to follow these students may show different results. To

answer the question posed above (Is prior programming

experience a predictor of success for the new object-

18 Research Article ─ SACJ, No. 46., December 2010

oriented language?), yes, prior procedural programming

experience is a predictor of success for the object-

oriented language; however, no; prior procedural

programming experience is not necessarily a predictor of

success for object-oriented programming. This would

become clearer when the performance in different

questions are examined in the next section. Note that the

emphasis is the difference between success in learning

the OO language, and success in learning the style of OO

programming. This result suggests that the introductory

course concentrates on the procedural aspects of

programming in Java and the OO aspects are to a large

extent neglected. Hence students’ experience of the

introductory course seems to have a procedural bias,

rather than object-oriented. Their “history” (previous

learning) of programming experience certainly has an

influence on their learning.

4.2 Secondary analysis of the performance in

specific questions

This section considers the qualitative difference in

performance in different questions to try to answer the

following question:

How do students differ in their ability to answer

comprehension (tracing) type questions and

generation of code type of questions?

For this question, both groups of teachers (pre-service

and in-service) were considered separately.

4.2.1 Analysis of Selected Solutions of In-service

Teachers

On inspection of the in-service teachers’ examination,

key observations were made. Questions 2 and 5 (see

Appendix for the questions referred to) were specifically

analysed because they relate to questions on code

generation and comprehension respectively. The mark

obtained for questions 2 and 5 have been extracted from

the data.

Table 2 summarizes the means and standard deviations

of the surveyed students on the two questions. All marks

are unscaled (raw) and are expressed as percentages.

Table 2: Descriptive statistics for in-service students’

performances in different questions

 Variable

Mean (%)

Standard

Deviation (%)

Cases(N)

Q2 86 24 85

Q5 53 33 85

Positive correlations were found between students’

marks obtained in question 2 and the final mark. The

Pearson’s correlation matrix is shown below in Table 3.

All correlations are statistically significant (p<0.01).

Table 3: Pearson’s correlation coefficients for

assessment in programming questions

 Q2 Q5

Q2 1

Q5 0.584003 1

There was a positive correlation of 0.584003 (p<0.01)

between students’ scores in question 2 (Q2) and question

5 (Q5). While it is positive, it is not as strong as

expected. One would assume that good performance in

questions on code generation would surely imply good

performance in questions on code comprehension [20].

What does this tell us? Firstly, comprehension of the

answers and hence explanations required to substantiate

them, is not strong enough. This concurs with [20].

Question 5 required students to use “variable box

diagrams and arrows” (memory diagrams, which

represents the state of objects in memory at a particular

point in the execution of a program.) to explain the

problem in the given code. Hence, a thorough

understanding of object-oriented concepts such as local

variables, static methods and variables, and memory

allocation of objects is necessary. The lack of adequate

ability to use these memory diagrams is suggestive of a

poor understanding of the concepts. In effect, it was a

debugging exercise. While literature suggests that it

might be easier to comprehend (explain, edit or modify)

existing code, in this particular instance, contrary to the

implication in the literature, students performed better at

generation of code (Q2) than in the comprehension of

code (Q5). The mean scores of Q2 and Q5 in Table 3

reflect this scenario. However, on examining the

question in detail, it suggests that question (Q2) was a

simple, “common” calculation which required a one-

class program. For convenience I will reproduce a

segment of code from question 5 here:

Question 5

public class UseDate

 {

 static Console c; // The output console

 public static void main (String [] args)

 {

 c = new Console ();

 c.print ("Enter year, month, day (separated by

 spaces) :");

 int year = c.readInt();

 int month = c.readInt();

 int day = c.readInt();

 Date userDate = new Date (year, month, day);

 if (userDate.isLeap())

 c.println("Is leap year");

 else

 c.println("Is not leap year");

 } // main method

 } // The "UseDate" class.

Depending on the year entered by the user, the program

should display “Is leap year” or “Is not a leap year”.

The problem is that no matter what the user types in, the

program always displays “Is leap year”.

Research Article ─ SACJ, No. 46., December 2010 19

5.1 Explain why the program is not working as it

should

 and what can be done to fix the problem

--

The understanding of program flow, the necessary

assignments to variables and the instantiation of objects

using constructors with parameters seem to be

problematic for many students. This is suggested by the

mean score for question 5.

The memory diagrams are certainly useful for

understanding object references in a code fragment. Even

the in-service teachers, who have had sufficient

experience with learning and teaching procedural

programming, have found the memory diagrams very

useful. This is indicated by the following quotations from

the in-service teachers’ journal entries:

In my experience of teaching variables I

found that learners have extreme difficulty

in understanding the concepts of a variable,

that is, how variables are kept in memory. I

think using variable box diagrams to teach

the concept of a variable is very effective.

….many learners grappled with the

understanding of how variables are stored in

memory especially when a variable takes on

a new value. The box approach has sorted

out this difficulty that learners were

experiencing.

An example of a memory diagram is shown in Figure 2.

 Date userDate; userDate

userDate = new Date (year, month, day);

 userDate

Figure 2 Representation in memory

Another quote from a journal entry follows:

It is also similar to tracing through programs

which helps learners see exactly what is

happening at each statement and understand

how the program works together with seeing

the exact output.

While the above quotations are with respect to

procedural programming (the in-service teachers were

teaching Pascal and learning Java), they certainly are true

for object-oriented programming as well, in which more

abstract references are required. Memory diagrams, with

respect to object references, still continue to be

problematic, which concurs with the reviewed literature

[10].

4.2.2 Analysis of Selected Solutions of Pre-service

Teachers

In order to better understand some of the outcomes and

results in the previous section, a similar analysis of the

solutions of the pre-service teachers was performed. Two

questions (4 and 6) from the examination were chosen

for similar reasons stated in the previous section. These

questions were similar in nature to questions 2 and 5

respectively. For both examinations, the code generation

questions were straight-forward in that it required a one

class program and a method that implemented a formula

given. The comprehension questions required tracing

through the code and explaining the output where both

questions consisted of approximately 42 lines of code.

As indicated in [6], the difficulty of assessing complexity

of programming questions is a challenge for educators.

For ease of reference sections of these questions are

reproduced here. (Refer to appendix for the entire

question.)

Question 4

For the following program you must make use of classes,

constructors, objects and methods. Write a Java program

that will calculate the distance between 2 points on the

Cartesian plane and determine the equation of the line

y= mx + c that passes through those 2 points.

The points (x1, y1) and (x2, y2) are input via the

keyboard.

Distance =
22)12()12(yyxx −+−

Gradient m =
12

12

xx

yy

−

−

And the constant c = y1-m*x1

Question 6

6.2 If the line “private int size =3” was changed to

“private static int size = 3;” what would the

output be, given the same input as 10.1, and

why?

6.3 If the line “public void draw()” was changed

to “private void draw()”, will the main method

compile successfully? Explain your answer.

The marks obtained for the questions 4 and 6 of the

examination have been extracted from the data of the

pre-service teachers’ examination. The following table,

Table 4, summarizes the means and standard deviations

of the surveyed students on the two questions and on the

final mark in programming. All marks are unscaled (raw)

and are expressed as percentages:

year

month

day

20 Research Article ─ SACJ, No. 46., December 2010

Table 4: Descriptive Statistics for pre-service

students’ assessments

 N Mean

Std.

Deviation

Q4% 12 68.58 31.064

Q6% 12 46.58 29.944

A pattern similar to that of the in-service teachers has

emerged. Students performed better in the question that

required solving a problem, rather than the

comprehension required of question 6. Students seem to

find the reading and understanding of code more

difficult, as opposed to writing a complete program.

Basic OO concepts were tested for understanding. The

difference between class wide variables and the value of

object attributes were confusing for students. According

to Bloom’s taxonomy, creating a program is a higher

level question than reading and understanding. A

possible explanation is that marks are given for method,

even if the problem was not solved completely. It could

be easy to accumulate marks in this way without really

solving the problem.

The Pearson’s correlation matrix is shown below, in

Table 5.

Table 5: Pearson’s correlation

 Q4% Q6%

Q4% 1

Q6% 0.01172 1

For the above statistical test the null hypothesis is:

Ho: A student doing well in Q4 (writing a program to

solve a problem) does not have a positive correlation

with the student doing well in Q6 (comprehension type

question).

The alternative hypothesis is:

Ha: A student doing well in Q4 does have a positive

correlation with the student doing well in Q6.

From Table 5, it is clear that the null hypothesis is

accepted. A correlation of 0.01172 between Q4 and Q6

indicates that they might be almost unrelated as the

correlation is close to 0. The non-zero association might

mean that although there is no positive or negative

relationship between the two, they might still appear to

be associated. In other words writing a program to solve

a problem should imply an understanding of program

code. However the reverse may not necessarily be true.

Possible explanations for the differences in performances

in questions 4 (generation type) and 6 (comprehension

type) are:

• Students may have been facing a learning

problem, and

• the instructor may have given the students an

example to study or solve that was a complete

solution to a similar problem to Q4.

• It is also possible for a student with a partial

understanding to be able to write correct code

up to a certain level, without completely

understanding the code. Marks can therefore be

accumulated as they are allocated for method.

The marking scheme showed the break. down

of marks for each aspect of coding. Therefore,

it would appear that an assessment that

involves generating a program may not be a

true reflection of students’ competence in

programming. The assessment techniques used

encouraged accumulation of marks for method.

Alternatively, it could mean that not much

problem solving was required for Q4.

• Computer programming is taught in the context

of a multilingual society, where English is the

second language. The constant translation of

information between languages can affect

students at the surface level. Hence reading

code in a programming language may add to

the complexity of programming and affect their

performance.

Alternatively, it appears that instructors are teaching with

a procedural bias and therefore understanding code that

uses objects and classes even at an introductory level

poses difficulties for the students. The code generation

questions appear to be a one class program that has

similar characteristics to that of procedural

programming. Assessment in terms of program

generation appears to have a procedural bias and may

therefore not be done in terms of OOP principles. Hence

teaching and assessment may not correspond to each

other.

5. SUMMARY

In this study, the performance in certain questions of the

assessment has been examined in depth. Important trends

were found. Firstly, in-service teachers with prior

programming experience performed better than those

without prior programming experience. This is an

obvious notion. Secondly, questions that required an

understanding of the program execution (Q5) were more

poorly answered than those that required writing a simple

one-class program (Q2). Stated differently, the findings

suggest that generating code to solve a problem is more

easily accomplished than comprehension of code. The

implication of this result is that understanding of memory

diagrams, or rather representation of programs in

memory for the object-oriented programs, were poor and

writing a simple one-class program that may be

procedural in nature is more easily accomplished.

Similarly, it was found that, for pre-service teachers,

questions involving understanding and tracing code (Q6)

were more poorly answered than those that required

solving a problem (Q4 that required generating code).

The result has similar implications as the result for the

in-service teachers. Moreover, on close examination of

the assessment questions it was found that some

questions had a procedural bias. This may be indicative

of the throwback to the procedural way of thinking.

Teacher educators need to develop an approach to teach

OOP so that students understand and realize that learning

to program is more than learning a programming

language. Marking strategies that allow marks to be

accumulated for method without completely solving the

Research Article ─ SACJ, No. 46., December 2010 21

problem may give students a false sense of achievement

that they can write a program. The accumulation of

marks accounts for the better performance in code

generation questions than in code comprehension

questions. An important note to remember is that while

the two groups of students were based in different

institutions, taught by two different instructors and wrote

different examinations, the findings appear to be similar.

One is inclined to believe that even experienced

instructors in procedural programming need guidance in

the approach to the teaching and assessment of OOP.

While these results cannot be generalized, they do have

implications for teaching, which is discussed in the next

section.

6. IMPLICATION FOR TEACHING

Knowing that teachers teach as they were taught [12]

(even at a subconscious level), it became clear that if the

object-oriented approach to programming is not infused

in instruction during their practicum experiences, pre-

service teachers will not graduate with the ability to

create true object-oriented programs in the learning

environment; and this cycle of teaching the way one was

taught will be perpetuated. Invariably, the approach to

programming in introductory courses is dependent on,

and influenced by, the instructor’s approach and the

instructor, in turn, is influenced by his/her past

programming and learning experience. If the goal is to

learn OOP then teachers should use appropriate teaching

and assessment strategies to teach OOP (i.e. emphasis

should be on identifying and creating classes and objects

first) and avoid using a procedural approach to teach

programming, even if students undergo a longer learning

curve before they become competent programmers.

Teaching object-oriented programming is more than

teaching object-oriented programming languages even at

the introductory level.

In the light of the procedural background of the in-

service teachers and other instructors of programming, it

is particularly pertinent that both pre- and in-service

teachers be taught programming with the OO approach,

while embracing aspects of procedural programming that

are relevant to programming in general as is suggested

by Lewis [15]. The national change in curriculum in IT

to an OOP language makes this approach an obligation

for teacher training in computer science education. Thus

to support the transition a broader approach to exemplars

for teaching would be required than simply a set of

exercises. The goal should therefore be to develop a

repository of tasks that would be appropriate to teach

OOP. The results also suggest a clear need for a

programme of ongoing teacher development. The

underlying philosophy of different code organization and

the study of other approaches will certainly offer insights

into teaching methodology.

REFERENCES

[1] Bennedsen, J., & Caspersen, M. E. (2004). Teaching

 Object-Oriented Programming- Towards teaching a

 Systematic programming process. 18th European

 Conference on Object-Oriented Programming

 (ECOOP). June 14-18, Oslo, Norway.

[2] Bergin, J., & Winder, R. (2000). Understanding

 Object-Oriented Programming. Retrieved: May,

 2010.

 http://csis.pace.edu/~bergin/patterns/ppoop.html.

[3] Bergin, S., & Reilly, R. (2005). Programming:

 Factors that Influence Success. SIGCSE ’05 February

 23-27. St.Louis, Missouri, USA.

[4] Brandt, C. (2008). Integrating feedback and

 reflection in Teacher preparation. ELT Journal,

 62(1): 37-46.

[5] Cantwell-Wilson, B. and Shrock, S. (2001).

 Contributing to success in an introductory computer

 science course: a study of twelve factors. In

 Proceedings of the thirty-second SIGCSE technical

 symposium on Computer Science Education, pp.

 184-188.

[6] Carbone, A. (2007). Principles for Designing

 Programming Tasks: How task characteristics

 influence student learning of programming.

 Unpublished PhD thesis. Monash University:

 Melbourne.

[7] Carr, S.C. (2002). Assessing learning processes.

 Intervention in School & Clinic, 37(3), 156, 7p, 2

 charts.

[8] Department of Education. (2003). National

 Curriculum Statement Grades 10 – 12 (General),

 Information Technology. Retrieved February 2010

http://www.education.gov.za/Curriculum/substatements/

InformationTechnology.pdf

[9] Détienne, F. (1990). Expert programming

 knowledge: A schema based approach. In J.M. Hoc,

 T.R.G. Green, R. Samurcay, & D.J. Gillmore (Eds.),

 Psychology of programming (pp. 205-222). London:

 Academic Press.

[10] Gries, P. & Gries, D. (2002). Frames and Folders: a

 teachable Memory model for Java.. Journal of

 Computing Small Colleges, 17(6): 182-196.

[11] Griffiths, R., Holland, S. & Edwards, M. (2007).

 Sense before syntax: a path to a deeper

 understanding of objects. ITALICS, 6(4): 125-144.

[12] Gupta, R. (2004). Old habits die hard: literacy

 practice of pre-service teachers. Journal of

 Education for Teaching, 30(1):67-78.

[13] Gal-Ezer, J.,Vilner, T. & Zur, E. (2009). Has the

paradigm shift in CS1 a harmful effect on data

structures courses: a case study. SIGCSE Bulletin

41(1): 126-130.

[14] Kölling, M. (1999). The Problem of teaching Object-

 Oriented Programming, Part 1: Languages. Journal of

 Object-Oriented Programming, 11(8):8-15.

[15] Lewis, J. (2000). Myths about Object-Orientation

22 Research Article ─ SACJ, No. 46., December 2010

 and its Pedagogy. SIGCS 2000 3/00 Austin TX,

 USA.

[16] Lister, R., Berglund, A., Clear, T., Bergin, J.,

 Garvin-Doxas, K., Hanks, B.,et al. (2006). Research

 Perspectives on the Objects-Early Debate. SIGGSE

 Bulletin, 38(4): 146-165.

[17] Ritzhaupt, A. D. & Zucker, R. J. (2006). Teaching

Object- Oriented Programming Concepts Using

Visual Basic .NET. Journal of Information Systems

Education,

[18] Robins, A., Rountree, J. & Rountree, N. (2003).

 Learning and Teaching Programming: A Review

 and Discussion. Computer Science Education,

 13(2): 137- 172.

[19] Sanders, K. & Thomas, L. (2007). Checklists for

 grading object-oriented CS1 programs: concepts

 and misconceptions. Proceedings of the 12th

 conference on Innovation and Technology in

 computer science education (ITiCSE). Dundee,

 Scotland, ACM.

[20] Simon, Lopez, M., Sutton, K., & Clear, T. (2009).

 Surely We Must Learn to Read before We Learn to

 Write! In M. Hamilton & T. Clear (Eds),

 Conferences in Research and Practice in

 Information Technology, 95: 165-170. Wellington,

 New Zealand: ACS.

[21] Stroustrup, B (1994). The Design and Evolution of

 C++. Addison- Wesley, Reading MA.

[22] Turner, S. A., Qunitana-Castillo, R., Pérez-Quiňoes,

M.A. & Edwards, S.H. (2008). Misunderstandings

about Object-Oriented Design: Experiences Using

Code Reviews. (2008). SIGCSE Bulletin 40(1): 97-

101.

[23] Wiedenbeck, S. & Ramalingam, V. (1999). Novice

comprehension of small programs written in the

procedural and object-oriented styles. International

journal Human-Computer Studies 51:71-87.

APPENDIX

Exam paper –In-service

Question 2

Write a program that calculates and displays

the weekly salary for an employee who earns

R175 an hour, works 40 regular hours, 13

overtime hours, and earns time and one-half

(wage*1.5) for overtime hours worked. Create

a separate method to do the calculation and

return the result to be displayed. Save the

program as Salary.java.

Marks will be given for showing planning in

the form of comments in your program and

method structure.

 Question 5

Consider the following class Date and class

UseDate written by a student:

public class Date

{

 private int year;

 private int month;

 private int day;

 public Date (int y, int m, int d)

 {

 year = y;

 month = m;

 day = d;

 }

 public boolean isLeap()

 {

 int year = 2004;

 if (year % 4 == 0)

 return true;

 else

 return false;

 }

 }

 import java.awt.*;

 import hsa.Console ;

 public class UseDate

 {

 static Console c; // The output console

 public static void main (String [] args)

 {

 c = new Console ();

 c.print ("Enter year, month, day (separated by

 spaces) :");

 int year = c.readInt();

 int month = c.readInt();

 int day = c.readInt();

 Date userDate = new Date (year, month, day);

 if (userDate.isLeap())

 c.println("Is leap year");

 else

 c.println("Is not leap year");

 } // main method

 } // The "UseDate" class.

Depending on the year entered by the user, the program

should display “Is leap year” or “Is not a leap year”.

The problem is that no matter what the user types in, the

program always displays “Is leap year”.

5.1 Explain why the program is not working as it

 should and what can be done to fix the problem.

5.2 Describe in detail how you could use variable box

 diagrams and arrows (if need be) to explain this

 problem to a class of learners. Your diagram must

 be accompanied by a textual description. Explained

 what happens with and without the change as

 described.

Research Article ─ SACJ, No. 46., December 2010 23

5.3 Write a second constructor for the Date class

 which takes a single parameter of type String: a

 date in the form dd/mm/yyyy (for example,

 “24/09/1998”). Your constructor should extract the

 day, month and year parts from this string

 parameter and use them to initialise the data

 members of the Date class. You are not required to

 do any checking for invalid values. (Hint: to

 convert a String to an integer, use the method

 Integer.parseInt,).

Exam paper- Pre-service

Question 4

For the following program you must make use of classes,

constructors, objects and methods. Write a Java program

that will calculate the distance between 2 points on the

Cartesian plane and determine the equation of the line

y=mx + c that passes through those 2 points.

The points (x1, y1) and (x2, y2) are input via the

keyboard.

Distance =
22)12()12(yyxx −+−

Gradient m =
12

12

xx

yy

−

−

And the constant c = y1-m*x1

Question 6

public class LineTestExam

{

 private int size = 3;

 private char pattern = ‘*’;

public void setSize (int s)

{

 If (s>=0)

 Size = s;

}

public void setPattern (char p)

{

 for (int i = 1; i<= size; i++)

 {

 for (int x =1; x<= i; x++)

 System.out.print(pattern);

 System.out.println();

 }

 }

}

import Utilities.*;

public class LineTestE

{

Public static void main (String [] args)

{

 LineTestExam line1 = new LineTestExam();

 Line1.draw();

 System.out.println (“Enter the size of line you want”);

 Int num = Keyboard.getInt();

 System.out.println(“Enter the pattern of line you

want”);

 Char pat = Keyboard.getChar();

 Line1.setSize (num);

 Line1.setPattern(pat);

 Line1.draw();

 LineTestExam line2 = new LineTestExam ();

 Line2.setSize(5);

 Line2.draw ();

 Line1.draw();

 }

}

6.1 Trace through the program above and give the

exact output when the main method is

executed. Use as input; 4 for variable num and

“%” for variable pat.

6.2 If the line “private int size =3” was changed to

“private static int size = 3;” what would the

output be, given the same input as 10.1, and

why?

6.3 If the line “public void draw()” was changed

to “private void draw()”, will the main method

compile successfully? Explain your answer.

