
A Long-Term Evaluation and Reformation of an Object Oriented Design and
Programming Course

Stelios Xinogalos(*), Maya Satratzemi(**)
(*)Department of Technology Management, (**) Department of Applied Informatics

University of Macedonia, Greece
{stelios, maya}@uom.gr

Abstract

In this paper we present important results from a
long-term evaluation of an “Object-Oriented Design
and Programming” course. In its last form the course
is based on the combined use of the microworld
objectKarel and the environment BlueJ, while some
important modifications on the original teaching
approach based on BlueJ have been made.

1. Introduction

In this paper we describe the evolution of an
“Object Oriented Design and Programming”
compulsory course taught at a Technology
Management department. The course was offered for
the first time four academic years ago and uses Java,
the BlueJ environment [4] and the book “Objects First
with Java: A practical introduction using BlueJ” [1]. In
its last form the course uses, in addition to BlueJ, the
microworld objectKarel.

In the next sections we present important data
regarding the course reformation during the last four
academic years and the results of the assessment that
guided this reformation.

2. Course evolution

The initial design of the course

The course was taught for the first time the
academic year 2005-06. Heavily based on BlueJ, the
accompanying text book [1] and the established
guidelines for teaching with BlueJ [3] we organized
eleven two-hour lectures and eleven two-hour labs.

A vast amount of data was collected during the
lessons and their analysis identified several difficulties,
which were categorized as follows [5]:

Category 1 – “typical” difficulties encountered
independently of the programming paradigm.

Category 2 – difficulties attributed to the special
characteristics of OOP:

Subcategory 2.1 – constructors
Subcategory 2.2 – object instantiation
Subcategory 2.3 – “set” methods (mutators)
Subcategory 2.4 – “get” methods (accessors)
Subcategory 2.5 – method calling
Subcategory 2.6 – access modifiers
Subcategory 2.7 – object collections
Subcategory 2.8 – inheritance
Subcategory 2.9 – abstract classes & interfaces
Some characteristic difficulties of these two

categories are presented in Table 2. Despite these
difficulties, students managed to carry out their
assignments and comprehend basic OOP concepts.
However, it became clear that some adjustments
should be made, since some difficulties were attributed
to specific features of the course design and BlueJ.

Re-designing the course

Based on the results of evaluating the course the
following adjustments were made [6]:
 Students used the interactive GUI of BlueJ for

creating objects and calling their methods in the
first three lessons and in the 4th lesson (instead of
the 11th lesson in the 1st course) they started using
the main method.

 Students used the direct manipulation features of
BlueJ with more caution and after the 4th lesson
they were always asked to achieve the desired
result by providing source code too.

 Students started to develop simple projects from
scratch much earlier in the semester.

 The lesson about debugging (6th lesson) was
omitted and two lessons were devoted on object
collections (ArrayLists), which turned out to be one
of the most difficult concepts for students.

 Special didactical situations and assignments were
designed based on the results of the assessment.

2009 Ninth IEEE International Conference on Advanced Learning Technologies

978-0-7695-3711-5/09 $25.00 © 2009 IEEE

DOI 10.1109/ICALT.2009.131

64

The evaluation of the re-designed course gave better
results than the 1st version of the course, as can be seen
in Tables 1 and 2. The evaluation showed that [6]:
 Some difficulties that were attributed to the

emphasis given on the features of BlueJ and the
late use of main were eliminated (Table 2): (1)
“forgetting to declare the type of the variable that
keeps a reference to an object being instantiated”
[5], was not recorded in the 2nd course; (2) the
percentage of students calling a non-void method as
a void method was reduced from 33% to 6%.

 Some difficulties attributed to the emphasis given
on existing projects were addressed satisfactorily:
developing projects from scratch early helped
students face more effectively difficulties, such as
leaving the body of a constructor empty
(subcategory 2.1), omitting the type of an object
variable (subcategory 2.2), and directly accessing
private fields outside their class instead of using
“get” methods (subcategory 2.4, 2.6) (Table 2).
Although the re-designed course gave better results,

several difficulties continued to exist. The 3rd year of
teaching the course the only change was a refinement
of the assignments and the activities carried out at labs.

Reaching a final design of the course?

In our opinion, a major source for students’
difficulties is a flawed comprehension of OOP
concepts. This is more intense when we have to deal
with more advanced concepts, such as inheritance,
polymorphism and overriding. This belief combined
with the advantages of microworlds for introducing
students to programming led us in studying students’
conceptual grasp of OOP concepts in a course with
BlueJ (the 1st course described in this paper) and a
teaching with objectKarel. The most important finding
was that the students taught with objectKarel were
found to have a significantly better conceptual grasp of
OOP concepts than the students taught with BlueJ [7].

The results of this study strengthened our intention
to devote the first two lessons of the course for
introducing students to OOP concepts with the
programming microworld objectKarel, which is based
on Karel++ [2]. objectKarel uses a metaphor of robots
carrying out various tasks in a restricted world. The use
of objectKarel aimed at presenting in a clear and
concise way the most fundamental OOP concepts:
object, class, message/method, object instantiation,
inheritance, polymorphism and overriding.

Another change in the course was the sequence of
activities/assignments used for comprehending
ArrayLists: object diagrams were used for
comprehending the structure and operations of an
ArrayList; students filled in blanks that represent error
prone elements in an excerpt of code, in order to think

more consciously about ArrayLists; students developed
projects with ArrayLists from scratch.

The first results of the course based on objectKarel
and BlueJ seem to be positive (Tables 1, 2). However,
we believe that the impact will be much deeper
regarding the concepts of inheritance, polymorphism
and overriding, which have not been examined yet.

3. Evaluation results

Our main concern regarding the use of objectKarel
was whether the acquired knowledge would be
transferred afterwards to Java [4]. The experience of
using objectKarel was, however, more positive than
expected. More students participated in the lessons,
completed the assignments and gained confidence in
their ability to program, in comparison with previous
years. What is more important is that students did
transfer the knowledge acquired in the context of
objectKarel to Java. In the 3rd lesson, when Java and
BlueJ were used for presenting class definitions
students made the connection with the concepts taught
in objectKarel and asked the teacher for confirmation.

In Tables 1 and 2 we present comparative results for
the three versions of the course, based on written
exams. Table 1 presents the percentage of students that
answered questions concerning main OOP constructs
and the percentage of completely correct answers.
Table 2 presents comparative results regarding the
frequency of specific difficulties from the categories
recorded in the 1st course. The percentages are
calculated based on the number of students that
actually answered the corresponding questions.

Table 1. Correct answers.

1st: 05-06 2nd: 06-07 3rd: 08-09

An
sw

er
ed

(%

)
C

or
re

ct

(%
)

An
sw

er
ed

(%

)
C

or
re

ct

(%
)

An
sw

er
ed

(%

)
C

or
re

ct

(%
)

(2.1) constructor 54 54 89 58 94 72
(2.3) "set" method 79 50 81 56 95 73
(2.4) "get" method 88 79 84 72 97 87
(2.7) ArrayList 76 4 59 8 47 14
(2.2, 2.5) main 45 0 52 3 76 9

Table 1 shows that students’ active participation

and achievements in the exams improve, as the course
evolves. The only exception is ArrayLists that are still
a great source of difficulty. The number of students
that comprehends constructors (2.1), “set” methods
(2.3), “get” methods (2.4), and “main” that involves
object instantiations (2.2) and method calling (2.5)
increases importantly in the last version of the course.

65

The results regarding specific difficulties (Table 2)
show a gradual improvement for most of the
subcategories, and in few circumstances slight
variations. An exception is the 1st category of “typical”
difficulties that are independent of the programming
paradigm and refer mainly to parameters, return values
and calling void and non-void methods. These are
concepts taught in a prior “Computer Programming”
course based on C, and it is clear that special attention
must be paid on teaching them.

Table 2. Students’ difficulties (%).

 1st 2nd 3rd
1 Missing arguments in method calls 53 33 45
1 Missing () in methods without arguments 27 6 0
1 Calling a non-void method as void 33 6 30

2.1 The parameters in a constructor have the
same name as fields but “this” is not used

8 0 2

2.1 Fields are assigned values of undeclared
identifiers and not of the parameters

0 7 7

2.1 Wrong initialization of fields 29 33 23
2.1 The body of the constructor is empty 8 0 0
2.2 The type of object variables is missing 13 0 0
2.3 The name of the field being updated is

used as argument in "set" methods
0 6 0

2.3 Declaring as return type of a "set" method
the type of the parameter (instead of void)

15 12 5

2.4 Method - field conflation in "get"
methods

7 0 0

2.4,
2.6

Direct access of private fields outside
their class instead of using a "get" method

32 3 0

2.5 Calling a method without an instance 7 12 0
2.7 Manipulating an ArrayList

Finally, Table 2 shows that difficulties concerning

ArrayLists remain. However, this is not completely
correct. Although the majority of students cannot write
code for manipulating an ArrayList, improvement has
been made. We cannot compare students’
achievements in the three versions of the course, since
the first year of teaching the course our analysis was
mainly qualitative. Nevertheless, this is possible for the
next two versions of the course. The comparative
results (Table 3) were recorded in a similar method
developed by students in both courses. The results in
Table 3 show an improvement regarding basic
operations on ArrayList collections. Nearly all the
students (97%) that implemented the related method
iterated the ArrayList collection, while most of them
(72%) retrieved the objects stored in it correctly in the
last teaching of the course. Furthermore, all the
students accessed the fields of the retrieved objects
using “get” methods.

4. Conclusions

In this paper we presented the long-term evaluation

and reformation of an OOP course based on BlueJ. The
last change in the course was the use of objectKarel,
which is anticipated to help in comprehending
concepts, such as inheritance. It seems that, sometimes,
more than one tool is needed in order to support
demanding cognitive areas, such as programming.
These tools can be complementary educational
programming environments, tutorials, videos and so
on. In any case, continuous evaluation of teachings is
necessary in order to reach valid conclusions, develop
appropriate educational material and move to
reformations. When the results of such studies are
made available, great support is provided for
improving the teaching of OOP.

5. References

[1] Barnes, D. & Kölling, M., Objects First with Java: A
practical introduction using BlueJ, Prentice Hall, 2004.
[2] Bergin, J., Stehlik, M., Roberts, J., and Pattis, R.
Karel++ - A Gentle Introduction to the Art of Object-
Oriented Programming. 1997, John Wiley & Sons.
[3] Kölling, M. & Rosenberg, J., (2001), Guidelines for
Teaching Object Orientation with Java, ACM SIGCSE
Bulletin, Vol. 33 Issue 3, 33-36.
[4] Kölling, M., Quig, B., Patterson, A., & Rosenberg, J.
(2003), The BlueJ system and its pedagogy, Journal of
Computer Science Education, 13(4), 249-268.
[5] Xinogalos, S., Sartatzemi, M. & Dagdilelis, V. (2006),
Studying Students’ Difficulties in an OOP Course based on
BlueJ, IASTED International Conference on Computers and
Advanced technology in Education, Lima, Peru, 82-87.
[6] Xinogalos, S., Satratzemi, M., Dagdilelis, V. &
Evangelidis, G. (2007), Re-designing an OOP based on
BlueJ, Proceedings of the 7th IEEE International Conference
on Advanced Learning Technologies, Niigata, Japan, 660-
664.
[7] Xinogalos, S. (2008), Studying Students’ Conceptual
Grasp of OOP Concepts in Two Interactive Programming
Environments, Springer Communications in Computer and
Information Science, Vol. 19, 578-585.

 Table 3. Students’ difficulties with ArrayList (%).
 2nd 3rd
The ArrayList is not iterated 8 3
Accessing private fields outside their class

- Direct access without an instance 47 0
- Direct access: <object>.field 3 0

Retrieving objects from an ArrayList 45 28
- while loop is used but objects are not

retrieved
13 17

- the name of the ArrayList field is used as type
of the variable for the object retrieved

13 0

- the object is not assigned to a variable 5 0

66

