
Characterising the Use of Encapsulation in Object Oriented
Systems

November 3, 2009

Janina Voigt
jvo24@student.canterbury.ac.nz

Department of Computer Science and Software Engineering
University of Canterbury, Christchurch, New Zealand

Supervisors: Dr. Warwick Irwin and Dr. Neville Churcher



Abstract

Software is commonly very large and complex, and consequently hard to develop, understand
and maintain. Encapsulation is the practice of breaking a system up into well-defined pieces
and hiding internal details within each piece. It supports modularisation and information hiding,
making it one of the most fundamental tools software developers have for managing complexity.
Object oriented design heuristics have been proposed to help developers achieve better software
designs and thus improve overall software quality; many of these design heuristics concern the use
of encapsulation or are based on underlying assumptions about encapsulation. However, design
advice in this area often conflicts. Little is known about how developers apply encapsulation in
practice. In this work, we identify and compare two radically different schools of thought that
underpin encapsulation policies and lead to the conflicting encapsulation advice. We conducted
a survey to reveal which encapsulation policy is more intuitive, and found that novices’ intuition
about encapsulation differs from the encapsulation mechanisms supported by languages such as
Java and C#. Following the survey, we empirically analysed encapsulation in real-world software
to determine which encapsulation policies are followed in practice, uncovering a general culture
of confusion and inconsistency around the use of encapsulation. This finding leads us to propose
refactoring tools and a visualisation for helping developers improve encapsulation in software.
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1 Introduction

Real-world software is usually large, containing thousands or even millions of lines of code. It is also very complex
and intangible making it difficult to understand and visualise. This leads to many software projects not meeting
their specification, or even failing completely.

Encapsulation refers to the practice of hiding data and implementation details within a part of the program (such
as a class) [27], enhancing the modularity of a system and supporting information hiding [74]. Hiding internal details
within program parts decreases the amount of coupling between parts, making the system easier to understand and
maintain and decreasing its overall complexity.

Over the years, many experienced software designers have attempted to formalize their knowledge about software
design in an attempt to help software developers create higher quality software. Such knowledge has been collected
as design heuristics, principles, methodologies, metrics and design patterns [38]. A number of design heuristics and
principles advise developers how to practise encapsulation. Despite the amount of work done in this area, Garzás
et al. note that there is still a long way to go in order to systematise this knowledge and make it accessible and
easy to apply in practical cases [38].

This research was motivated by the observation that there is a lot of conflicting advice concerning the use of
encapsulation in Object Oriented (OO) systems. While encapsulation is widely used in practice as a tool to counter
complexity in software, it is unclear which subset of the conflicting advice developers follow in practice and why.
As encapsulation is one of the most fundamental tools for managing software complexity, it is important to have a
good understanding of the reality of developers’ practices and the implications of those practices.

In this research we clarify the different schools of thought on encapsulation. We investigate the intuition of
developers regarding encapsulation and analyse the use of encapsulation in industrial-scale Java programs. We
propose refactoring tools, a visualisation and guidelines to help developers practise encapsulation correctly and
consistently.

Our research uses a semantic model for Java called Java Symbol Table (JST) [45], which contains rich information
about programs’ semantic entities and relationships between them. We also make use of the Qualitas Code Corpus
from the University of Auckland [69] as a source of programs to evaluate.

1.1 Main research contributions

The main contributions of this research include:

• The identification, comparison and clarification of different encapsulation policies and schools of thought
surrounding encapsulation;

• Survey results indicating that encapsulation mechanisms in modern programming languages such as Java and
C# do not match developers’ intuition;

• Empirical evidence that encapsulation practices in real-world software are inconsistent and that encapsulation
is generally weak;

• Tools to help developers improve encapsulation in software; and

• Guidelines and recommendations to help developers practise encapsulation more consistently.

The findings of this research about encapsulation practices have far-reaching implications. The inconsistency of
encapsulation practices in real-world software casts doubt on the general quality and maintainability of software.
The fact that encapsulation mechanisms in modern programming languages do not meet developers’ expectations
uncovers the need to rethink common design advice and the need to design better programming languages.

1.2 Report Outline

The remainder of the document outlines the background, method and results of the research. It is structured as
follows:

• Section 2 presents the background, including information about encapsulation, design heuristics, software
metrics, and semantic models.

• Section 3 analyses advice about encapsulation, highlighting similarities and conflicts.
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• Section 4 presents the survey we conducted to reveal the encapsulation tendencies of professional developers
and students and describes the results and conclusions of this survey.

• Section 5 presents the tool we developed to analyse encapsulation in real-world software and describes the
results obtained by analysing a number of real-world and student programs.

• Section 6 presents a refactoring tool we have developed to automatically tighten encapsulation in a program.
The section includes a description of how JST parse trees can be used for code generation.

• Section 7 presents an experimental visualisation developed to help developers more easily find encapsulation
breaches in their software.

• Section 8 discusses the results obtained from the research as a whole and the implications for software devel-
opment, and proposes new guidelines for using encapsulation.

• Section 9 presents the conclusions, reiterates the specific contributions of this work and describes future work
to be done in this area.

2 Background and Motivation

2.1 Object Oriented Programming

OO programming is the dominant programming paradigm in modern software engineering. Many of the most
widely used programming languages are object oriented, including Java, C++, C# and Python.

Objects as programming entities were introduced in the 1960s as part of Simula-67, which is generally considered
to be the first OO programming language. In the 1970s, Smalltalk was developed at Xerox Parc by a team under
the leadership of Alan Kay, who first coined the term ‘object oriented’ [52]. The aim of the project was to develop a
high-level programming language suitable for children. The programming language they developed, Smalltalk, was
exclusively based on objects and is thus recognised as the first pure OO language. OO programming’s similarities
with how people understand the real-world have implications for encapsulation, as we discuss in Section 2.2.1.

Following the development of Smalltalk, it took another two decades or so for OO programming to become
popular and widely used, in the mid 1990s. The C++ programming language incorporated and changed some of
the concepts introduced by Smalltalk, and in this way popularised the idea of OO programming.

One of the reasons for the popularity of OO programming is that it offers advantages over traditional procedural
programming [81, 91]. Riel [81] believes that the biggest advantage of OO programming is that it allows developers
to more closely model the real world. He also argues that OO programming leads to a decentralised architecture
and low coupling, meaning that a change in one part of the program will not affect the rest of the system.

2.2 Encapsulation

‘Programming is about managing complexity’ according to Bruce Eckel [32, page 6]. Complexity in software systems
often leads to projects failing and systems not meeting their specifications. Encapsulation is arguably the most
fundamental tool software developers have for managing this complexity.

Despite being such a basic and fundamental tool, even the definition of the term encapsulation is unclear.
Rogers, for instance, suggests that encapsulation means only grouping of properties, and that hiding is a separate
concept [82]. However, we argue that encapsulation naturally implies hiding, as suggested in a definition by Snyder
[85]:

Encapsulation is a technique for minimizing interdependencies among separately-written modules by
defining strict external interfaces. The external interface of a module serves as a contract between the
module and its clients, and thus between the designer of the module and other designers.

Thus, encapsulation refers to the practice of breaking a program into cohesive parts with clearly defined bound-
aries and hiding implementation details — particularly data representations — within those parts. This means that
only the part owning the data can access and modify it, leading to a modularised system. In this way, encapsulation
supports the principle of information hiding [27, 74].
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Although the concept of encapsulation predates OO programming, OO languages have added a number of
mechanisms that further support encapsulation, including inheritance and polymorphism. These mechanisms add a
level of indirection between the caller of a function and the function implementation so that the caller does not even
have to know which method it is calling. However, these mechanisms also make encapsulation considerably more
complex, raising a number of issues, such as whether or not subclasses should be able to directly access members
in superclasses. This is made possible in many programming languages, including Java, C++ and C#, through the
protected access modifier.

There are several benefits to be gained from the practice of encapsulation [27, 85]. Firstly, encapsulation allows
a system to be divided into independent parts. Each encapsulated part has a particular responsibility and contains
data related to its task. If fully encapsulated, no part can interfere with the data from another encapsulated part.

Because data is hidden within its encapsulated part, other parts of the system do not depend on it, leading
to low coupling [96]. Therefore, the data representation can be easily changed or even moved without affecting a
part’s clients. Furthermore, a part of the system is always in control of its data, making bugs easier to find. If the
data has been corrupted or changed unexpectedly, this must have happened within the part containing the data.
In this way, encapsulation makes software development and maintenance less error-prone and programs easier to
read [27, 85].

There is a lot of advice about how to use encapsulation, but we have observed that much of this advice is unclear
and conflicting. An in-depth analysis of encapsulation advice and guidelines can be found in Section 3.

2.2.1 Class versus Object Encapsulation

We suggest that much of the conflict in encapsulation advice arises from the existence of two different schools of
thought on OO encapsulation. This has led to encapsulation being supported in two incompatible ways in OO
programming languages. Both approaches are described as OO, and the difference between them has received little
attention in the literature, yet it has profound consequences. In this report, we will refer to the two encapsulation
approaches as object encapsulation and class encapsulation.

Object encapsulation is used by languages such as Smalltalk and Ruby. In these languages, data is private to
an object. This means that if an object contains data, only that object has the right to access and modify it. This
ensures that the data cannot be inadvertently changed by other objects.

Many programming languages that are popular today, such as Java, C# and C++, use class encapsulation,
meaning that data is private not to an object but to a class. Objects of the same class can access each others’
private data. C++ was based on an existing procedural language that structures software using static modules,
and it is therefore not surprising that it placed the encapsulation boundary around the static concept of classes.
Stroustrup makes this explicit [87]: ‘Note that in C++, the class — not the individual object — is the unit of
encapsulation.’ Other languages including C# and Java later adopted this approach.

The differences between object and class encapsulation are best explained using an example. Figure 1a shows
a simple class hierarchy with four classes; Figure 1b shows some instances of these classes. Figure 1c contrasts the
two encapsulation boundaries. When the encapsulation boundary is the class, data is hidden within each class.
This means that two objects of the same class can access each other’s private data. For example, o2 can access the
private field z in o3 and vice versa. However, an object may not be able to access all of its own fields; private fields
of the same object declared in another class are not visible. For example, o2 does not have access to its own field
x. When using object encapsulation, on the other hand, data is hidden within an object, meaning that two objects
can never access each other’s private data but an object always has access to all of its own data.

Class and object encapsulation represent very different underlying philosophies. Class encapsulation reflects a
designer’s mindset oriented around static, compile-time concepts. According to this mindset, it makes little sense
to allow classes to access other classes’ private members. However, the object encapsulation mindset is oriented
around the runtime concept of objects, where each object is a single, independent entity. For this way of thinking,
it does not make sense for an object to be able to access only part of itself.

The protected access modifier, which is included in some class encapsulation languages such as Java and C#,
allows an approximation of object encapsulation. Subclasses have the ability to access the protected parts of their
ancestors. However, even when using protected as an access modifier, the true encapsulation mechanism is still
class encapsulation because objects can still access each other’s protected members provided they belong to the
same class. In Java, the protected access modifier is further removed from object encapsulation because it gives
away access rights to all in the package, rather than just to subclasses.

The difference in the treatment of encapsulation between languages partly comes about because of static and
dynamic typing. In statically typed languages, the type checking is done at compile-time when objects do not yet
exist. This makes class encapsulation a more natural fit, allowing the compiler to enforce encapsulation at compile
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(a) A class view (b) An object view (c) Two different encapsulation bound-
aries

Figure 1: Object versus class encapsulation

time. In dynamically-typed languages on the other hand, type checking is done at runtime in the presence of
objects, allowing object encapsulation to be enforced more easily. However, it is not the case that a statically typed
language has to always use class encapsulation and a dynamically typed language has to use object encapsulation.
Python, for example, is dynamically typed but uses classes as the unit of encapsulation. In Section 8, we propose
simple changes to the Java grammar to allow it to enforce object encapsulation.

Each of the two types of encapsulation has its advantages and disadvantages. We argue that object encapsulation
is more intuitive and we have observed that many students are surprised when they find out that objects of the
same class can access each others’ private data. This is not surprising given the parallels between OO and the
real-world. Coad and Yourdon [25] quote the 1986 Encyclopaedia Britannica entry on Classification Theory [33]:

In apprehending the real world, [people] constantly employ three methods of organisation, which pervade
all of their thinking:

1. the differentiation of experience into particular objects and their attributes — e.g. when they
distinguish between a tree and its size or spatial relations to other objects.

2. the distinction between whole objects and their component parts — e.g. when they contrast a tree
with its component branches, and

3. the formation of and the distinction between different classes of objects — e.g. when they form
the class of all trees and the class of all stones and distinguish between them.

This description was probably written by a person not familiar with OO programming, but is easy for OO
developers to recognise and understand because of the distinct similarities between OO and the real world. In the
real world we naturally assume that each object is self-contained and independent and therefore implicitly place
the encapsulation boundary around objects. This arguably means that object encapsulation is more intuitive than
class encapsulation because it is a concept that we are familiar with in the real world.

However, while object encapsulation can be more intuitive, Snyder argues that it effectively breaks encapsulation
in an OO system and removes all advantages to be gained from its use [85]. He believes that by allowing access to
data in another class which may have been written by a different developer, the maintainability of the system is
compromised. The reason he gives is that, should the other developer wish to change the internal data representation
for that class, the subclass accessing the data will also be affected.

In addition to object and class encapsulation, we also recognise a third encapsulation type which we call in-
tersection encapsulation. Intersection encapsulation uses the intersection of the object and class boundary as its
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encapsulation boundary. This means that it disallows accesses to private members in other objects and other
classes, crossing neither the class nor the object boundary. In Figure 1c, intersection encapsulation would only
allow accesses to data within the same class and object box.

Intersection encapsulation is likely to be a strategy adopted in response to the general confusion around en-
capsulation boundaries. It appears to be safer than both object and class encapsulation because it crosses no
boundaries. However, this is a restrictive approach because it provides minimal access to fields, which in turn may
lead to heavier use of getters and setters, and hence an effective weakening of encapsulation.

We investigated which encapsulation boundary is more intuitive by conducting a survey; the results are presented
in Section 4. We also looked at which encapsulation boundary is more prevalent in real source code; the results of
this empirical investigation are presented in Section 5.

2.3 Software Quality

Quality is a highly important yet poorly defined property of software. It emerges from a combination of many
diverse characteristics, including conformance to functional and non-functional requirements [77]. Some of these
characteristics are internal to the program and cannot be perceived by the user, such as maintainability, while
others are external, including usability and reliability.

A number of attempts to define software quality in order to enable measurement have been made. McCall,
Richards and Walters propose a division of software quality characteristics into three categories: product revision,
product operation and product transition, each containing a number of quality indicators [65]. A problem with
this definition of software quality is that it is impossible to directly and objectively measure some of these quality
factors [77]. A slightly simpler description of software quality was developed as part of the ISO 9126 standard [44].
It defines six key quality attributes: functionality, reliability, usability, efficiency, maintainability and portability.

Brito e Abreu and Melo studied the impact of OO design on software quality [31]. The authors collected
data about the number of defects discovered and time spent on maintenance for various software systems and
correlated this data with OO design characteristics such as inheritance and coupling. They found that inheritance
and polymorphism, if used sparingly, decreased defect density and rework time. Coupling was positively correlated
with defect density and rework time; the more coupling was present, the more defects occurred. Good encapsulation
practices will lead to low coupling and should therefore reduce defect density and increase software quality.

Some of these results were confirmed by Briand et al. [11], who found that coupling, particularly through
method invocations, and depth of a class in the inheritance tree have a significant negative influence on software
quality. The results from these studies indicate that following good design principles and making use of appropriate
OO programming language mechanisms such as inheritance, polymorphism and encapsulation can increase overall
software quality.

2.4 Software Metrics

Software metrics [34, 40] are one solution developed to counteract the issue of complexity and intangibility in
software. Metrics endeavour to measure specific characteristics of software in much the same way that other
engineering disciplines measure their products. Engineers routinely use metrics to specify, develop and verify their
products. However, while metrics are intrinsic to engineering disciplines and are widely used, the success of software
metrics has been relatively limited.

A number of common and popular metrics predate the rise in popularity of OO programming, including Lines
of Code, Halstead’s Complexity Measure [39], McCabe’s Cyclomatic Complexity [63, 64, 83] and Maintainability
Index [93]. The advent of the OO programming paradigm required new metrics to measure a wide variety of new
features that did not exist previously, including polymorphism and inheritance. However, the complexity of the OO
model complicates the creation and calculation of metrics.

In response to the rise in popularity of OO programming, many OO metrics were proposed, among them the
metrics suites developed by Chidamber and Kemerer [15, 16], Henry and Kafura [41, 42], Li and Henry [55], Lorenz
and Kidd [58] and Briand et al. [9, 10].

Chidamber and Kemerer’s suite [15, 16] of six OO metrics is the most widely known. It includes metrics to
quantify inheritance, coupling and cohesion. However, this suite of metrics does not take into consideration the
complexities of encapsulation in OO, among other weaknesses [62]. Many adjustments and extensions have been
proposed to fill these gaps. Brito e Abreu [30, 31], for example, proposed a metrics suite called MOOD which
includes metrics such as Attribute Hiding Factor and Method Hiding Factor designed to measure encapsulation. As
with Chidamber and Kemerer’s work, these metrics do not explicitly take into account encapsulation boundaries.
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There have been various studies to validate the usefulness of software metrics [8, 11, 51, 86, 88]. Subramanyam
and Krishnan [88] studied a number of large-scale industrial software systems, counted the number of defects
and correlated this with various Chidamber and Kemerer metrics. They discovered that some of Chidamber and
Kemerer’s metrics significantly explained variances in the number of defects. Similar results were achieved by Briand
et al. [11]. Basili et al. produced similar results, too finding that out of the six metrics proposed by Chidamber
and Kemerer, all except Number of Children (NOC) appear to be useful to predict the fault-proneness of a class
[8]. They conclude that ‘most of Chidamber and Kemerer’s OO metrics can be useful quality indicators’. However,
others have criticised the metrics suite for being poorly defined and open to interpretation [23, 62].

Despite the large amount of research demonstrating the usefulness of metrics, few are used regularly by software
engineers to assess their work or help make decisions. There are several reasons for this. Firstly, calculating and
applying metrics can be complicated and time consuming. The results can often be hard to relate to program
quality since the metrics measure very specific aspects of software. Lastly, there is usually no clear correspondence
between what the metrics quantify and the decisions software engineers need to make in practice.

2.5 Design Heuristics

Good software design is essential to producing high quality software, but software design is a difficult and inexact
science. There are many ways to design any one system and different people will usually come up with very different
designs to solve the same problem. It can often be difficult to determine what the best solution is because each has
advantages and disadvantages; there is no such thing as an optimal design. The core of software design is balancing
various, sometimes conflicting, design forces [26].

Metrics can be used to point out design flaws in a system and in this way help developers improve the quality
of their designs, but their success has been fairly limited. Beck and Fowler say that ‘in our experience no set of
metrics rivals informed human intuition.’ [36]

Experienced OO designers can look at a design and identify its advantages and disadvantages. Much work has
been done to try to capture their expertise. Arthur Riel, for example, published a set of 61 design heuristics which
he calls ‘golden rules’ [81]. These heuristics are guidelines, rules of thumb, that inform developers about good and
bad design practices [81]. Riel says that heuristics

are not hard and fast rules that must be followed under penalty of heresy. Instead, they should be
thought of as a series of warning bells that will ring when violated. The warning should be examined,
and if warranted, a change should be enacted to remove the violation of the heuristic. It is perfectly
valid to state that the heuristic does not apply in a given example for one reason or another. [81, page
xi]

Because of their inexact nature, design principles and heuristics can be very difficult to apply in practice [38].
Garzás et al. say that

a strong knowledge does not exist on items such as design principles, best practices, or heuristics. The
problem confronting the designer is how to articulate all this explicit knowledge and to apply it in an
orderly and efficient way in the OO design and analysis, in such a way that it is really of use to him or
her. [38, page vii]

Many heuristics and principles have been proposed in addition to the 61 mentioned by Riel [81], including
heuristics by John Lakos [54] and Ralph Johnson and Brian Foote [50]. Some heuristics are general, high level
principles that act as guidelines for designers. Separation of Concerns [29] for example advocates separating
unrelated parts. Information Hiding [74] advocates hiding data and implementation decision inside program parts
and protecting it from accidental changes. Design by Contract [70] attempts to help developers be clear about the
responsibilities of each method.

Many more specific design heuristics are based on top of these very general principles, including those proposed
by Riel [81]. The Liskov Substitution Principle [57, 61], for example, gives developers guidance about how to use
inheritance well. The Law of Demeter [56] discourages the use of getters and setters and aims to reduce coupling
and enforce localisation. The Acyclic Dependencies Principle [60, 71] discourages the existence of cycles between
packages.

There are various principles and heuristics concerning the use of encapsulation which are analysed in more
detail in Section 3, including the Law of Demeter and heuristics by Riel. However, many more heuristics depend
on underlying assumptions about the type of encapsulation used. Riel, for example, clearly considers the class to
be the encapsulation boundary and advises developers to ‘hide data within its class’ [81]. This kind of thinking
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has implications for other heuristics he proposes. For example, he tells developers to limit the depth of inheritance
hierarchies to ensure that the number of classes a developer has to consider at any one time stays relatively small.
This heuristic clearly reflects the fact that he thinks in terms of classes, not objects; when thinking in terms of
objects, the depth of an inheritance hierarchy becomes less of a concern. Because encapsulation is so fundamental,
it has a wide-reaching impact on a lot of design advice that may not even be directly related to encapsulation.
Therefore, being aware of different encapsulation policies is essential when using and interpreting design advice.

In addition to design principles and heuristics, Fowler and Beck propose what they call code smells, which are
similar in nature to Riel’s heuristics [36]. These smells are certain code characteristics that act as warning signs,
telling developers that there may be a problem. Fowler then proposes ways in which the problem can be solved
through refactoring, or changing the design of the system without modifying its behaviour. Examples of code smells
include Long Method, Duplicated Code and Shotgun Surgery. The term smell illustrates how vague and subjective
code smells really are. In the case of the Long Method smell for example, it is up to the developer to decide when
a method is too long and different developers may apply the smell in a very different way.

Design patterns form another set of tools developers can use when designing a system. Design patterns were
first proposed by Christopher Alexander [4] for the domain of architecture. Alexander says

Each pattern describes a problem which occurs over and over again in our environment, and the describes
the core of the solution to that problem, in such a way that you can use this solution a million times
over without ever doing it the same way twice. [4]

Design patterns were first adapted to software by Coad [24] and further developed and consolidated by the
Gang of Four (Gamma, Helm, Johnson and Vlissides) who proposed a total of 23 OO design patterns [37]. There
are common problems that occur relatively often in software design. The Gang of Four searched for solutions that
developers had used to solve these problems and presented them as software design patterns. Design patterns are
essentially blueprints for solving a particular problem.

Apart from the well-known Gang of Four design patterns, a variety of other software patterns have been proposed
including architectural patterns by Buschmann et al. [12] and analysis patterns by Fowler [35] and Konrad et al.
[53].

Although design patterns are widely used, they can cause problems if applied incorrectly. Garzás et al. state that
there are a number of problems that can occur when using design patterns, including ‘difficult application, difficult
learning, temptation to recast everything as a pattern, pattern overload, ignorance, deficiencies in catalogs, and so
forth’ [38]. This is backed up by Schmidt [84] and Wendell [94], who presents the problems encountered during
the development of a large commercial software project. He found that the uncontrolled use and inappropriate
application of design patterns led to severe maintenance problems.

Nevertheless, design patterns are widely recognised as good solutions to particular, common problems. Despite
being ‘good design’ in many people’s eyes, they often violate accepted heuristics. The reason for this is that there
is simply no optimal solution, so that the best possible compromise between design forces needs to be found.
Therefore, design patterns are useful in such situations to resolve these issues.

Bär and Ciupke analysed relationships between various heuristics and found that there was a number of rela-
tionships between different heuristics [6]. Firstly, they found that there are contradicting heuristics, originating
from different opinions about what good design is [6, 81]. In the catalogue of 59 heuristics they considered, they
found five pairs of conflicting guidelines and seven pairs that potentially conflict. We suggest that the reason for
such contradictions is that heuristics are not absolute rules and there are various, sometimes conflicting schools of
thought about what constitutes good design. When designing a system, there are usually a lot of tradeoffs between
different design choices and the developer has to make a call about which heuristic should be followed.

An example of a conflict occurs during the design of a system that includes a graphical user interface (GUI) and
background code. The Separation of Concerns principle [29] would tell developers to separate interface code from
model code. On the other hand, one of Riel’s heuristics advises developers to ‘keep related data and behaviour
together’ [81]. The developer thus has to decide which of the principles to follow. He or she will look at the
advantages and disadvantages provided by each of the heuristics and make a call on which one is more applicable
in the current situation.

Bär and Ciupke also found that some heuristics imply others, meaning that conformance with one will auto-
matically lead to conformance with the other [6]. They found 20 such implication relationships between the 59
heuristics they considered, forming a small hierarchy of heuristics.

Despite the inexact nature of heuristics, a lot of research has been done to look at automating them, allowing the
computer to make developers aware of any breaches of heuristics and any potential problems [6, 13, 14, 18, 28, 72, 76].
Chatzigeorgiou et al. for example look at using link analysis to find God classes [13, 14]. God classes are classes
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that have too much responsibility and should be avoided according to one of Riel’s heuristics [81]. Bär and Ciupke
present a tool called GOOSE which uses design heuristics to assess the quality of legacy code [6]. It extracts
information about the code and searches for violations of design heuristics. Correa et al. describe a tool which uses
a Prolog knowledge base containing design heuristics, design patterns and anti-patterns to evaluate and suggest
improvements to the design of a system [28]. Churcher et al. take a more high-level approach, using a rigorous
semantic model as the basis for heuristics evaluation and automation, and propose ‘a framework in which heuristics
can be proposed, expressed and evaluated.’ [18] They also suggest various visualisations of heuristics to present
data to developers in an easy to understand manner. Other visualisations of heuristics have also been proposed,
for example by Parnin et al. who present a number of lightweight visualisations to help developers find code smells
[75, 76].

2.6 Static Analysis Semantic Models

Design heuristics are usually defined in terms of semantic concepts encountered in programming languages, such
as classes, inheritance and method invocation. Source code syntax does not directly express these concepts and is
therefore not ideally suited to extracting heuristics information. Semantic models solve this problem by providing
an accurate representation of the semantics of a program, including program entities and relationships between
them.

Although many design heuristics have been proposed, the number of tools measuring them and the success of
such tools has remained relatively limited. One reason for this is that accurate tools such as semantic models are
required for the measurement of the complex semantic features that are the subject of heuristics and principles.
Irwin developed rich modelling approaches to allow such measurements, including a semantic model for Java called
JST (described below) [45]. However, this is the first work which extensively uses these tools.

For procedural languages, semantic models are relatively simple, consisting mostly of functions as entities with
invocation being the main relationship between two entities. However, in the OO paradigm, there is a much larger
set of entities and relationships. OO entities include packages, classes, methods, variables, fields and parameters.
There are a number of relationships possible between these entities such as inheritance, implementation, containment
and method invocation.

Semantic models of programs can be built by analysing parse trees for a given program and extracting information
about entities such as classes and methods, and the relationships between them. In this way, it produces a much
richer representation of the program than the syntax alone provides, and this can be used to extract heuristics
information and metrics.

2.6.1 Java Symbol Table

Java Symbol Table (JST) is a semantic model for Java, developed by Irwin and Churcher [45, 47, 48]. It constructs a
comprehensive model of the semantic features of a Java program. This includes concepts such as packages, classes,
methods, constructors, parameters, fields and local variables. The relationships between these entities are also
represented by the model. JST currently accepts source code which is correct under Java version 1.6, although
some of the latest Java syntax, including generic methods, is not yet completely handled.

Information can be extracted from JST by ‘walking’ the semantic model. This is easily done using a Visitor
design pattern [37] as demonstrated in previous work [73, 92] and described in Section 5.3. More technical detail
about JST visitors can also be found in a guide written by the author about using JST in Appendix E.

JST is part of the XML visualisation pipeline [19, 46], which allows an easy transition from source code to
metrics and visualisations. The general structure of the visualisation pipeline can be seen in Figure 2. Source
code is first parsed using a Java parser to produce parse trees. These parse trees can be read in and analysed by
JST to produce a semantic model of the program. The model can be queried to calculate metrics, for example, or
extract specific information about the program which can then be visualised in various ways including class cluster
visualisations [20, 47] or virtual world visualisations [17, 21, 22]. The input and output for each consecutive stage
of this process is in XML.

This research fits into the metric calculation and visualisation part of the visualisation pipeline, allowing it to
be integrated with existing infrastructure.

Other semantic models for Java already exist, for example [49], but none of them are as rich and accurate as
JST [45]. They commonly struggle to resolve polymorphic methods, leading to a model that only approximates the
actual program structure. This research will make use of JST because of its greater accuracy compared to other
semantic models.
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Figure 2: An overview of the structure of the XML visualisation pipeline

2.7 Qualitas Code Corpus

The Qualitas Code Corpus is a corpus of Java programs collected by Tempero et al. from the University of Auckland
[69]. The corpus has been extensively used by Tempero and others for a variety of purposes. They have done a
number of empirical studies into the structure of Java programs, including the use of inheritance [90], the use
of dependency injection [95] and cycles in Java programs [67, 68]. Some of their work has also focused on the
evaluation of metrics such as cohesion metrics [7] and on identifying opportunities for refactoring [66]. A recent
study conducted by Tempero looked at the use of fields and access modifiers in Java [89]. Tempero measured the
relative frequency of use of access modifiers and the degree to which fields were exposed. This work is in some ways
similar to ours, but does not explicitly address the encapsulation boundary issue. We revisit this work when we
present the results of our empirical study in Section 5.

For this research project, we used the latest version of the Qualitas Code Corpus, version 20090202 [80]. This
version contains 100 different Java programs from a wide variety of backgrounds, including some very well-known
programs such as Eclipse and ANTLR. When installed, the corpus takes up 18.75 gigabytes.

In addition to the programs themselves, the corpus contains metadata about the programs, including the name
of the program, release data, version of Java used, and the URL used to acquire the program [79].

There are several criteria for programs to be included in the corpus [78]. They have to be written in Java and
be distributed in both source and binary form. The compiled versions have to be distributed as .jar files and the
programs need to be available freely to anyone.

3 A Discussion of Encapsulation Advice

Many design principles and heuristics have been proposed about the use of encapsulation. Riel [81] and Johnson
and Foote [50] as well as Fowler [36] all put forward a number of heuristics about encapsulation. While there is
much literature presenting such heuristics, we have found no work which compares and contrasts them to identify
similarities and differences between different pieces of advice. In this research, we have collected heuristics relevant
to encapsulation and analysed them to identify the main schools of thoughts and major conflicts. In the following
section, we look at two contentious issues in the area of encapsulation and explain and compare the different advice
and points of views.

3.1 Data Protection

Keeping data private to hide it from other parts of the system is a common piece of advice. This principle is part
of information hiding [74] and is credited with increasing a system’s maintainability and flexibility.

Imagine that we have a Vehicle class with a field describing the vehicle’s weight. If, for example, we originally
used a double to represent the weight of a Vehicle and then changed the weight field to an int, code that accesses
the weight field directly may not compile anymore. In this way, other classes are affected by a trivial change. On
the other hand, if we had made the weight field private and accessed it from other classes through methods such
as getters and setters, we could simply modify the methods accessing the weight field, which would have little or
no effect on the rest of the system. In this way, we have encapsulated the weight field and made the system more
maintainable and easier to change.

While the issue of hiding data appears relatively clear-cut, there is still some disagreement about the degree to
which data should be hidden. Riel [81] says that ‘All data should be hidden within its class’, meaning that data
should always be made private. In addition, Riel advises ‘Do not change the state of an object without going
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through its public interface’ [81] meaning that he believes one class’ data should never be changed by another class
directly but that getters, setters or other methods should always be used.

Fowler and Beck [36] also agree that classes should not access each other’s data but state the principle in a
slightly softer way. The Inappropriate Intimacy code smell occurs when a class spends too much time delving into
another class’ private parts [36]. The phrasing of the code smell suggests that the authors consider that it may
be justifiable for a class to access some of the data of another class as long as this is not done too frequently. This
is in contrast with Riel’s more absolute view.

Robert Cecil Martin softens the rule further and argues that while most data should be kept private, making
data public can be good in some instances [59]. In his argument, Martin distinguishes between normal objects
containing data and behaviour and data transfer objects that are designed to hold data and do not have any specific
behaviour.

There are very good reasons for keeping the variables in an object private. We want to know which
functions can manipulate them. We want to protect the invariants of the object. We don’t want others
to depend on our details. On the other hand there is no good reason to use getters and setters in a data
structure. A data structure is simply a packet of data, nothing more.[59]

While most encapsulation advice says that data should be made private, it is often unclear what the data
should be made private to: an object or a class. Riel is a definite advocate of class encapsulation, stating as we
have already noted that data should be private to a class [81]. In another heuristic, he also advises against the
use of protected data. Holub agrees and states that ‘protected data is an abomination’ [43].

This view is contrary to other OO cultures, where the use of protected data is actually encouraged. For
example, in Objective C protected is the default access level for fields. In Smalltalk, there is no choice at all: all
data is automatically made protected; that is inherited properties are not hidden. This is Smalltalk’s only access
level and is actually called private.

While Riel makes it clear that data should be made private to a class, most other advice only says that data
should be made private but not what it should be private to.

3.2 Getters and Setters

While there is a general consensus about the benefits of private data, there is a lot of diverse advice about how to
program without accessing other classes’ data directly. The obvious and very commonly used and taught approach
is to create public getters (accessors) and setters (mutators) to allow indirect access to private data. Rather than
exposing the data directly, we create a getter method that will retrieve the data and return it to the caller. We
can also create setter methods that allow clients to ask for data to be changed. In this way, the class containing
the data has more control over the data. For example, a field could be completely hidden from other classes by not
creating a getter or setter for it. A field could also be made read-only if a getter but not a setter was provided.

There are many advocates of getters and setters who generally argue that they increase the maintainability of
software by creating a layer of abstraction. Johnson and Foote, for example, advise developers to ‘minimize access
to variables’; that is, to go through getters and setters rather than accessing variables directly [50]. Using getters
and setters is also in agreement with Riel’s heuristic telling developers to ‘go through the public interface of a class
to change its state’. Getters and setters allow the underlying data representation to be changed without affecting
the client code. In addition, setters allow a class to add validity checks to ensure that the data cannot get into
an inconsistent state. Because of these benefits, advocates of getters and setters argue that if data needs to be
accessed, this should be done using getters and setters rather than accessing data directly.

Some go even further in their advice and say that data should always be accessed through getters and setters,
even from within the class that contains it. Ken Auer, for example, advocates this approach, arguing that it
increases the system’s maintainability [5]:

When adding state variables, only refer to them directly in ‘getter’ or ‘setter’ methods. ... As additional
behavior is added, continue to access state variables only through these getter and setter methods, to
allow for simple modifications in the future. Modify any other methods which refer to state variables
directly ... so that they instead refer to them indirectly, via these getter and setter methods.

Despite the arguments in favour of getters and setters and their widespread use, many people argue that getters
and setters break encapsulation and are bad OO design. Johnannes Brodwall for example states that ‘I have yet
to see an example of use of accessors that did not smell to some extent.’ [1]. The problems with getters and setters
are summed up by Holub:
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Though getter/setter methods are commonplace in Java, they are not particularly object oriented (OO).
In fact, they can damage your code’s maintainability. Moreover, the presence of numerous getter and
setter methods is a red flag that the program isn’t necessarily well designed from an OO perspective. ...
Since accessors violate the encapsulation principle, you can reasonably argue that a system that heavily
or inappropriately uses accessors simply isn’t object oriented. ... My experience is that maintainability
is inversely proportionate to the amount of data that moves between objects. [43]

One of the main arguments is that getters and setters break encapsulation. They can allow any other part of the
system to access the variables and change them. In addition, if a getter method returns a mutable object reference
to data, the caller can then change the data directly without going through a setter method. This means that the
class containing the data no longer has control over how it is changed.

In addition to this problem, many argue that a need for getters and setters indicates that the data is not placed
with related behaviour. Data should always be placed together with the methods that need to access it. Therefore,
if a different class continually asks for the private data of another class, the data should have been placed with
the methods that need it. This is summed up by Riel’s heuristic which states that ‘If there are too many accessors
in the public interface of a class that may be a sign that related data and behaviour is not kept together.’ [81]

Those who argue that getters and setters are evil, generally propose simply not to use getters and setters by
keeping related data and behaviour together. The Law of Demeter [56] completely disallows the use of getters and
setters to ensure that related data and behaviour are kept together. It does this by restricting the set of objects
that may be used to only objects that are already immediately accessible. Much criticism has been put forward
about the Law of Demeter. Many argue that it is contradictory because there exist cases where a method can be
rewritten to comply with the Law of Demeter while still doing the exact same thing. [2]

Tell don’t ask was originally proposed as a softer version and a clarification of the Law of Demeter [3]. This
principle essentially says that clients should tell a class what to do, rather than asking for some internal data so that
they can calculate or do something with that data. This is similar to the Law of Demeter and again discourages
the use of getters and setters by ensuring that related behaviour and data is kept in one place.

While the Law of Demeter and Tell don’t ask may enforce encapsulation if used properly, they are also at odds
with some very basic design principles. They tend to create large classes and interfaces, therefore violating the
Interface Segregation Principle, the Large Class code smell [36] and Johnson and Foote’s heuristic telling developers
to ‘split large classes’ [50]. In addition, the Law of Demeter and Tell don’t ask potentially violate Separation of
Concerns: when creating a GUI, they would lead developers to combine the GUI code with the model code to keep
related behaviour and data in the same place. However, combining GUI and model code is generally considered
bad practice and is a definite violation of Separation of Concerns.

Overall, when thinking about using getters and setters, developers face a choice between different design forces.
Alistair Cockburn sums up the arguments for and against getters and setters very concisely [26].

Accessor methods:

• Provide a constant interface against persistent interface changes (use them).

• Slow the software, adding complexity to the object’s interface (don’t use them).

• Provide consistency (use them always).

• Violate abstraction by exposing the object’s insides (use them sparingly).

• Are controversial: some people swear by them, some at them.

4 Encapsulation Survey

We designed and conducted a survey in order to find out how developers think about encapsulation. We gave the
survey to both computer science students and professional software engineers. In particular, the survey was aimed
at revealing whether people were more comfortable with class or object encapsulation. This survey was intended
as a pilot study before conducting an empirical investigation into encapsulation practices in actual source code (see
Section 5).

The following sections describe the purpose, setup and results of the survey. The detailed information forms,
questionnaires and human ethics approval for the survey can be found in Appendix G. The results of this survey
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Figure 3: UML diagram of the classes used in the survey

have been summarised in a conference paper, which has been accepted for publication at ICITA’09 (International
Conference on Information Technology and Applications). The following section is roughly based on this paper and
the paper itself can be found in Appendix C.

4.1 Motivation

From personal experience and from working closely with computer science students, we believe that students learning
OO programming using a language like Java or C++ automatically assume that data is private to an object and
are surprised, and in some cases shocked, when they learn that it is instead private to a class. Many of them feel
uncomfortable when accessing the private data in another object of the same class. It seems that this conflicts
with their world view of classes and objects. Over time, however, they appear to adapt more and more to the tools
a programming language provides them. They start to access private data from another object of the same class
in places such as the equals() method in Java. Over time, they weaken their original intuition about what is right
and wrong.

Prior to this research, we had only anecdotal evidence to support this theory. Therefore, we decided to conduct
a formal survey involving a number of novice programmers and experienced programmers to confirm our hypothesis.

4.2 Participants

We surveyed 34 undergraduate students, 9 postgraduate students and 12 professional developers about their en-
capsulation practices. We chose to include students in the survey because we expected their intuitions to have had
less time to adapt to encapsulation mechanisms provided by programming languages.

We surveyed two undergraduate computer science courses at the University to Canterbury. The first course
was a second-year course about computational theory. The students in the course had just completed their first
year of computer science, including an introduction to Java and an introduction to data structures, algorithms and
software engineering. These students had relatively little programming experience in Java, having not yet completed
a substantial programming project.

The second class we surveyed was the third-year software engineering course. These students had all completed
the second-year software engineering course which included a substantial group project in Java. They had also
learned about various object oriented design principles and were therefore likely to be more aware of design issues
than the second-year students.

In addition to surveying undergraduate students, we also surveyed 9 postgraduate students, all of whom were
very proficient in Java, and 12 professional software developers who were members of an industry programming
users group and routinely used C# or VB.NET as part of their work. These participants were likely to be far more
proficient programmers than undergraduate students and also were likely to be more aware of OO design principles.

4.3 Task

We carefully designed the survey to allow us to infer the encapsulation practices and principles of participants
rather than asking them directly. We did not want participants to overthink their replies but rather to act as they
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would when programming. Two parts of the survey can be seen in Figure 4.
The survey consisted of two main questions that were designed to capture the important differences between

object and class encapsulation. For each question, we presented a small Java class containing a few fields and
methods. A UML class diagram showing these two classes can be seen in Figure 3. Each of the questions asked
developers to complete a new method by choosing between three alternatives. Each alternative completed the
method in a way that achieved similar functionality. However, the difference between the options was that some
used getters to access fields while others accessed data directly, crossing either the object or class encapsulation
boundary.

For each of the two questions, we asked developers to rank the three options they were provided with from
best to worst and to explain the ranking they decided on. The first question focused on the issue of whether or
not an object should be able to access the private data of another object of the same class. This is allowed in
class encapsulation but not in object encapsulation. For the purposes of this question, we introduced a Java class
Vehicle which had a private field weight and a getter method for the weight field. Participants were then given
three options for the completion of the isHeavierThan() method which compared the weight of one Vehicle
object to that of another Vehicle.

The second question focused on the issue of whether or not an object should be able to access private data
declared in superclasses. This is allowed in object encapsulation but not in class encapsulation. For this question,
we introduced a class Truck which was a subclass of Vehicle and had an additional field called payload which
stores the maximum load a truck is allowed to carry. The Truck class also contained a getter method for the
payload field. Participants were then given three options to complete a method called getGrossWeight() which
returned the sum of the truck’s weight and payload. Again, the only difference between the three options they
were given was that some used getters while others accessed data directly.

In addition to the two main questions, to test the competence of the participants, we included two very simple
coding exercises asking participants to write a toString() method for the Vehicle and Truck class. These questions
enabled us to eliminate one participant who clearly did not have sufficient knowledge to make informed judgements
about encapsulation.

For professional software developers, we also included a question about their previous programming experience,
including their first programming language and the amount of time they had used C# or VB.Net. We translated
the survey to C#, making sure that the semantics of the code in the questions were not affected.

4.4 Results

From the survey results, we deduced whether respondents were using class encapsulation or object encapsulation.
These results can be see in Figure 5.

Our results from the student survey clearly confirmed our hypothesis that for novice programmers object en-
capsulation is much more intuitive than class encapsulation. The students we surveyed could be divided into four
major groups given their responses to the questionnaire:

• Students who used getters rather than accessing data directly;

• Students who practised object encapsulation;

• Students who accessed data directly rather than using getters; and

• Students who did not mind whether getters were used or data was accessed directly as long as the approach
used was consistent.

More than half the students (59 percent) preferred using getters to accessing data directly. This is not surprising
since they have been taught in a number of courses that getters make a system more maintainable. They commented
that using getters was better style, safer and made the system more maintainable and also said that getter methods
encapsulate private data.

The second largest group, at about 24 percent, was the group who practised object encapsulation. They were
all happy to directly access private data in a superclass but did not want to access private data from another
object of the same class. From their comments, it became clear that members of this group incorrectly believed
that this was what Java allowed. Some participants commented that accessing private data in another object of
the same class was not possible because that data was private.

The remaining groups were both small, with about 12 percent of students preferring to always access data directly
rather than using getters. They usually commented that this was more efficient. The last group of students, at
about 6 percent, was simply concerned with keeping the coding approach as consistent as possible.

16



N
o

w
 w

e
 w

an
t 

to
 c

o
m

p
le

te
 t

h
e 

co
d

e 
fo

r 
th

e 
i
s
H
e
a
v
i
e
r
T
h
a
n
(
V
e
h
i
c
l
e
 
o
t
h
e
r
)

 m
et

h
o

d
 o

f 
th

e 
V

eh
ic

le
 c

la
ss

.  
 H

er
e

 a
re

 s
ev

er
al

 w
ay

s 
in

 w
h

ic
h

 w
e 

co
u

ld
 c

o
m

p
le

te
 t

h
is

 m
et

h
o

d
: 

 O
p

ti
o

n
 1

 
p
u
b
l
i
c
 
b
o
o
l
e
a
n
 
i
s
H
e
a
v
i
e
r
T
h
a
n
(
V
e
h
i
c
l
e
 
o
t
h
e
r
)
 
{
 

 
r
e
t
u
r
n
 
t
h
i
s
.
w
e
i
g
h
t
 
>
 
o
t
h
e
r
.
w
e
i
g
h
t
;
 

}
 

 O
p

ti
o

n
 2

 
p
u
b
l
i
c
 
b
o
o
l
e
a
n
 
i
s
H
e
a
v
i
e
r
T
h
a
n
(
V
e
h
i
c
l
e
 
o
t
h
e
r
)
 
{
 

 
r
e
t
u
r
n
 
t
h
i
s
.
w
e
i
g
h
t
 
>
 
o
t
h
e
r
.
g
e
t
W
e
i
g
h
t
(
)
;
 

}
 

 O
p

ti
o

n
 3

 
p
u
b
l
i
c
 
b
o
o
l
e
a
n
 
i
s
H
e
a
v
i
e
r
T
h
a
n
(
V
e
h
i
c
l
e
 
o
t
h
e
r
)
 
{
 

 
r
e
t
u
r
n
 
t
h
i
s
.
g
e
t
W
e
i
g
h
t
(
)
 
>
 
o
t
h
e
r
.
g
e
t
W
e
i
g
h
t
(
)
;
 

}
 

  6
) 

W
h

ic
h

 o
f 

th
e 

ab
o

ve
 o

p
ti

o
n

s 
d

o
 y

o
u

 c
o

n
si

d
er

 t
h

e 
b

es
t?

 R
an

k 
th

e 
th

re
e 

o
p

ti
o

n
s,

 f
ro

m
 b

es
t 

to
 w

o
rs

t.
 

 1
 _

__
__

_
__

_
__

_
__

_
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
_

 
 2

 _
__

__
_

__
_

__
_

__
_

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

_
 

 3
 _

__
__

_
__

_
__

_
__

_
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
_

 
  G

iv
e

 r
ea

so
n

s 
fo

r 
th

e 
w

ay
 y

o
u

 r
an

ke
d

 t
h

e 
o

p
ti

o
n

s:
 

 __
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

_
 

 __
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

_
 

 __
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

_
 

 __
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

_
 

N
o

w
 w

e
 w

an
t 

to
 c

o
m

p
le

te
 t

h
e 

co
d

e 
in

 t
h

e 
g
e
t
G
r
o
s
s
W
e
i
g
h
t
(
)

 m
et

h
o

d
 o

f 
th

e 
Tr

u
ck

 c
la

ss
. T

h
is

 
m

et
h

o
d

 is
 s

u
p

p
o

se
d

 t
o

 c
al

cu
la

te
 t

h
e 

gr
o

ss
 w

ei
gh

t 
o

f 
th

e 
tr

u
ck

, i
.e

. t
h

e 
w

ei
gh

t 
o

f 
th

e 
tr

u
ck

 p
lu

s 
th

e 
m

ax
im

u
m

 lo
ad

 it
 c

an
 c

ar
ry

. H
er

e 
ar

e 
se

ve
ra

l d
if

fe
re

n
t 

w
ay

s 
in

 w
h

ic
h

 t
h

is
 m

et
h

o
d

 c
o

u
ld

 b
e 

w
ri

tt
en

: 
 O

p
ti

o
n

 1
 

p
u
b
l
i
c
 
i
n
t
 
g
e
t
G
r
o
s
s
W
e
i
g
h
t
(
)
 
{
 

 
r
e
t
u
r
n
 
w
e
i
g
h
t
 
+
 
p
a
y
l
o
a
d
;
 

}
 

 O
p

ti
o

n
 2

 
p
u
b
l
i
c
 
i
n
t
 
g
e
t
G
r
o
s
s
W
e
i
g
h
t
(
)
 
{
 

 
r
e
t
u
r
n
 
g
e
t
W
e
i
g
h
t
(
)
 
+
 
p
a
y
l
o
a
d
;
 

}
 

 O
p

ti
o

n
 3

 
p
u
b
l
i
c
 
i
n
t
 
g
e
t
G
r
o
s
s
W
e
i
g
h
t
(
)
 
{
 

 
r
e
t
u
r
n
 
g
e
t
W
e
i
g
h
t
(
)
 
+
 
g
e
t
P
a
y
l
o
a
d
(
)
;
 

}
 

  8
) 

W
h

ic
h

 o
f 

th
e 

ab
o

ve
 o

p
ti

o
n

s 
d

o
 y

o
u

 c
o

n
si

d
er

 t
h

e 
b

es
t?

 R
an

k 
th

e 
th

re
e 

o
p

ti
o

n
s,

 f
ro

m
 b

es
t 

to
 w

o
rs

t.
 

 1
 _

__
__

_
__

_
__

_
__

_
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
_

 
 2

 _
__

__
_

__
_

__
_

__
_

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
__

__
__

_
_ 

 3
 _

__
__

_
__

_
__

_
__

_
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
_

 
  G

iv
e

 r
ea

so
n

s 
fo

r 
th

e 
w

ay
 y

o
u

 r
an

ke
d

 t
h

e 
o

p
ti

o
n

s:
 

 __
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

_ 
 __

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
_

 
 __

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
_

 
 __

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
__

__
_

__
__

__
__

__
_

__
_

__
_

__
__

_
__

__
__

__
__

_
__

_
__

_
_

 
   

Figure 4: An extract from the Java version of the encapsulation survey
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(a) Initial classification of survey responses (b) Encapsulation tendencies for the three populations

Figure 5: Encapsulation Survey Results

Notably, there were no students who practised explicit pure class encapsulation; that is no one thought that it
was good practice to access the private data in another object of the same class but not the private data in a
superclass.

The largest group of students consistently used getters to access data, giving no direct indication of their
encapsulation preference. However, the study was designed to provide an indication of their preferences in this
situation by making them rank their second and third preferences. We also looked more closely at the comments
from the students who used getters to determine if they were aware of the issue of object and class encapsulation.
Most responses showed no tendency towards either type of encapsulation. Two responses clearly showed object
encapsulation thinking, with students commenting (incorrectly) that it was not possible to access the private field
of another object of the same class. Another three responses showed traces of class encapsulation, suggesting that
these students were aware of Java’s approach to encapsulation. They usually commented (correctly) that a private
field in a superclass could not be accessed directly. This is not a surprising response since they have been taught
this in class. The remaining two students occupied an uneasy middle ground, showing tendencies towards both
class and object encapsulation. Clearly, these two students were confused about how to practise encapsulation in
Java.

We wanted to compare the way novice programmers think to the way more experienced and professional software
engineers think about encapsulation. Therefore, we surveyed nine postgraduate students, all of whom were very
proficient in Java, and twelve professional software developers who were experienced .NET developers.

Interestingly, we found that none of the postgraduate students used object encapsulation, but two used class
encapsulation (22 percent). They commented (correctly) that accessing the fields of another object of the same
class directly was simple and valid while accessing the private fields in a superclass was not allowed. This clearly
shows that they think differently from novice programmers; their thinking is aligned with Java’s encapsulation
mechanisms. The remaining 88 percent preferred always using getters to support encapsulation.

We again had a closer look at the surveys of the postgraduate students who used getters to see if we could
infer more about their way of thinking. Three of the seven respondents who used getters showed definite class
encapsulation tendencies, while another one showed tendencies both ways, and appeared to be confused about
encapsulation in Java.

We saw a similar effect when we surveyed twelve professional .NET developers. The largest group, at 75 percent,
again always used getters. Two respondents (17 percent) used pure class encapsulation, clearly demonstrating that
they were aware of what was valid in C#. Both commented that accessing private fields in a superclass was not
valid and would not compile. One developer (8 percent) with 5 years experience using C# still believed that object
encapsulation was correct.

A closer look at the surveys of developers who used getters showed that even some of the professional developers
were not completely comfortable with encapsulation in C#. One developer showed object encapsulation tendencies
stating (incorrectly) that accessing private fields of another object of the same class would cause a compile-time
error. Two more developers showed both object and class encapsulation tendencies in their survey and appeared
generally unsure about what was allowed and what was not.
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The results from the student survey clearly indicate that novice programmers find object encapsulation more
intuitive than class encapsulation. More than a quarter of the students we surveyed, with as much as two years of
programming experience, still believed that Java essentially supports object encapsulation. In addition, no students
were comfortable using what Java provides: class encapsulation. Some students showed signs of being aware of
encapsulation mechanisms in Java but no one wanted to use them. This is a significant result because it shows that
novice programmers are uncomfortable with the encapsulation mechanisms provided by many modern programming
languages including Java and C#. Object encapsulation, not class encapsulation, appears to make sense to them.

Even some postgraduate students and professional software engineers, all of whom were proficient in either Java
or C#, showed signs of unease and confusion about the encapsulation mechanisms provided. Some of them did not
appear to be entirely sure about what was allowed despite years of programming experience. However, there was a
clear sign that a number of them had adapted to what the programming language they were using provided them
with, because around 20 percent used class encapsulation.

Overall, we believe that the results from our survey support our suspicion that class encapsulation as provided
by many modern programming languages is not what novice programmers expect and can confuse even experienced
developers.

5 Analysing Encapsulation in Source Code

The survey provided us with evidence that a deeper investigation into encapsulation was warranted. To this end, we
decided to conduct an empirical investigation into encapsulation practices in a substantial corpus of Java programs.
One aim of the empirical investigation was to determine whether the encapsulation practices uncovered by the
survey were translated into practice when actually coding; it is possible that some developers will think about
encapsulation in a particular way but act differently when they are coding because it may be faster and easier to
do.

We created a program which analyses Java software and extracts relevant information from it. This program
uses JST to build semantic models of Java programs. We used the program to collect encapsulation information
from 33 different Java programs from the Qualitas Code Corpus as well as 11 student programs. This is an unusually
large dataset for metrics research of this nature.

We carefully designed our analysis program so that it would answer the same questions as the encapsulation
survey, allowing us to enrich our understanding of encapsulation practices. Our program therefore attempts to mea-
sure the relative frequency of use of class and object encapsulation, and more generally characterises encapsulation
practices.

This study builds on results uncovered by Tempero in a recent empirical study (mentioned above) about the
use of fields in Java [89]. Tempero measured how often different access modifiers are used and how frequently fields
are accessed. He too studied programs from the Qualitas Code Corpus, analysing all 100 programs in the corpus
and thus using a larger dataset than this study. However, Tempero’s study is much narrower in scope, looking only
at the level of exposure of fields, and does not address the different encapsulation boundaries we have identified.
In fact, Tempero implicitly assumes class encapsulation in his study. Another limitation of Tempero’s study is the
use of bytecode analysis to extract information about programs; in this study we use a semantic model which is a
more accurate representation of the program.

Section 5.1 explains in detail the specific data extracted by our analysis program. We also give more detail
about the Qualitas Code Corpus which was used as a source of real-world software in Section 5.2 and we explain
how JST was used as a semantic model in this research in Section 5.3. Finally, before presenting the results of our
investigation in Section 5.6, we describe the design of our program and the experimental setup in sections 5.4 and
5.5.

The results from this part of our work were summarised in a paper submitted to the Australian Software
Engineering Conference 2010. A copy of the paper can be found in Appendix D. Some parts of the following section
have been taken from the paper.

5.1 Encapsulation Analysis Tool

The program we built to analyse encapsulation collects comprehensive data. We chose to focus our attention on
encapsulation of data (as opposed to methods), which is more emphatically stressed by OO design guidelines and
more readily grasped by programmers, so it is likely to support more definitive conclusions.
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Our tool measures two aspects of a program: the levels of protection accorded to fields, and the ways in which
fields are actually accessed. This allows us to tell, for example, if a field has been given wider scope than is used in
practice, such as when a package-accessible field is only ever used locally in its class.

To characterise protection levels, we count the number of fields in a program with public, package, protected
and private access. These numbers give a good overview of how rigorously data is hidden from the outside
world. We distinguish between final fields (or constants) and non-final fields because exposing constants is usually
considered less serious than exposing fields whose values can be changed.

Characterising actual accesses to fields is a little more complex. However, this information is vital when deter-
mining the strength of encapsulation, since one could argue that a public field which is accessed rarely may break
encapsulation to a lesser degree than a public field which is accessed frequently.

Our encapsulation analysis tool accumulates the number of accesses to public, package, protected and private
fields. In addition, it finds the least and most frequently accessed fields in the whole program. This information
could easily show up a coding style like that advocated by Ken Auer, who suggests always using getters and setters
to access fields, even from within the same class. This would lead to a very small number of accesses for each field.

The analysis tool also counts the number of accesses that originate inside and outside the object that contains
the field, and the number of accesses that originate inside or outside the class that defines the field. This allows us
to count the number of accesses that cross both types of encapsulation boundary.

Accesses from outside a class that defines a field are easy to find. However, a more sophisticated approach is
required to determine if an access comes from outside an object. Because we perform static analysis of source code,
objects, which are a runtime concept, do not yet exist and it is virtually impossible to determine precisely whether
a reference refers to the same object as the one doing the accessing. We instead employ a simple heuristic which
will work correctly in the vast majority of cases:

• If the access is of the form fieldName (without a qualifier), the access comes from within the same object.

• If the access is of the form this.fieldName or super.fieldName, the access comes from within the same object.

• In all other cases, the access comes from a different object.

While this strategy works well for the vast majority of cases, there are exceptions. The most common occurs
with inner classes, which can access fields in the outer class. This syntax appears to be an access from within
an object when it is really an access from a different (inner) object. However, we decided that this situation was
sufficiently rare (and also outside our simple formulation of the concept of an object encapsulation boundary) that
our straightforward heuristic would provide an acceptable approximation for a first study. We plan to refine this
aspect of our instrument in later versions.

Our analysis tool has the ability to analyse the data it has collected and report on the extent to which a program
uses object or class encapsulation. It does this by looking at the number of accesses that cross the object and class
boundaries. In many cases, we expect that a mixture of the two will be employed. This information was deliberately
gathered in order to allow us to directly compare the results of the encapsulation survey with the real-world data.

5.2 The Qualitas Code Corpus

We used the latest version of the Qualitas Code Corpus as a source of real-world programs to analyse. The Java
version in which these programs were written varies from Java 1.1 to Java 1.6. Our Java parser is generated from
the grammar for version 1.6. In many cases, Java is sufficiently backwards-compatible that our parser and JST
can handle older source code, but some programs contain syntax that has been made illegal by changes in the Java
language. The most common syntax error, which prevents about 20 programs from compiling, is caused by the
introduction of enum as a keyword. Early versions of Java provided the unfortunately named Enumerator class
which was later deprecated in favour of Iterator, and local variables of the Enumerator type were commonly named
enum, leading to the name clash. The late introduction of the assert keyword produced a similarly widespread
problem. We chose to exclude these programs from our experiments because they are no longer correct Java.

In addition to these issues, a couple of programs, including Java parsers and parser generators, would not compile
since they contained deliberately wrong Java syntax in test files. We decided to exclude these programs from our
experiment. They were never intended to represent well-structured software and will therefore not yield any useful
information about encapsulation practices.

In the end, we excluded the 21 programs with parse errors, leaving 79 programs which contained only correct
syntax. However, only 33 of these programs could be correctly processed by the available version of JST.
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5.3 The Use of JST

JST forms an important part of our encapsulation analysis program. JST is very complex, with a large number of
classes each representing a specific semantic concept in Java, such as packages, methods and classes. A UML class
diagram of (an earlier version of) JST can be seen in Figure 15 in Appendix A. The latest version of JST adds
modelling capabilities for the concept of Java generics, making it significantly more complex than the older version,
with more than 100 classes.

To understand what concept each class in JST represents and what relationships exist between concepts, an
in-depth knowledge of Java semantics is essential. JST was under active development in order to support Java
generics at the time of this work; this greatly increased the level of challenge in using its API and understanding
its structure. This project is to date the only client of the latest version of JST and so has formed an important
part of the debugging and quality assurance process of JST. Many bugs were discovered as a direct result of this
work and the quality and completeness of JST was significantly improved.

While working with JST, we wrote a detailed guide for future researchers explaining how to use JST. This guide
explains the important classes of the semantic model and shows how to write a Visitor to walk through and extract
information from the model. A copy of the guide can be found in Appendix E.

While JST looks very large and complex at first sight, writing a program to extract information from JST
is relatively simple. Nevertheless, it does require knowledge about the internal structure of JST. Fortunately,
most clients are only interested in a particular part of the model, reducing the portion of the API that must be
comprehended.

The Visitor design pattern [37] is incorporated into JST as the mechanism for conveniently extracting informa-
tion. According to the Gang of Four, the Visitor design pattern is used to

represent an operation to be performed on the elements of an object structure. Visitor lets you define
a new operation without changing the classes of the elements on which it operates. [37]

This means that Visitor cleanly separates an object structure (the JST model of a Java program) from the oper-
ations that need to be performed on it (the metrics and analysis applications). This separation is very convenient,
as it groups related client operations into cohesive classes. This means that JST is not altered by the client code
and vice versa.

The Visitor design pattern specifies that a visitor should contain a method to visit each part of the object
structure. In terms of JST, this means that visitors should contain a method to visit each particular semantic
concept, including classes, interfaces, and variable declarations. Of course, it is impractical to write a method for
each semantic concept if the client is only actually interested in inspecting one or two of them. For this reason,
JST contains a visitor called CompositionVisitor which contains methods to visit all parts of the model. These
methods include no specific logic other than the code required to visit all elements in the JST model in a logical
order. Clients can simply subclass CompositionVisitor and override the methods in which they are interested,
adding the operations they want to perform. The other methods are simply inherited from the superclass. This
greatly reduces the amount of code that needs to be written in the client visitor.

For more technical detail about writing visitors for JST, see the guide in Appendix E.

5.4 Program Design

Our encapsulation analysis tool is made up of four main parts: a simplified program model, a visitor and builder
that construct the model, metrics calculators that extract information from the model, and writers that write out
the calculation results. A UML class diagram of the program can be seen in Figure 16 in Appendix A.

Rather than extracting information straight from JST, we have chosen to build a simpler model that filters
out information that is not relevant to encapsulation. This model contains classes such as Program, Member and
Field which replicate information from the JST model of the program but provide a simpler and more convenient
interface. Thus, this part of the program effectively acts as a Facade [37], hiding the more complex JST interface.
This facade is constructed by a JSTModelVisitor which walks the model of JST and uses the Builder class to
assemble the model.

MetricCalculator and its subclasses implement specific metrics that can be calculated by extracting informa-
tion from the model. They each have a specific strategy for extracting this information from the model, meaning
that the metrics can be calculated at different levels of aggregation, for example at the program-level or class-level.

The calculator classes pass the results they have calculated on to ResultsWriter and its subclasses which write
the results out to file.
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Program Program Version Description Release Date
Cobertura 1.9 Code coverage tool 05/06/2007
Display Tag Library 1.1 JSP tag library 02/12/2006
EMMA: a free Java code coverage tool 2.0.5312 Code coverage tool 12/06/2005
Fit Java 1.1 Automated testing tool 07/04/2004
Galleon 1.8.0 TiVo media server 30/10/2005
Gantt Project 1.11.1 Gantt chart drawing 14/05/2005
HTMLUnit 1.8 Web testing tools 17/02/2006
Informa 0.6.5 RSS library and RDF tools 30/09/2005
Ivata Groupware 0.11.3 Groupware/ exchange/ intranet system 10/10/2005
Jag 5.0.1 J2EE application generator 13/10/2005
Java Assembling Language 0.10 Class file editing tool 23/05/2006
Jasper Reports 1.1.0 Reporting tool 01/11/2005
JChemPaint 2.0.12 Editor for 2D molecular structures 21/12/2005
JFreeChart 1.0.1 Charting and reporting tool 27/01/2006
JGraphPad 5.10.0.2 Graph drawing application 09/11/2006
JMoney 0.4.4 Personal finance manager 29/09/2003
Java Plug-in Framework 1.0.2 Plug-in infrastructure library 19/05/2007
JSP Wiki 2.2.33 Wiki engine 07/09/2005
Jung 1.7.6 Graph drawing 29/01/2007
2006-03-01 JUnit 4.5 Unit testing framework 08/08/2008
Log4J 1.2.13 Logging tool 21/09/2006
OSCache 2.3 Cache solution 06/03/2006
PicoContainer 1.3 Inversion of control container 18/03/2007
Pooka 1.1-060227 Email client 27/02/2007
Proguard 3.6 Obfuscator 14/05/2006
Quartz 1.5.2 Job scheduler 03/03/2006
Quickserver 1.4.7 Network server 01/03/2006
Quilt 0.6-a-5 Code coverage tool 20/10/2003
Roller 2.1.1 Server based weblogging software and 15/03/2006

web application
Sablecc 3.1 Compiler/interpreter generating 29/09/2005

framework
Sunflow 0.07.2 Render engine 08/02/2007
Trove 1.1b5 Collection library 27/12/2005
Velocity 1.5 Java template engine 20/02/2007

Table 1: Corpus Programs used for this experiment

Our encapsulation analysis tool has been designed to be an extensible framework to which other metrics can be
added in the future. Adding a new metric to be calculated is easy: a new MetricCalculator subclass simply has
to be added to the design. Because of its extensibility, we expect that our analysis program will form the starting
point for the creation of future analysis tools.

5.5 Experimental Setup

For this experiment, we analysed 33 programs from the corpus; these were the ones for which the complete source
code could be processed by the current version of our tools without difficulty. More detail about these 33 programs
can be seen in Table 1. We also analysed an additional 11 student programs to see if there was a similar discrepancy
between students’ and professionals’ encapsulation practices to that found in the survey. The student programs
were each produced by a group of six to seven second-year software engineering students as part of a semester-long
project for real clients and were relatively similar to each other in scope and functionality.

The actual conducting of the experiment was a matter of simply running our tool over each of the programs
and collating the data for later analysis.
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(a) Use of protection levels in real and student programs (b) Accesses in real and student programs by protection level

Figure 6: Protection levels and accesses in real and student programs

Average (%) Minimum (%) Maximum (%) Standard
Deviation

Public 8.8 0 63.6 13.9
Protected 18.0 0 61.9 20.0
Package 14.6 0 69.7 14.6
Private 58.6 1.9 99.6 27.6

Table 2: Protection level statistics for declarations in corpus programs

5.6 Results

In the 33 corpus programs, the number of fields ranged from 69 to 2159, while the number of accesses to fields
ranged from 355 to 10818. In the 11 student programs, the number of fields ranged from 55 to 469, while the
number of accesses to fields ranged from 208 to 1973.

Figure 6a shows the relative numbers of different protection levels used in corpus and student programs; Figure
6b shows the relative numbers of accesses to fields with those different protection levels. Unsurprisingly, the two
graphs have very similar shapes.

Clearly, private is the most frequently declared and the most heavily accessed protection level. This tendency
is more pronounced in student programs than in corpus programs, where 40 percent of fields are not private. This
suggests that student programs tend to be more tightly encapsulated.

It is also interesting to note that students rarely declared protected fields compared to corpus programs and
that corpus programs tended to access protected fields somewhat more frequently than other types.

The above figures also show the variability of the data using error bars that span one standard deviation. We
found a great diversity of encapsulation practices in the corpus programs but relatively consistent practices in the
student programs, as can be seen in Table 2 and Table 3. This no doubt reflects the greater variety of domains,
purposes and scales of the corpus programs as well as the diversity of the developers.

A notable characteristic of this data is the very high standard deviations of the corpus programs’ use of protection

Average (%) Minimum (%) Maximum (%) Standard
Deviation

Public 4.6 0 20.5 5.8
Protected 3.0 0 13.4 4.9
Package 9.6 0.2 42 11.8
Private 82.8 60.1 94.5 11.0

Table 3: Protection level statistics for declarations in student programs
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Category of Access Percentage
1 Same object, same class 82.6
2 Same object, superclass 6.6
3 Different object, same class 2.7
4 Different object, superclass 0.2
5 Different object, different class 7.8

Table 4: Percentage of accesses by category in corpus programs

levels. Private data in particular spans a range from virtually no use in Fit Java to almost exclusive use in HTML
Unit. This is evidence that encapsulation practices in industry are extremely inconsistent.

We found similar levels of variation in the number of accesses to fields. Of particular note was:

• Public fields, unsurprisingly, are used quite heavily from outside the class that declared them (57.5 percent
for corpus programs and 40.8 percent for student programs), and are also used heavily internally.

• In Java, the protected access modifier gives access rights to subclasses, as well as to other classes in the
same package. We found that in corpus programs subclass access is used much more commonly (27.9 percent)
than same-package access (5.6 percent); the remaining accesses are from within the declaring class. Student
programs, however, revealed a different picture. Out of the eight programs that used the protected protection
level, two used it as package access, four used it as private access, and two used it as subclass access. This
suggests a considerable degree of confusion among students regarding Java’s protected access mechanism.

• Package fields are much less commonly accessed from outside the class in which they were declared (averaging
20.1 percent). In Java, package access is the default protection level, and it seems likely that this level of
access has been granted in many cases by developers forgetting to specify tighter access. This is the case in
student programs in particular, where 55 percent of systems never accessed package fields from outside the
declaring class.

• Because Java uses class encapsulation, private fields can be accessed from other objects of the same class. We
found that almost all corpus and student programs made some use of this; however, the average percentage
of accesses to private fields from other objects was very low (3.0 percent and 1.3 percent respectively).

Figure 7: An overview of access categories
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Category of Access Percentage
1 Same object, same class 93.7
2 Same object, superclass 0.3
3 Different object, same class 1.5
4 Different object, superclass 0.0
5 Different object, different class 4.5

Table 5: Percentage of accesses by category in student programs

Figure 7 shows the main categories of access we measured, numbered 1 through 5. Table 4 and Table 5 name
the access types and show what percentage of all accesses belonged to each category in the corpus and student
programs.

Unsurprisingly, in both populations the dominant category of access is within the same object and class (category
1). This category does not reveal anything about encapsulation boundary preferences as it crosses no encapsulation
boundaries. Categories 4 and 5 similarly do not yield information about encapsulation boundary preferences as the
accesses in these categories cross both kinds of boundary. Interestingly, category 4 accesses are much less frequent
than category 5, suggesting that developers are more averse to accessing superclass data than data in a completely
unrelated class.

Category 2 accesses cross the class boundary but not the object boundary, indicating the use of object encap-
sulation. Category 3 is the inverse, indicating the use of class encapsulation.

In corpus programs, when an encapsulation boundary preference is evident, object encapsulation (6.6 percent)
is used more than twice as much as class encapsulation (2.7 percent). This is consistent with our expectations and
earlier survey results showing that object encapsulation is more intuitive.

In student programs, the number of accesses in Category 2 and Category 3 suggest the opposite result: class
encapsulation appears to be preferred. This conflicts with our findings from the survey where object encapsulation
was overwhelmingly preferred by students. This difference could be explained by the fact that the scenario in the
survey was a lot simpler, the students’ programs show evidence of general confusion about encapsulation mechanisms
in Java, and the total number of accesses in Category 2 and Category 3 was very low.

The great majority of accesses in both populations either cross no encapsulation boundary or both kinds. No
systems measured used either type of encapsulation exclusively, although some showed a strong preference for one
or the other. The percentage of accesses crossing a class encapsulation boundary ranged from 0.3 percent to 39.9
percent for corpus programs and 1.3 percent to 6.1 percent for student programs. The percentage of accesses
crossing an object encapsulation boundary ranged from 2.0 percent to 40.2 percent for corpus programs and 3.8
percent to 15.4 percent for student programs.

Some corpus programs were notable for having large numbers of accesses from outside both the class and the
object. For example, the highest number of class and object boundary crossings (39.9 percent and 40.2 percent)
occurred in one program: Fit Java. This indicates not only that the data is barely protected and encapsulation is
very loose, but also that the data is poorly distributed amongst the classes because the program’s behaviour is not
located with the data on which it acts.

Our data also suggests that when protected access is used, it tends to be used for object encapsulation. For
both populations, the access to protected fields from outside the object was less common (8.3 percent for corpus
programs and 4.5 percent for student programs) than for fields with other protection levels.

In this section, we presented only the most interesting and relevant findings. More detailed data extracted from
the programs can be found in Appendix B.

5.7 Discussion

We measured 33 corpus programs and 11 student programs and found incoherent encapsulation practices, not only
between programs but within programs. This is consistent with the findings from an earlier study conducted by
Tempero [89]. Neither class nor object encapsulation was practised consistently in any of the programs. It also
appears that common advice to make fields private was not consistently followed; while private was the most
popular protection level in most systems, on average only 58 percent, and in the worst case 1.9 percent, of fields
in corpus programs were private. Some corpus programs used mainly public data, with their encapsulation
consequently being extremely weak.

Student programs were more tightly and more consistently encapsulated, no doubt because students had recently
been instructed to program this way. Even so, students broke the rule to make data private in 17 percent of
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declarations. This could be due to laziness (not wanting to write getters and setters to access data) or simply a
lack of understanding of encapsulation.

Protection levels of fields can be used to enforce particular encapsulation practices but even in the absence of
these protections the same encapsulation boundaries can be respected by simply choosing not to access the fields.
We found, however, that accessible fields did tend to be accessed. For example, approximately half the accesses to
public fields came from outside the declaring class. Similarly, accesses to protected fields came from subclasses
approximately 30 percent of the time.

The dominant encapsulation practice is to access fields from within the object and class that declares it. This
is the intersection encapsulation approach that we described earlier; it is likely to be an approach used in response
to uncertainty over the appropriate use of encapsulation boundaries.

In those corpus programs which did exhibit a preference for object or class encapsulation, more than twice as
many accesses indicated object encapsulation as opposed to class encapsulation. This adds weight to the findings
of our previous study, which suggested that object encapsulation is more intuitive.

Class encapsulation allows objects of the same class to access each other’s private fields, but this ability is
rarely used in practice. In corpus programs only 3 percent of accesses to private fields come from outside the
object. This suggests that there is a certain level of uneasiness among developers regarding this access mechanism.

Java defaults to package access. This default supports neither object nor class encapsulation. It appears that in
many cases omission of the access modifier is in fact unintended, particularly in student programs, where package
fields are mainly used as if they were private.

In C++ and C# it is possible to grant access to subclasses exclusively but in Java protected access also grants
package access. In practice, however, protected fields tend not to be accessed outside the class hierarchy and
are often used to support object encapsulation in corpus programs. Java’s protected mechanism appears to cause
confusion among students, leading to inconsistent use of this protection level in student programs.

6 Refactoring Tools

After discovering that the encapsulation practices employed by professional software engineers are far from ideal,
we decided to create software to automatically refactor code to improve its consistency and ensure that it conforms
to a single encapsulation policy such as class or object encapsulation. In this section, we describe how JST parse
trees can be used to create refactoring tools. We also describe one specific refactoring tool we created as a proof of
concept and suggests other refactoring tools that could be produced in the future.

6.1 JST Parse Trees

JST reads in parse trees created by a Java parser. A Java parser, as generated using the parser generator Yakyacc
[45], outputs XML files that can be read in by JST to create a semantic model of the program.

Most of the time when working with JST, little or no knowledge of the original parse tree structure is required
and instead information can be extracted directly from the JST model. However, JST keeps a copy of the parse
trees used to generate the model. In this way, the JST model of the program essentially forms the semantic layer of
the analysis tool from which semantic information can be easily extracted, while the parse trees form the syntactic
layer of the tool.

We used JST parse trees to create refactoring tools. Once the model of a program has been read in by JST
and a semantic model has been created, the encapsulation in the program can be easily analysed and evaluated. If
encapsulation problems are found, these can be solved by simply modifying the parse trees that correspond to the
program. When all necessary changes have been made, the parse trees can be used to re-generate the code.

Figure 8 shows part of a JST parse tree. This part of the parse tree declares a field; specifically it corresponds to
the code private int i;. The original code is preserved in the tokens or leaf nodes of the parse tree. The tokens
are chained together in their original order, each token pointing to the next token. The token chain also contains
additional whitespace tokens which are not connected to any other parts of the parse tree. It is easy to re-generate
code from the parse trees by simply starting at the first token and walking along the token chain.

In order to document the structure of JST parse trees for future researchers and describe how they can be
used for code re-generation, we wrote a guide about JST parse trees which can be found in Appendix F. This
guide contains a more detailed description of the JST parse tree structure and more technical detail concerning the
implementation of code re-generation tools.
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Figure 8: Part of a JST parse tree

6.2 Encapsulation Refactoring Tools

To show that JST can be used for code re-generation and refactoring tools, we created a simple refactoring tool that
tightens access modifiers as much as possible given existing accesses to improve the encapsulation of a program. For
each field, the tool checks if its protection level can be tightened, for example from protected to package access.
It does this by checking where the accesses to the field come from and whether these accesses would all still be
legal at a tighter protection level. If this is the case, it updates the protection level of the field; otherwise it does
nothing.

Modifying the parse trees of a program to change the protection level of a field is relatively simple because only
a small part of the parse tree is involved (specifically the part that can be seen in Figure 8). However, adding or
removing package access is a special case because it is specified by omission of the access modifier and therefore
requires adding and removing parts of the parse tree. In addition to this, modifying the parse tree is complicated
by the fact that the chain of tokens need to be kept up-to-date.

Another complicating factor in the implementation of our refactoring tool is the fact that Java allows several
fields to be declared in a single statement, for example protected int i, j, k;. However, when looking at
tightening the encapsulation of fields, we need to consider each field in isolation. If several fields are declared in
one statement but the protection level can be tightened for only one of those fields, the field declarations need to
be divided into separate statements, for example private int i; protected int j; protected int k;. This
involves the creation of parse tree chunks similar to that shown in Figure 8. To simplify the tightening of access
levels, our refactoring tool first separates out all field declarations, so that each field is declared in a separate
statement, before tightening protection levels.

The initial refactoring tool we created is relatively simple but can nevertheless have a significant impact on the
encapsulation in software. If a program already correctly uses all protection levels, this tool will have no influence
on the encapsulation of the program because it will not be able to tighten the protection levels of any fields. On the
other hand, it is capable of tightening access where a field is less carefully protected than it could be. Tightening
access in such cases will remove the temptation of accessing the field from another protection level in the future.
Our empirical results show that there are a number of fields which could be protected more carefully. For example,
a number of package fields in software are used as if they were private, and access could be tightened in such
cases.

We plan to develop more sophisticated refactoring tools in the future. For example, we want to develop a tool
that allows developers to choose particular encapsulation policies such as object encapsulation, class encapsulation
and intersection encapsulation and refactors the program to be consistent with this approach. This will involve
adding getters and setters to classes and changing direct accesses to a class’ fields to use getters and setters instead.

6.3 Limitations

The refactoring tool has a problem caused by a bug in JST, which is beyond the scope of this project to fix. The
effect of the bug is that comments and whitespace tokens are not properly added to the parse trees, although these
tokens were originally intended to be included in the token chain. Comment tokens are completely omitted from
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the parse trees, and all whitespace tokens (including tabs and newlines) are replaced by single spaces. This means
that re-generating code strips out comments and whitespace.

We expect these problems to be solved soon so that the next JST parse tree version will contain the correct
spacing and comments. The way in which our current refactoring tool is written means that it should continue to
work correctly with the new version of the parse trees.

7 A Visualisation of Encapsulation in Software

As our results from real world software show, encapsulation is commonly weak in industry software. This is likely
caused by the conflicting advice about encapsulation given to developers and the general confusion among developers
about encapsulation mechanisms provided by programming languages. The situation is compounded by the fact
that encapsulation breaches can be difficult to spot when only looking at the source code.

To find an encapsulation breach, not only is it necessary to look at the access modifiers given to fields, but
also at where these fields are accessed. Furthermore, it is very difficult to get a quick overview of the strength of
encapsulation in a system by looking at the code; a number of different source files would have to be analysed for
this purpose.

Therefore, we have designed and implemented a VRML visualisation of software which not only gives a quick
overview of the encapsulation strength in software, but can also be used to find specific encapsulation problems. In
addition, it can show whether object or class encapsulation is more prevalent.

7.1 Design

We wanted our visualisation to be easy and quick to use to find encapsulation problems so that software developers
could use it as part of their day-to-day routine. We envisage that developers could look at our visualisation after
finishing a particular part of the software to see if there are any encapsulation problems that should be looked at
more closely. We also imagine that our visualisation could be used as part of code reviews to find code that needs
to be refactored.

We wanted our visualisation to be able to work with as many different pieces of software as possible. Therefore,
we decided to use an XML file as input to the visualisation. This allows our visualisation to fit in with the existing
XML pipeline that has been used in previous work [19, 46]. We also wrote a program which uses JST to analyse and
extract relevant information from Java programs and to write the results out as an XML file. In this way, we can
analyse any Java program to produce an XML file which can then be read in by our visualisation. By decoupling
the visualisation from the program and the programming language itself, we have gained the flexibility to create
visualisations of programs written in any object oriented programming language, provided that a suitable XML file
is supplied.

Our visualisation shows a number of different encapsulation aspects. For each field in the system, users can see
not only how often it is accessed, but also where in the system the accesses come from. Classes are represented as
gray boxes and fields as cylinders that grow out of the bottom and the top of the class they are declared in. To
make it easy to see which box represents which class, all class boxes are labeled with the name of the class they
represent. Cylinders are also labeled with the name of the field they represent, although these labels are hidden by
default so that they do not clutter the visualisation. They can be made visible by hovering over the field cylinder
with the mouse.

While the metaphor we chose for our visualisation is very simple, we believe that it works well for the particular
domain of our visualisation since it makes it very clear which fields belong to which class. In designing the metaphor
for our visualisation, we wanted to make it obvious which fields are contained in which classes and we felt that
cylinders resting on top of a class box were an intuitive way to visualise this.

A simple example visualisation can be seen in Figure 9. In this example, there are three different classes called
Test1, Test2 and Test3 and several fields.

Looking more closely at the representation of fields, we can see that one field is represented by two cylinders:
one growing out of the top of the class box and the other growing out of the bottom of the class box. The total
height of the cylinders represents the number of accesses to the field it represents, making it easy to spot fields that
are accessed frequently or not at all. The colour of the cylinders represents the access modifier of the field. Private
fields are green, package fields are yellow, protected fields are orange and public fields are red. The colours
were chosen to represent the level of exposure of a field, with red signifying high exposure and green signifying low
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Figure 9: A simple example visualisation

(a) (b)

(c)

Figure 10: The visualisation after a class is selected

exposure. This part of the visualisation assumes that the software is written in Java or a similar language with four
distinct access modifiers. However, this does not mean that the visualisation could not be used for other languages
as long as an appropriate XML file is supplied.

As can be seen in Figure 9, the top and bottom cylinder which represent a single field both have two separate
parts. The part closest to the class box is solid while the remaining part of the cylinder is slightly transparent. The
solid part of the top cylinder represents the number of accesses to the field that come from outside the class the
field is declared in, while the transparent part represents the number of accesses to the field from within the class.
For the bottom cylinder on the other hand, the solid part represents the number of accesses from outside the object
that contains the field while the transparent part represents the number of accesses from within the same object.
In Section 7.2, we explain how this can be used to distinguish between object and class encapsulation.

In addition to the basic display of information about fields and field accesses, our visualisation includes some
interactivity which can be used to find more detailed information about a particular part of the system. To get
more information about the fields accessed by a particular class, a user can click on one of the class boxes. The
effects of this interaction can be seen in Figure 10.

The class which was clicked is highlighted in red to make it easy to see which class the current visualisation
applies to. For each of the fields in the entire system, the height of the cylinders representing the field is adjusted
according to the number of accesses to that field from the selected class. This means that a lot of field cylinders
will disappear if the field they represent is never accessed from the class that is selected. By adjusting the height
of the field cylinders, we can easily see which fields are accessed from a class and where in the system those fields
are. For example, in Figure 10c, it is clear that the selected class accesses only its own fields and does not access
fields in other classes. This indicates good encapsulation since the class does not depend on the internal details of
other classes. In this way, our visualisation can be used to see good encapsulation features in a system as well as
problems.
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(a) (b)

(c)

Figure 11: The visualisation after a field is selected

In addition to adjusting the height of field cylinders, the subclasses and superclasses of the selected class will
also be highlighted if they contain fields that are accessed by the selected class. The superclasses will be highlighted
in a lighter red while the subclasses will be dark red. This makes it easy to spot a class which accesses fields in its
superclasses or subclasses. The shade of the colour will become progressively lighter and darker the further away
in the class hierarchy a class is from the selected class.

An access to a field in a superclass may not constitute a severe breach in encapsulation. In fact, supporters of
object encapsulation would argue that accessing fields in a superclass is totally natural. A class accessing a field in
its subclasses on the other hand may constitute a problem since it is widely accepted that classes should have little
or no knowledge of their subclasses. A class accessing fields that are completely outside its class hierarchy is also
likely to be a problem and shows a breach of encapsulation.

In Figure 10a, we can clearly see that the selected class, Test3 only accesses fields in its superclass Test1. In
Figure 10b on the other hand, Test2 accesses fields in Test1 which is not its superclass since it is not highlighted.
This constitutes a potential breach of encapsulation and should be investigated.

In addition to getting more detailed information about the fields accessed by a particular class, users can also
find out from which classes a particular field is accessed by clicking on a field cylinder. The effects of this interaction
can be seen in Figure 11.

When a field is selected, it is highlighted in red to make it easy for the user to see which field was selected.
The height of the field bar is restored to the default height, showing the total number of accesses to the field. The
solid and transparent parts of the cylinder again show the number of accesses from within and outside the object
or class.

Any classes that access the selected field are highlighted in green to make them easy to find. For example, in
Figure 11a, we can clearly see that the selected field is only accessed by the class it is declared in. This means that
there is no breach of encapsulation in this case, since no other classes depend on the selected field. In the same
way, it would be easy to see any fields that are never accessed by the class they are declared in but are accessed by
other classes. Such fields may be candidates for moving to a different class.

As with the class selection visualisation above, the superclasses and subclasses of the class a field is declared
in are highlighted in light and dark green respectively. The shading for the classes is used to show the position
of a class in the class hierarchy relative to the class containing the selected field. This makes it easy to see if a
field is accessed from a superclass or a subclass. Again, an access coming from a subclass may not be considered a
problem, particularly by proponents of object encapsulation. However, accesses coming from a superclass or from
a class outside the class hierarchy in may be considered breaches of encapsulation.

For example, in Figure 11b, the selected field in class Test1 is accessed both by the class it is declared in and
by another class, Test2. Because Test2 is not part of class hierarchy that the field belongs to, it is also highlighted
in bright green. In Figure 11c on the other hand, the selected field in class Test1 is accessed from within the class
it is declared in and also from the subclass Test3. It is easy to see that Test3 is a subclass of Test1 because it is
highlighted in dark green.

It is easy to go back to the global visualisation of the system by clicking the Global View button on the bottom
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Figure 12: A class with a lot of accesses to fields

(a) (b)

Figure 13: Potential encapsulation problems seen in the visualisation

left of the screen. This restores all the field cylinders and class boxes to their original size and colour.
In a very large system, it can be difficult to compare two classes that are far away from each other. Therefore,

classes in the visualisation can be moved around on the XZ-plane by clicking on the label of the class and dragging
the class box to the desired location. In this way, classes can be placed side by side and compared easily.

7.2 Informal Evaluation

We have found that our visualisation can be very useful for finding certain types of encapsulation problems. For
example, it is very easy to spot any variables that are accessed frequently. This can be seen in Figure 12. The
variables of this class are clearly accessed heavily, particularly from outside of the class. On the other hand, they are
rarely accessed from outside the object. From this we can infer that they are commonly accessed from subclasses.
This may be a concern for anyone practising class encapsulation but is acceptable if object encapsulation is used.

It is also easy to find any fields that are not accessed at all. This becomes evident when looking at Figure 13a.
It is easy to see that the field in Test2 is never accessed. While this is not really an encapsulation problem as such,
fields that are never accessed can be difficult to spot and should be removed to simplify the code.

Ken Auer advises software developers to create accessor and mutator methods for each field and always access
fields through these methods, even within the class the field is declared in [5]. He argues that this will increase the
flexibility and maintainability of software, since subclasses are free to override the accessors and mutators. In such
a system, the number of accesses to each field would be very low. Therefore, such practices would be easy to spot
using our visualisation.

In addition to helping find fields that are accessed frequently or not at all, our visualisation is also very useful
for finding non-private fields. Such fields are an encapsulation hazard since they can be accessed from outside the
class or object in which they are declared. In Figure 13b we can easily see that one class has a large number of
fields, many of which are public.

As can be seen from the same example, it is also easy to find classes with a large number of fields. Too many
fields can make a class difficult to manage and therefore there is a lot of advice telling developers to split such
classes, including the Large class code smell [36].
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(a) (b)

Figure 14: The difference between object and class encapsulation in the visualisation

Overall, our visualisation makes it easy to look at the protection level of fields and to determine where a field
is accessed from, particularly when using the interactions described in Section 7.1. This can help us to find fields
that may have been placed in the wrong class. If we find a field that is never or very rarely accessed by the class it
is declared in, it may be worth considering moving it into another class which accesses it more frequently.

We are primarily interested in the differences between object and class encapsulation. Using our visualisation,
it is easy to see the difference between object and class encapsulation and to determine which is used more in a
particular program. Figure 14a shows the visualisation of a system that uses pure class encapsulation and Figure
14b shows a system that uses pure object encapsulation. For class encapsulation, we can clearly see that there are
field accesses from outside the object but no accesses coming from outside the class. For object encapsulation, we
can see that there are no accesses from outside the object but some accesses from outside the class.

While our visualisation can be used to find encapsulation breaches in software and to determine what kind of
encapsulation is used in a system, it does have some problems in its current form. Because of the interactions it
supports, the size of the VRML worlds containing the visualisations is very large, even for medium-sized systems.
Even an older version of JST which contains only 45 classes produces a 143MB VRML world for our visualisation.
JST is relatively small compared to industrial-scale software so visualisations of such systems would likely be
infeasible because of the size of the VRML world. Even the visualisation of JST is quite slow to load in the browser
and to navigate around. This indicates that we either need to reduce the size of our VRML visualisations or choose
a different technology to implement our visualisation. The interactions that we have implemented lead to the
increase in size of our VRML worlds because VRML is not very well suited for a large amount of event handling
and dynamic content. We expect that implementing our visualisation using a different technology such as Java3D
or OpenGL would likely solve this problem.

Currently, the classes in the system are randomly placed in the visualisation in no particular order, which can
make it hard to find particular classes. However, in future visualisations, the spatial position of a class could be
used to convey further information to visualisation users. For example, classes that are in the same package could
be placed close to each other so that it would be easy to find a particular class in the visualisation. This would also
make it easy to spot classes in different packages accessing each other’s data.

Classes that communicate a lot and are tightly coupled could also be placed close to each other in the visual-
isation. Such classes are more likely to access each other’s data. This would help highlight unusual accesses that
occur between classes which are not tightly coupled and are thus further apart in the visualisation.

Rather than positioning classes on a simple 2D plane, we could consider extending our visualisation to position
classes in a 3D space. This could for example be used to reinforce inheritance relationships in the system, where
classes from different levels of the class hierarchy could be placed on different planes in the visualisation. In this
way, a lot of additional information that may be relevant to encapsulation could be added to the visualisation.

Finally, given the size of visualisations of industrial-scale software it can be hard to compare visualisations of
subsequent versions of a system to see what has changed. There is no support for such a comparison built into the
current visualisation. However, in the future we could work on creating a visualisation that, rather than showing the
features of a particular version of the system, compares two versions of the same system, highlighting the changes
between them. This could be very useful to gauge the effectiveness of refactorings or redesigns and their effect on
the encapsulation in a system.
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8 Discussion

As part of this research, we surveyed developers and students about their encapsulation preferences, and we con-
ducted an empirical investigation of encapsulation practices in student programs and real-world programs. Our
results clearly show that encapsulation practices, particularly in industry, are inconsistent, and many programs are
weakly encapsulated. We have also uncovered confusion among both students and professional software developers
about encapsulation and the encapsulation mechanisms provided by programming languages.

These results have far-reaching implications because encapsulation is such a fundamental tool for managing
complexity. Not using it correctly can lead to tight coupling and significantly decrease the maintainability and
understandability of software.

The large variation of encapsulation practices we have seen employed in real software is, we suggest, due to a
lack of awareness of the existence of different encapsulation boundaries. This problem is compounded by conflicting
advice on how to use encapsulation, which has arisen due to the different schools of thought. However, what is
surprising is the great number of variations within single programs, indicating the confusion and inconsistency
within single software development teams.

The evidence we have gathered indicates that software developers need to be more aware of exactly how they
practise encapsulation, so that they understand the consequences of the specific encapsulation policy they have
chosen. This includes being aware of the different types of encapsulation, including class encapsulation, object
encapsulation and intersection encapsulation. In addition, development teams should know about the different
encapsulation advice and make a conscious choice about which advice they agree with and choose to follow.

Advice about how to practice encapsulation is influenced by the way the author thinks about encapsulation and
which encapsulation boundary they assume. For example, Riel’s heuristics assume that class encapsulation is used.
This means that in some cases these heuristics may not apply when object encapsulation is used and they need to
be re-interpreted to work with a different encapsulation boundary. Therefore, it is essential for developers to be
aware not only of the encapsulation boundary they use in their program, but also which encapsulation boundary is
assumed by design heuristics and principles.

We have proposed the development of encapsulation tools allowing developers to choose a particular encapsula-
tion policy which will then be consistently implemented in the system. This allows programs to be encapsulated at
specific points during the development process. However, it is still a good idea for developers to practise encapsula-
tion at all stages of the software development process, particularly in the absence of such tools. Only by practising
encapsulation consistently and constantly can developers reap all the benefits it provides.

In addition to refactoring tools we have also designed and implemented a visualisation to help developers spot
encapsulation breaches during the development process. We hope that such a visualisation will make it easier for
developers to understand how encapsulation is being used in a system, apply encapsulation consistently and find
and address any encapsulation problems.

We hope that in the future, better languages will be designed to support different encapsulation policies and
to be more consistent with developers’ expectations. In particular, we would like to see statically typed languages
supporting object encapsulation, which we have shown to be more intuitive than class encapsulation. We believe
that lining up a programming language’s encapsulation mechanisms with developers’ expectations will greatly
improve encapsulation practices and lessen the confusion currently surrounding encapsulation. In addition, we
believe that this would limit the use of intersection encapsulation, the most restrictive kind of encapsulation,
which is commonly used in current software. Furthermore, we would hope that future languages would enforce
encapsulation more strictly, for example by providing only a single protection level or at least by making private
or protected the default protection level.

In the meantime, however, developers can still apply different encapsulation policies using mainstream languages
such as Java by following some simple guidelines.

To practise class encapsulation in Java, developers should:

• Make all fields private; and

• Access fields directly within the class they are declared in, even if those accesses come from other objects.

To practise object encapsulation in Java, developers should:

• Make all fields protected;

• Never access fields from outside the class hierarchy in which they are declared; and
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• Avoid accesses of the form qualifier.member where qualifier is anything other than this or super because these
accesses may come from other objects.

To practise intersection encapsulation in Java, developers should:

• Make all fields private; and

• Avoid accesses of the form qualifier.member where qualifier is anything other than this or super because these
accesses may come from other objects.

In addition to following guidelines like these, it would also be possible to create different versions of Java which
support different encapsulation policies simply by modifying the Java grammar. This would be a simple change
that would be much faster than designing and implementing completely new languages. A change to the Java
grammar could enforce the different encapsulation policies, forcing developers to be aware of different encapsulation
boundaries, choose one for their program and adhere to it.

For the class encapsulation version of Java we would suggest the following changes to the grammar:

• Remove access modifiers for fields; and

• Make private the default protection level.

For the object encapsulation version of Java we would suggest the following changes to the grammar:

• Remove access modifiers for fields;

• Make protected the default protection level; and

• Disallow accesses to fields of the form qualifier.member where qualifier is not this or super.

For the intersection encapsulation version of Java we would suggest the following changes to the grammar:

• Remove access modifiers for fields;

• Make private the default protection level.

• Disallow accesses to fields of the form qualifier.member where qualifier is not this or super.

The changes to the grammar described above would enforce the different kinds of encapsulation in Java. This
shows that only simple changes to languages are required to support different encapsulation policies, indicating
that it is potentially feasible to have different versions of the language for different encapsulation policies. We
are particularly interested in creating an object encapsulation version of Java because we believe that object
encapsulation is the most intuitive encapsulation type.

9 Conclusions and Future Work

Encapsulation is one of the most fundamental tools developers have for managing complexity in software, making
it central to developing maintainable and understandable code. Despite being so basic, there is a lot of confusion
among developers about how to practise encapsulation. This is in part caused by the wide range of sometimes
conflicting advice about encapsulation and is compounded by the fact that encapsulation mechanisms in most
mainstream programming languages do not meet programmers’ needs and expectations.

We have collected, compared and contrasted a wide range of advice about practising encapsulation, showing the
main conflicts and identifying three different encapsulation policies: object encapsulation, class encapsulation and
intersection encapsulation. The existence of these different policies appears to have mostly gone unnoticed so far,
despite the fact that it has important implications for software development. We believe it is vital that developers
are aware of these differences, not only so that they can choose the policy that will provide them with the most
advantages, but also because a lot of design advice relies on assumptions about encapsulation policies, meaning
that one set of design advice may not apply to all encapsulation policies.
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Through a survey of students and developers we have shown that object encapsulation is more intuitive for
novice programmers and that even experienced programmers appear confused about encapsulation. Following the
survey we have analysed the encapsulation practices in 33 real-world programs and 11 student programs and found
that encapsulation practices are very varied, confused and inconsistent, especially in industry programs, leading to
generally weak encapsulation. This is a significant finding because the chaos in current encapsulation practices is
likely to have far-reaching implications for software quality.

We have proposed refactoring tools and a visualisation to help developers make the encapsulation in a program
stronger and more consistent. We hope that programming languages with encapsulation mechanisms that better
meet developers’ needs and enforce encapsulation policies will be developed in the future; in the meantime we have
proposed some simple guidelines and changes to the Java grammar which can enforce specific encapsulation policies
and practices in the short run.

The specific contributions of this work include:

• The identification of three different encapsulation policies: object encapsulation, class encapsulation and
intersection encapsulation;

• The identification of conflicts in encapsulation advice;

• A survey showing that object encapsulation is more intuitive for novice programmers, and that more experi-
enced programmers have adapted to some degree to the encapsulation mechanisms provided by programming
languages, although they may still be confused about encapsulation in general;

• Empirical evidence that encapsulation in real-world software is inconsistent and weak;

• Empirical evidence that, when an encapsulation boundary preference is shown in real world software, there is
a tendency towards object encapsulation, rather than class encapsulation;

• A refactoring tool to improve encapsulation in software;

• A visualisation to help developers find encapsulation problems in software;

• Guidelines for developers using Java for different encapsulation policies;

• Suggestions of specific changes to the Java grammar to support different encapsulation policies;

• Testing and improvements to the Java semantic model JST; and

• The submission of two conference papers about this work, one of which has been accepted, with the other
pending.

In this work, we have focused on data encapsulation; that is the hiding of data. However, there are other things
that can be encapsulated, including methods, which are also given protection levels. In the near future, we hope to
extend our work to include method protection levels to further deepen our understanding of encapsulation practices.

We have already implemented a simple refactoring tool using JST parse trees. In future work we hope to create
a more sophisticated tool which can change a program to be consistent with a particular encapsulation policy such
as object or class encapsulation.

We have also proposed changes to the Java grammar to allow the language to enforce certain encapsulation
policies. We are particularly interested in implementing an object encapsulation version of Java by modifying the
grammar and providing a new parser. This new version of Java could then be given to students and professional
developers to see how it changes their encapsulation practices and whether or not they prefer it to the usual
Java version. This could give us further insight into how much the programming language and the encapsulation
mechanisms it provides affect the encapsulation practices employed by developers.

Our current investigation into how developers think about encapsulation and how developers use encapsulation
in practice has focused on developers using Java or C#, which both use class encapsulation. The encapsulation
mechanisms of the language used by a developer almost certainly impact a developer’s encapsulation habits and
practices. Therefore, it would be interesting to redo these experiments with developers using an object encapsulation
language such as Ruby or Smalltalk. However, object encapsulation languages are less widely used and so finding
enough developers to take part in such an experiment would be problematic. They are also usually dynamically
typed, meaning there is much less information available to our static analysis tools. We could potentially use the
object encapsulation version of Java we plan to develop for this purpose.
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A Large Diagrams

A larger version of Figure 16 can be found at http://wiki3.cosc.canterbury.ac.nz/index.php
/Image:JaninasNewDesign21.png.
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Figure 15: A UML class diagram of JST
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Figure 16: A UML class diagram of the analysis program
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B Detailed data from encapsulation analysis of real-world and student
programs

Table 6 shows detailed encapsulation data from corpus programs and Table 7 shows the same data for student
programs. More detailed data, including data at program and class level was collected and analysed during the
study but the aggregate data allows the most useful conclusions to be drawn and is therefore presented here. The
correctness of this data was checked through careful testing of the encapsulation analysis program and by analysing
some programs by hand and comparing the results. Note that the seemingly impossible accesses to private fields
from a different class and a different object are caused by inner class objects accessing private fields in the outer
object.
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Average Minimum Maximum Standard
Deviation

Total Fields 657.5882353 69 2159 506.9838392
Public Fields (%) 8.197895703 0 63.63636364 14.54170087
Protected Fields(%) 14.03413801 0 61.86440678 17.33452946
Package Fields (%) 17.47389307 0 69.66292135 17.33671453
Private Fields (%) 60.29407321 1.913875598 99.58333333 27.04349408
Total Accesses 3619.5 355 10818 2773.951107
Accesses per Field 5.811465856 3.3199446 17.867037 2.80383677
Public Accesses (%) 8.762200255 0 66.98679472 13.93046774
Protected Accesses (%) 18.04050757 0 85.24957936 20.02536543
Package Accesses (%) 14.64379262 0 67.86060019 14.59932799
Private Accesses (%) 58.55349956 0.600240096 100 27.62142468
Accesses from Outside Class (%) 14.68238602 0.3 39.85594238 10.50119523
Accesses from Outside Object (%) 10.79069496 1.971830986 40.21608643 9.543301389
Same object, same class accesses (%) 82.57180811 54.62703309 97.9909022 11.1100305
Different object, same class accesses (%) 2.745805868 0 24.52010507 4.47570256
Same object, subclass accesses (%) 6.637496932 0 31.09927089 7.692440057
Different object, subclass accesses (%) 0.20088857 0 1.800720288 0.383342642
Different object, different class accesses (%) 7.844000517 0.3 34.45378151 8.309757307
Public: same object, same class accesses (%) 3.412343394 0 29.65186074 5.792155646
Public: different object, same class (%) 0.197890683 0 3.00120048 0.574275215
Public: same object, subclass (%) 0.340648262 0 2.881152461 0.673609731
Public: different object, subclass (%) 0.086570335 0 1.800720288 0.316217561
Public: different object, different class (%) 4.72474758 0 29.65186074 7.782733305
Protected: same object, same class (%) 11.88831873 0 48.06763285 14.08346826
Protected: different object, same class (%) 0.378231752 0 7.599551318 1.302520678
Protected: same object, subclass (%) 5.115626232 0 31.09927089 6.989393512
Protected: different object, subclass (%) 0.063906302 0 0.536143465 0.121008951
Protected: different object, different class (%) 0.594424558 0 3.729669097 0.856950903
Package: same object, same class (%) 11.76731014 0 65.68247822 13.75361608
Package: different object, same class (%) 0.154109244 0 1.129943503 0.246958563
Package: same object, subclass (%) 1.181222438 0 22.96124031 4.249470393
Package: different object, subclass (%) 0.050411932 0 0.959532749 0.206230688
Package: different object, different class (%) 1.490738866 0 8.844388819 1.8813369
Private: same object, same class (%) 55.50383585 0.600240096 93.8 25.93713824
Private: different object, same class (%) 2.01557419 0 23.26732673 4.154713816
Private: same object, subclass (%) 0 0 0 0
Private: different object, subclass (%) 0 0 0 0
Private: different object, different class(%) 1.034089513 0 9.057713764 1.735243949
Minimum Accesses per Field 0 0 0 0
Maximum Accesses per Field 160.9117647 16 1265 236.9777342
Accesses to public from outside Class (%) 47.39112382 0 100 32.1540355
Accesses to public from outside Object (%) 44.4378246 0 97.77777778 31.00825426
Accesses to package from outside Class (%) 18.87645232 0 96.41119221 23.23446831
Accesses to package from outside Object (%) 14.74676691 0 57.17761557 16.14211148
Accesses to protected from Descendant (%) 26.27312714 0 74.41314554 23.07839286
Accesses to protected from outside Descendant (%) 5.288957804 0 77.77777778 13.30369305
Accesses to protected from outside Object (%) 7.856493349 0 77.77777778 14.03512035
Accesses to private from outside Object (%) 3.000757064 0 24.52609159 4.807652475

Table 6: Detailed encapsulation data from corpus programs
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Average Minimum Maximum Standard
Deviation

Total Fields 258.2727273 55 469 143.7463675
Public Fields (%) 4.421279512 0 28.33333333 8.075607552
Protected Fields(%) 2.401976308 0 13.43283582 3.821998813
Package Fields (%) 10.41026521 3.947368421 41.81818182 11.83483905
Private Fields (%) 82.76647897 58.18181818 92.85714286 12.33447433
Total Accesses 1125.363636 208 1973 648.945032
Accesses per Field 4.320690536 3.3 5.5164475 0.767121185
Public Accesses (%) 4.644821349 0 20.45454545 5.769406586
Protected Accesses (%) 2.960243149 0 16.91223575 4.917019284
Package Accesses (%) 9.613247897 0.192184497 39.90384615 11.81514243
Private Accesses (%) 82.7816876 60.09615385 94.45438283 11.04836448
Accesses from Outside Class (%) 4.797751407 1.308900524 13.13131313 3.216671771
Accesses from Outside Object (%) 6.030385652 2.356020942 15.4040404 3.85644733
Same object, same class accesses (%) 93.71653922 84.09090909 97.64397906 3.911795562
Different object, same class accesses (%) 1.485709372 0 4.383788255 1.408930136
Same object, subclass accesses (%) 0.253075127 0 1.366459627 0.474351313
Different object, subclass accesses (%) 0 0 0 0
Different object, different class accesses (%) 4.54467628 1.308900524 12.62626263 3.170021725
Public: same object, same class accesses (%) 2.747058871 0 14.39393939 4.298803229
Public: different object, same class (%) 0.342308126 0 2.777777778 0.831574064
Public: same object, subclass (%) 0 0 0 0
Public: different object, subclass (%) 0 0 0 0
Public: different object, different class (%) 1.555454353 0 4.135649297 1.591789624
Protected: same object, same class (%) 2.429210324 0 13.90134529 4.059632929
Protected: different object, same class (%) 0.035115342 0 0.284900285 0.088249521
Protected: same object, subclass (%) 0.207161445 0 1.366459627 0.471959573
Protected: different object, subclass (%) 0 0 0 0
Protected: different object, different class (%) 0.288756039 0 3.010890455 0.904192819
Package: same object, same class (%) 8.776544288 0.192184497 37.5 10.71418523
Package: different object, same class (%) 0 0 0 0
Package: same object, subclass (%) 0.045913682 0 0.505050505 0.152278457
Package: different object, subclass (%) 0 0 0 0
Package: different object, different class (%) 0.790789927 0 5.15970516 1.612482699
Private: same object, same class (%) 79.76372574 57.57575758 92.89529915 11.31663371
Private: different object, same class (%) 1.108285905 0 4.383788255 1.42155285
Private: same object, subclass (%) 0 0 0 0
Private: different object, subclass (%) 0 0 0 0
Private: different object, different class (%) 1.909675961 0 8.838383838 2.663793711
Minimum Accesses per Field 0 0 0 0
Maximum Accesses per Field 31.63636364 13 90 21.15784832
Accesses to public from outside Class (%) 36.71901881 0 87.71929825 27.40014164
Accesses to public from outside Object (%) 41.69717337 0 87.71929825 28.92524449
Accesses to package from outside Class (%) 5.297111346 0 23.33333333 8.095840239
Accesses to package from outside Object (%) 4.947460996 0 23.33333333 8.065046775
Accesses to protected from Descendant (%) 9.435483871 0 40 17.51276372
Accesses to protected from outside Descendant (%) 3.225378788 0 17.8030303 6.521649018
Accesses to protected from outside Object (%) 3.269250951 0 17.8030303 5.619484105
Accesses to private from outside Object (%) 1.264889298 0 5.110896818 1.605525835

Table 7: Detailed encapsulation data from student programs
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 

Abstract--Encapsulation is one of the most fundamental 

programming language mechanisms available to software 

developers for managing the complexity of software 

systems. One might therefore expect clear guidelines and 

consistent practices to be used in mature programming 

languages, and particularly in object oriented (OO) 

languages, with their rich support for encapsulation. 

However, the encapsulation practices employed by OO 

developers are surprisingly variable, even within a given 

OO language. Published advice on how best to use 

encapsulation is conflicting and little research has been 

done to determine what developers do in practice and why. 

In this work, we focus on one aspect of encapsulation: the 

encapsulation boundary in OO systems. In the archetypal 

OO language Smalltalk, object data is private to an object. 

On the other hand, in statically typed OO languages such as 

C# and Java, object data is private to a class. This 

difference has broad implications for software design and 

maintenance, especially when inheritance is considered. 

Using a survey of both novice and experienced software 

developers, we show that the encapsulation boundary 

supported by mainstream statically typed languages does 

not coincide with the intuition of most developers. 

 

Index Terms--Encapsulation, Encapsulation Boundary, 

OO design, Information Hiding 

I. INTRODUCTION 

   Software systems are often large and very complex, making 

them difficult to comprehend and maintain. Programs 

commonly contain thousands or even millions of lines of code; 

far too many for any one person to understand. The difficulties 

that arise from the sheer size of software are compounded by the 

complexity that results from coupling between software 

components. ―Programming is about managing complexity‖, 

according to Bruce Eckel [3, page6]. Complexity in software 

systems leads to systems not meeting their specifications, 

suffering from quality problems, or even outright project 

failure. 

A cardinal strategy used by software designers to control 

complexity is to decompose systems into loosely coupled 

components [20]. Parnas formulated this idea as the principle of 

Information Hiding [15], which encourages designers to hide 

implementation details so that the rest of the program cannot 
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depend on them. This reduces the cognitive load on developers 

because they can ignore hidden details when considering the 

services offered by a software component, and makes systems 

more amenable to change because hidden features can be 

modified without directly affecting client code. 

Encapsulation is a programming language mechanism that 

enables Information Hiding, and so is arguably the most 

fundamental tool programmers have for managing complexity. 

Encapsulation mechanisms provide a way of establishing a 

boundary around a logical module of a system, and of hiding 

data and implementation details within that boundary to ensure 

that only the module that owns the information can access and 

modify it [1], [17].  

OO systems provide several levels of encapsulation, usually 

in addition to conventional source code modules: Packages 

encapsulate classes, classes and objects encapsulate data and 

methods, and methods encapsulate algorithms. In this work we 

are interested in object and class level encapsulation of data, 

particularly in the presence of inheritance. 

II. BACKGROUND 

Many design heuristics, principles and guidelines have been 

proposed to help OO designers, including 61 ―golden rules‖ of 

OO design introduced by Riel [16], heuristics by John Lakos 

[12], code smells by Fowler and Beck [4], and the advice of 

Ralph Johnson and Brian Foote [10]. Since encapsulation is 

such an important aspect of software design, many of these rules 

provide explicit or implicit guidance on how to practice 

encapsulation. Examples include the Separation of Concerns 

principle [2], the Law of Demeter [13], and several of Riel’s 

heuristics, such as ―All data should be hidden within its class‖ 

[16]. Advice in this area sometimes conflicts, resulting in 

confusion on the part of designers, inconsistent code, and 

ultimately software that is harder to understand and maintain. 

While there is universal acceptance of the value of 

encapsulating data to protect it from the rest of the system, there 

is no consensus among OO designers on where the 

encapsulation boundary should lie.  Encapsulation is enforced 

in two main ways in modern OO programming languages; we 

will refer to them as object encapsulation and class 

encapsulation. 

Object encapsulation is commonly used by dynamically 

typed languages, including Smalltalk [11] and Ruby [19]. In 

these languages, data is private to an object. This means that 

when an object contains data, only that object has the right to 

access and modify this data; it cannot be directly changed by 

any other object, regardless of that object’s class. 

In contrast, today’s dominant statically typed OO 

programming languages, including Java [5], C# [6] and 
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C++[18], enforce class encapsulation: the most tightly protected 

data is private not to an object but to a class. By placing the 

encapsulation boundary around classes, these languages allow 

objects of the same class to access each others' private data. 

This difference becomes more important when inheritance is 

considered. When using object encapsulation, a single object 

can access all of that object’s data, regardless of which class it 

was inherited from. When using class encapsulation, objects 

cannot access private members inherited from a superclass, 

even though they are part of the same object. The class 

encapsulation boundary cuts the object, making the inherited 

part inaccessible to the derived part. 

The protected access mechanism provided by many 

current OO programming languages allows an object of a 

subclass to access protected parts inherited from a 

superclass. This enables an approximation of object 

encapsulation, because if all inherited members are 

protected an object is able to access all of its contents.  

Nevertheless, this is still a variation of class encapsulation 

rather than true object encapsulation, because other objects of 

the same class can also access the object’s contents.  In some 

programming languages such as Java, protected access also 

confers access rights on all objects of other classes in the same 

package.  

The two different types of encapsulation represent very 

different design philosophies. They are best explained using an 

example. Vehicles have a weight and can compare their 

weight to that of another Vehicle using the method 

isHeavierThan(Vehicle other). The class also 

defines a simple accessor method (or getter) for the weight 

field. Trucks inherit from Vehicles and add their own field 

payload, which describes the maximum load a truck is 

allowed to carry. In addition to this field, the Truck class also 

defines a getter method for the payload field and a method 

called getGrossWeight() that can calculate the total 

weight of a Truck: its net weight plus its payload. 

Fig. 1 shows a class encapsulation view of the example. 

Vehicle and Truck are different classes, each with their own 

sets of attributes and methods. These classes are the building 

blocks of the program when it is constructed. Class 

encapsulation reflects a designer’s mindset oriented around 

static, compile-time concepts. According to this mindset, it 

makes little sense to allow classes to access other classes’ 

private members. 

Fig. 2 shows the object encapsulation view. In this paradigm,  

the Truck object is a single entity, in part defined by the 

Truck class and in part by Vehicle. This mindset is oriented 

around the runtime concept of objects.  For this way of thinking, 

it does not make sense for a Truck to be able to access only a 

part of itself. 

Both types of encapsulation have advantages and 

disadvantages. We have observed that many students who use 

Java are surprised when they find out that objects of the same 

class can access each others' private data. Many students seem 

to find object encapsulation intuitively correct, and assume that 

programming languages support it. 

However, while object encapsulation may be more intuitive, 

Snyder (and others) argue that it removes all advantages to be 

gained from the use of encapsulation [17]. He suggests that by 

allowing access to data in another class—which may have been 

written by a different developer—the maintainability of the 

system is compromised. The reason he gives is that, should the 

other developer wish to change the internal data representation 

for that class, the subclass accessing that data will also be 

affected. 

Similar arguments can be made in defence of object 

encapsulation, however. The extensibility and reusability of a 

software system might be enhanced by allowing objects of 

subclasses to access inherited implementation details; this gives 

them freedom to override or reuse existing members in ways 

that would be prevented by class encapsulation.  Again, this is 

effectively a philosophical choice: object encapsulation is a 

permissive approach intended to maximise subclass freedoms, 

while class encapsulation favours tighter control. An issue that 

may influence a designer’s choice here is the question of 

whether inheritance is innately such a strong dependency that it 

does not make sense to try to isolate a subclass from changes to 

its superclass. 

As a first step in investigating whether our speculations on the 

encapsulation boundary are valid, we decided to conduct a 

survey to clarify how programmers use encapsulation in the 

 
 

Fig. 1.  A class view  

 

 

 
 

Fig. 2.  An object view 
 



 

simple Vehicle scenario described above. 

III. SURVEY 

We designed a survey to investigate how novice and 

experienced software developers practise encapsulation. This 

section describes the goals we were trying to achieve, the survey 

participants and the tasks in the survey. 

A. Goals 

From personal experience and from working closely with 

computer science students, we suspect that many students 

learning object oriented programming using a programming 

language like Java or C++ tend to assume that private data is 

private to an object and are surprised and in some cases shocked 

when they learn that it is instead private to a class. Many of them 

feel uncomfortable when accessing the private data in 

another object of the same class. It seems that this conflicts with 

their intuitive expectation of where the encapsulation boundary 

should lie. 

However, over time many appear to adapt to some degree to 

the tools a programming language provides them. They start to 

access private data from another object of the same class on 

occasion, particularly in places like the equals() method in 

Java, despite the fact that it conflicts with their intuition. We 

have heard people justify these decisions by saying that 

accessing private data is more efficient and quicker to code. 

We decided to conduct a formal survey involving a number of 

novice and experienced programmers to clarify their 

encapsulation practices. We surveyed 34 undergraduate 

students, 9 postgraduate students and 12 professional 

developers about their practices of encapsulation. We expected 

to show that, while professional developers have adapted to the 

class encapsulation mechanism provided by most modern 

programming languages, object encapsulation makes intuitively 

more sense to novice programmers. 

B. Participants 

The survey was conducted with both undergraduate and 

postgraduate university students and professional software 

developers. The undergraduates were volunteers from two 

computer science courses at the University of Canterbury. The 

first course was a second-year course about computational 

theory. The students in the course had just completed their first 

year of computer science, including an introduction to Java but 

had relatively little experience, having not yet completed a 

programming project other than the usual small CS1 and CS2 

assignments. The second class we surveyed was a third-year 

software engineering course. These students had all completed a 

second-year software engineering course which included a 

group project in Java where they developed software for a real 

client over a period of 6 weeks. We also surveyed postgraduate 

students who all had a substantial amount of experience using 

Java. 

In addition to surveying students, we surveyed 12 

professional software developers who routinely used C# as part 

of their work. They were likely to be far more proficient 

programmers than undergraduate students and more aware of 

OO design principles, having programmed professionally from 

anywhere between 2 and 20 years. 

C. Task 

We carefully designed the survey to allow us to infer the 

encapsulation practices and principles of participants rather 

than asking them directly. We did not want participants to 

over-think their replies but rather to act as they would when 

programming. The two main parts of the survey can be seen in 

Fig. 3. The corresponding class diagram is the one already 

presented in Fig. 1. 

The survey consisted of two main questions that were 

designed to exemplify the difference between object and class 

encapsulation. For each question, we presented a small class 

containing a few fields and methods. We then asked developers 

to complete a new method by choosing between three 

alternatives. Each alternative completed the method in a way 

that achieved similar functionality. However, the difference 

between the options was that some used getters to access fields 

while others accessed data directly. 

For each of the two questions, we asked developers to rank 

the three options from ̀ best' to ̀ worst' and to explain the ranking 

they decided on. 

The first question focused on the question of whether an 

object should be able to access the private data of another 

object of the same class; this is allowed in class encapsulation 

but not in object encapsulation. Subjects ranked, in order of 

preference, three given options for the completion of the 

isHeavierThan(Vehicle other) method which 

compared the weight of one Vehicle object to that of another 

Vehicle. 

The second question focused on the question of whether an 

object should be able to access inherited private data; this is 

allowed in object encapsulation but not in class encapsulation. 

Subjects ranked three given options to complete a method 

called getGrossWeight(), which returned the sum of the 

truck's weight (inherited from Vehicle) and payload 

(locally defined in Truck). Again, the only difference between 

the options was that some used getters while others accessed 

variables directly. 

Many programmers will automatically invoke getters, if they 

exist, rather than accessing fields directly, and this convention 

might overpower any preference for a particular encapsulation 

boundary. Similarly, if programmers automatically access fields 

directly whenever possible, this convention may dominate any 

single encapsulation boundary.  Both questions asked subjects 

to rank the alternatives, rather than simply pick a favourite, so 

that in a number of cases we were able to determine their 

encapsulation boundary preferences, even if they always 

favoured getters or direct access. In other cases, their comments 

gave clues about their way of thinking. 

In addition to the two main questions, we included two very 

simple coding exercises—asking participants to write a 

toString() method for the Vehicle and Truck 

classes—to test the competence of the participants. These 



 

questions enabled us to eliminate participants who did not have 

enough basic programming knowledge to competently complete 

the questionnaire. On the basis of these two questions, we 

eliminated two of the responses. 

For the professional software developers, we also included a 

question about their previous programming experience, 

including their first programming language and the amount of 

time they had used C# or VB.NET. We translated the 

questionnaire from Java to C#, making sure that it was 

semantically identical to the Java questionnaire. 

IV. RESULTS 

We classified respondents by the encapsulation practices they 

preferred, as shown in Fig. 4. The results from students provide 

evidence to support our theory that novice programmers tend to 

find object encapsulation much more intuitive than class 

encapsulation. The undergraduate students could be divided 

into four major groups: 

 

 Those who preferred using getters rather than 

accessing data directly. (No single encapsulation 

boundary.) 

 Those who practised object encapsulation. 

 Those who preferred accessing data directly rather 

than using getters. (No single encapsulation 

boundary.) 

 Those who did not mind whether getters were used or 

data was accessed directly as long as the approach 

used was consistent. (No single encapsulation 

boundary.) 

 

More than half of the students (58 %) preferred using getters 

to accessing data directly. This is not surprising since they have 

been taught in class that getters make a system more 

maintainable. They commented that using getters was better 

style, safer and made the system more maintainable, and also 

said that getter methods encapsulate private data. 

The second largest group (24%), practised object 

encapsulation. They preferred to access private data in a 

superclass directly, but did not want to access private data from 

another object of the same class. From their comments, it was 

evident that they truly believed that this was what Java allowed. 

They often commented that accessing private data in another 

 

Fig. 3.  Main parts of the Encapsulation Questionnaire 
 



 

object of the same class was not possible. 

The remaining groups were both small, with about 12 percent of 

students preferring to access data directly rather than using 

getters. They usually commented that this was more efficient. 

The last group of students (6%) were simply concerned with 

keeping the coding approach as consistent as possible. 

Notably, there were no students who practised pure class 

encapsulation; that is, no one accessed the private data in 

another object of the same class but not the private data in a 

superclass.  

Many of the students used getters to access data and therefore 

used neither object nor class encapsulation explicitly. However, 

in a number of cases their rankings still showed which they 

would chose if getters were unavailable, and their comments 

provided clarification of their reasoning. Using this 

information, we could classify respondents by whether they 

showed object or class encapsulation tendencies or both. The 

results of this additional analysis can be seen in Fig. 5. 

For undergraduate students, two responses clearly showed 

partial object encapsulation thinking, with students commenting 

(incorrectly) that it was not possible to access a private field of 

another object of the same class. Another three responses 

showed a partial tendency toward class encapsulation, showing 

that these students were aware of Java's approach to 

encapsulation; they commented that a private field in a 

superclass could not be accessed directly. This is not a 

surprising response since they have been taught this in class. 

The remaining two students occupied an uneasy middle ground, 

showing tendencies towards both types of encapsulation, and 

were clearly confused about what Java allows. 

We wanted to compare the way novice programmers think to 

how more experienced and professional software engineers 

think about encapsulation. We surveyed nine postgraduate 

students all of whom were very proficient in Java, and twelve 

professional software developers who were experienced .NET 

developers. 

Interestingly, we found that none of the postgraduate students 

were using object encapsulation, but two used class 

encapsulation (22 %). They commented that accessing the fields 

of another object of the same class directly was simple and valid 

while accessing the private fields in a superclass was not 

allowed. This clearly shows that they think differently from 

novice programmers. The remaining postgraduates (88%) 

preferred always using getters to support encapsulation. 

We again had a closer look at the responses of the 

postgraduate students who used getters to see if we could infer 

more about their way of thinking. Three of the seven 

respondents who used getters showed definite class 

encapsulation tendencies, while another one showed tendencies 

both ways, and appeared to be confused about encapsulation in 

Java.  

We saw a similar effect when we surveyed twelve 

professional .NET developers. The largest group (75 %) again 

liked to always use getters. Two respondents (17 %) used pure 

class encapsulation, clearly demonstrating that they were aware 

of what was valid in C#. Both commented that accessing private 

fields in a superclass was not valid and would not compile. One 

developer with 5 years experience using C# still believed that 

object encapsulation was correct.  

A closer look at the responses of developers who used getters 

showed that even some professional developers are not 

completely comfortable with encapsulation in C#. One 

developer showed object encapsulation tendencies stating that 

accessing private fields of another object of the same class 

would cause a compile-time error. Two more developers 

showed both object and class encapsulation tendencies in their 

survey and appeared generally unsure about what was allowed 

and what was not. 

V. DISCUSSION 

The results from the student survey clearly support our 

contention that novice programmers find object encapsulation 

more intuitive than class encapsulation. More than a quarter of 

the students we surveyed with as much as two years of 

programming experience still believed that Java effectively 

supports object encapsulation. In addition, no students were 

comfortable using what Java provides: pure class encapsulation. 

Some students showed signs of being aware of encapsulation 

mechanisms in Java but no one wanted to use them.  
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Fig. 4.  Classification of survey responses  

 

Fig. 5.  Encapsulation tendencies for the three populations 



 

This result has important implications because it shows that 

novice programmers are uncomfortable with the encapsulation 

mechanisms provided by many modern programming 

languages, including Java and C#. Object encapsulation, not 

class encapsulation, appears to make sense to them. 

Even some postgraduate students and professional software 

engineers, all of whom were proficient in either Java or C#, 

showed signs of unease and confusion about the encapsulation 

mechanisms provided. Some did not appear to be entirely sure 

about what was allowed and what was not despite years of 

programming experience and the very basic nature of the 

exercises. 

However, there was a clear sign that a number of them had 

adapted to what the programming language they were using 

provided them with, because around 20 percent used class 

encapsulation. 

Overall, we believe that our survey shows that class 

encapsulation as provided by many modern programming 

languages is not what novice programmers expect and can 

confuse even experienced developers. 

VI. CONCLUSION AND FUTURE WORK 

We have conducted a survey amongst both novice and 

experienced programmers to determine how they practice 

encapsulation. We were particularly interested to find out if they 

preferred object or class encapsulation. 

The difference between object and class encapsulation is that 

the encapsulation boundary is in a different place, making a 

different set of operations legal and illegal. Most modern 

programming languages like Java and C# use class 

encapsulation, while some languages like Ruby, Smalltalk and 

Java Script use object encapsulation. 

Overall, our survey found that the class encapsulation 

mechanism provided by most of today's mainstream 

programming languages is unintuitive for novice programmers. 

While over time programmers appear to adapt to what the 

language allows them to do, there is still confusion amongst 

some experienced programmers as to what is allowed and what 

is not. We therefore argue that class encapsulation as provided 

by C# or Java is not what programmers intuitively expect or 

want. 

This work is only the first step in our investigation into 

encapsulation practices. The results of this survey have 

provided us with useful insights into the issues surrounding 

encapsulation practices which will inform the next phase of our 

research. Because encapsulation is so fundamental, the lack of 

consistency uncovered by the survey has far-reaching 

consequences that impact on virtually all other principles and 

guidelines of OO design. We are currently developing tools to 

perform a quantitative analysis of encapsulation practices by 

extracting relevant data from the Qualitas Code Corpus of Java 

programs from the University of Auckland [14]. We have 

previously developed a very accurate semantic model for Java 

called Java Symbol Table (JST) [7] – [9] which we plan to use 

in the analysis of these programs. The aim will be to determine 

whether object or class encapsulation is mostly used in real 

software and whether direct accesses of data are common.  We 

expect the results to provide useful material for users and 

designers of OO languages.  
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Abstract—This paper addresses a fundamental division in the
way OO programming languages support encapsulation, and
describes an empirical investigation into the way encapsulation
is used in practice. The title - for which the authors apologise -
refers to the encapsulation system in mainstream OO languages
such as C# and Java, in which one object is allowed to touch
another object’s private parts if the objects are siblings
(instances of the same class). We call this class encapsulation to
differentiate it from object encapsulation, in which private
data is accessible only within a single object. The use of
protected data is disparaged in the class encapsulation
paradigm and enforced in the object encapsulation paradigm.
We find that current programming practice is arbitrary and
inconsistent in languages that support class encapsulation.
Developers appear confused about how best to employ the
mechanisms offered by the languages.
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sign; information hiding;

I. INTRODUCTION

‘Programming is about managing complexity’, as Eckel
succinctly states [1, page 6]. The most elemental means of
managing complexity is decomposition; we divide programs
into pieces and sub-pieces, and strive to keep them as in-
dependent as possible. Yourdan and Constantine’s cohesion
and coupling formalise these two aspects of decomposition
[2].

Parnas provides guidance on how to decompose software,
by information hiding [3], which advocates encapsulation
of implementation decisions so that they cannot be subject
to coupling from outside, and are free to change without
impacting the rest of the program. Only relatively stable
features of a program should remain externally visible.
The Stable Abstractions Principle reinforces this aspect
of information hiding [4], and the fundamental Computer
Science concept of Abstract Data Types applies the principle
to data structures.

These concepts were formulated during the ascendancy
of procedural programming and structured software engi-
neering. Object Oriented (OO) programming continued the
progression of support for decomposition and introduced
more sophisticated mechanisms for structuring programs in
ways that allowed implementation details to be hidden, yet
remain available for use. Inheritance and polymorphism, in
particular, added a level of indirection between the caller of

a function and its implementation. In procedural systems,
the caller does not know how a function is implemented; in
OO systems, the caller does not even know which method
it is calling.

Encapsulation is the core programming language mech-
anism that underpins this pre-eminent family of design
principles, making it perhaps the most important semantic
characteristic of programming languages. Because it is so
fundamental, we might expect clear guidance on how to
employ the encapsulation mechanisms provided by program-
ming languages. We might also expect that as languages
mature, they will converge on encapsulation mechanisms
that encourage or enforce recommended practice. Among
OO programmers, however, we have found a surprising lack
of consensus over even the most basic of encapsulation ques-
tions [5]. What level of protection (private, package,
etc) should be used for attributes? Should accessors be
provided? If they are, should they also be used by an
object to access its own data? Should subclasses call them?
These are questions that must be answered by even novice
programmers, yet experts don’t agree on the answers.

In languages such as Java, beginners are commonly ad-
vised to declare attributes private, and to write getters
and setters, which may be public. C# goes a step further
and supports transparent use of getters and setters using the
property 1 syntax [6]. But mechanically exposing attributes
through accessor methods undermines information hiding;
it is hiding of only the most superficial kind. A definitive
characteristic of OO is the closeness of methods to the data
on which those methods operate; a class defines a set of
objects and the operations those objects can perform. The
use of accessors is a sign that data is being manipulated
in places other than within its owner object. Recognising
this, the Tell, Don’t Ask principle [7] advises designers to
avoid using getters and operating on the returned data, and
instead to instruct the object that already contains the data
to do the work. A more extreme view is expressed in the
Law of Demeter [8], which effectively prohibits the use of
getters; an object may use only its own data, local variables
and parameters.

1The C# term property differs from the established OO usage we employ
elsewhere in this paper to mean a member of a class.



Encapsulation is considerably more complex in the pres-
ence of inheritance. Should subclasses be allowed access to
inherited attributes? In most statically typed OO languages,
protected access provides a mechanism which makes
this possible. In C# and C++ [9], for example, protected
properties are accessible within the declaring class and all
its subclasses. In Java, protected access also exposes
properties to the declaring package; there is no mechanism
to allow access only to subclasses.

Although these languages support it, the use of
protected access is controversial. Riel, as one of his
61 ‘golden rules for OO design’, advises designers to
‘avoid protected data’, and instead make it private
to its class [10]. Holub more emphatically states that
‘protected data is an abomination’ [11]. But despite
the conviction of some commentators, this view is not
universally accepted. Indeed, other OO cultures encourage
or enforce the opposite rule. In Objective C, for example,
the default access to attributes is protected. In Smalltalk
there is no other choice; the only access mechanism for
data is equivalent to protected, as the language does not
provide a means of hiding inherited properties. But Smalltalk
programmers do not describe encapsulation in these terms.
On the contrary, they describe data as private, but it is
private to an object, not a class.

A substantial lore of design advice is available to OO
practitioners. We have already mentioned Riel’s 61 rules,
but many others exist. We are advised to program to the
interface, not the implementation, avoid inheritance for
implementation, favour composition over inheritance, apply
the Liskov Substitution Principle [12], [13], separate con-
cerns [14], keep related code and data together [10], detect
code smells [15], apply design patterns [16], and much
more. The nature of design means that these maxims will
inevitably exert conflicting pressures on designs, and that
is as it should be. However, the conflicting advice about
encapsulation is of a different nature; it results from a lack
of consensus about how to structure software, rather than
being a useful indicator of opposing forces. This is of some
concern because encapsulation is such an elemental part
of programming; how much value can we ascribe to more
sophisticated layers of design advice if they are based on
ill-considered foundations?

II. OBJECT ENCAPSULATION AND CLASS
ENCAPSULATION

The field of software engineering suffers from a tendency
for terminology that was once precise to accumulate shades
of meaning. Even the term encapsulation is not immune. In
[17], for instance, Rogers suggests that encapsulation means
only grouping of properties, and that hiding is an orthogonal
concept. We disagree; encapsulation is a mechanism that
implies hiding. A more conventional definition is provided
by Snyder [18]:

Encapsulation is a technique for minimizing inter-
dependencies among separately-written modules
by defining strict external interfaces. The external
interface of a module serves as a contract between
the module and its clients, and thus between the
designer of the module and other designers.

This definition implies hiding: that which is not exposed
in the interface is hidden, and cannot be the subject of a
dependency from outside. Snyder places the encapsulation
boundary around modules, but the definition of module in
an OO context is not entirely clear. Our approach here is
to work the other way: to recognise first the encapsulation
boundaries supported by OO languages, and so demark the
units in which hiding occurs.

In the archetypal OO language Smalltalk, everything is
an object. Each object is encompassed by an encapsulation
boundary. An object has access to all its properties and to
no others. Goldberg and Robson explain the modularity of
Smalltalk like this [19]:

The set of messages to which an object can
respond is called its interface with the rest of
the system. The only way to interact with an
object is through its interface. A crucial property
of an object is that its private memory can
be manipulated only by its own operations. A
crucial property of messages is that they are the
only way to invoke an object’s operations. These
properties insure that the implementation of one
object cannot depend on the internal details of
other objects, only on the messages to which they
respond. Messages insure the modularity of the
system because they specify the type of operation
desired, but not how that operation should be
accomplished.

This is object encapsulation. In object encapsulation, there
is only one type of attribute access: attributes are (implicitly)
private to their object.

Unlike Smalltalk, C++ augmented an existing language
which already used an encapsulation approach based on
static modules, and so it is perhaps unsurprising that C++
placed the encapsulation boundary around classes. In [9],
Stroustrup makes this explicit: ‘Note that in C++, the
class-not the individual object-is the unit of encapsulation.’
Elsewhere, Stroustrup comments that Smalltalk had little
influence over the design of C++ [20].

The term class encapsulation describes the encapsulation
boundary introduced in C++, and since adopted (with modi-
fications) in Java, C# and other languages. Because it places
the encapsulation boundary around a class, class encapsula-
tion allows incest: two objects of the same class can access
each other’s private properties. When inheritance is used,
the encapsulation boundary cuts through objects, so that one
part of an object can’t access other (inherited) parts of the



same object.
Early versions of C++ supported only public and

private class members. Later versions of C++ introduced
protected access, which allowed subclasses to access
inherited properties, in order to mitigate the effects of
partitioning objects according to class boundaries. Although
protected allows an approximation of object encapsula-
tion, it is not the same thing; incest can still occur (hence
the deplorable title of this paper).

Although Stroustrup introduced protected access (he
credits Mark Linton as co-inventor), he is tepid at best about
its merits. In [21] he writes:

The alternative to protected data was claimed
to be unacceptable inefficiency, unmanageable
proliferation of inline interface functions, or
public data. Protected data, and in general,
protected members seemed the lesser evil.
Also, languages claimed ‘pure’ such as Smalltalk
supported this - rather weak - notion of protection
over the - stronger - C++ notion of private.
I had written code where data was declared
public simply to be usable from derived classes
These were good arguments and essentially the
ones that convinced me to allow protected
members. However, I regard ‘good arguments’
with a high degree of suspicion when discussing
programming. There seem to be ‘good arguments’
for every possible language feature and every
possible use of it. In retrospect, I think that
protected is a case where ‘good arguments’
and fashion overcame my better judgement and
my rules of thumb for accepting new features.

A similar distaste for protected attributes is evident in
much advice available to OO programmers, and in the casual
way it is supported in Java, where it also opens properties
to package access.

The difference between class encapsulation and object
encapsulation is elemental and potentially has far-reaching
consequences for software design, yet as far as we can tell,
has largely escaped the attention of software practitioners.
The term object-oriented is used without qualification to
describe both approaches. Stroustrup, although he mentions
the boundary, makes little of it.

The same, however, cannot be said of Alan Kay. In his
keynote speech to OOPSLA97, Kay famously said ‘I made
up the term object-oriented, and I can tell you I did not
have C++ in mind’. We interpret subsequent passages of
Kay’s speech to mean that the lack of object encapsulation
is one of the main reasons he claims that C++ and Java
- and by extension C# and others - are not legitimate OO
languages. Kay contrasts a mechanical analogy of software
with a cellular analogy:

If you take things like clocks, they don’t scale by
a factor of a hundred very well. Take things like

cells, they not only scale by factors of a hundred,
but by factors of a trillion, and the question is,
how do they do it, and how might we adapt this
idea for building complex systems? Okay, this is
the simple one. This is the one, by the way, that
C++ has still not figured out, though.
You must, must, must not let the interior of any
one of these things be a factor in the computation
of the whole. [...] The cell membrane is there to
keep most things out, as much at it is there to keep
certain things in.

Kay goes on to say:
The realization here [...] is that once you have
encapsulated, in such a way that there is an
interface between the inside and the outside, it
is possible to make an object act like anything.
The reason is simply this, that what you have
encapsulated is a computer. You have done a
powerful thing in computer science, which is to
take the powerful thing you’re working on, and
not lose it by partitioning up your design space.
This is the bug in data and procedure languages.
I think this is the most pernicious thing about
languages like C++ and Java, that they think
they’re helping the programmer by looking as
much like the old thing as possible, but in fact they
are hurting the programmer terribly by making it
difficult for the programmer to understand what’s
really powerful about this new metaphor.

Kay’s distress is understandable. The analogy with cellu-
lar organisms was a main feature of his vision of computing
from its earliest days [22]. The languages that now wear the
OO mantle support the superficial form of his work, but not
the vision, and few commentators seem to have noticed.

Figure 1a shows an example UML class diagram. The
classes A to D represent the main units of class encapsu-
lation. Figure 1b shows the same classes, and a number of
instances, o1 to o4, that have been created. These instances
represent the units of object encapsulation. Classes are
shown in this diagram as a way of grouping objects but
not as encapsulation boundaries.

Figure 2 contrasts the two encapsulation boundaries for
our example. From the point of view of object encapsula-
tion, the class encapsulation boundaries cut through objects,
meaning that one part of an object may be unable to access
another part of the same object. From the point of view of
class encapsulation, it makes sense for one object to access
data of another object in the same class.

III. A PRELIMINARY SURVEY

In a recent paper [5], we reported the results of a survey
of the encapsulation preferences of programmers who use
Java and/or C#. The survey was designed to show whether



(a) An example UML class diagram

(b) Classes A to D and some instances of these classes

Figure 1. An encapsulation example

the programmers tended to use object encapsulation, class
encapsulation, or a mixture of both. The subjects were drawn
from three populations: undergraduate students, postgradu-
ate students, and professional developers. As can be seen
in Figure 3, we found different tendencies in the three
populations. Novice programmers showed a preference for
object encapsulation, despite having been taught that data is
private to a class in Java. In contrast, most postgraduates
had embraced the class encapsulation mechanism offered by
the programming languages. Professionals showed diverse
preferences. All three populations exhibited a degree of
confusion over the languages’ encapsulation boundary.

The survey revealed significant discord over the use of
encapsulation in Java and C#, and confirmed our expectation
that novice programmers find object encapsulation more
intuitive. This is not greatly surprising, given the parallels
between OO and real-world classification. In [23], Coad and

Figure 2. A view of different encapsulation boundaries

Yourdon quote the 1986 Encyclopaedia Brittanica entry on
Classification Theory [24]:

In apprehending the real world, [people] con-
stantly employ three methods of organisation,
which pervade all of their thinking:

1) the differentiation of experience into partic-
ular objects and their attributes – eg. when
they distinguish between a tree and its size
or spatial relations to other objects.

2) the distinction between whole objects and
their component parts – eg. when they con-
trast a tree with its component branches, and

3) the formation of and the distinction between
different classes of objects – eg. when they
form the class of all trees and the class of all
stones and distinguish between them.

This description, which was presumably written by au-
thors with no knowledge of programming, is immediately
recognisable by OO programmers. This is not a coincidence,
of course: OO simply imports this extant way of organising
systems into programming languages. This is what makes
object encapsulation intuitive; it echoes the boundaries be-
tween real-world objects.

IV. MEASURING ENCAPSULATION PRACTICES IN JAVA

Following the survey, we decided to investigate encapsula-
tion practices in real software to determine what developers
do in practice (as opposed to what they say they do when
surveyed). To this end, we wrote a static analysis tool to
measure encapsulation in Java programs.



Figure 3. Survey results

We carefully considered what data to collect in order
to relate empirical results to the survey results. We chose
to focus our attention on encapsulation of data in the
first instance; we will expand the study to include method
encapsulation in the near future. Encapsulation of data is
more emphatically stressed by OO design guidelines and
more readily grasped by programmers, so it is likely to
support more definitive conclusions.

Our tool measures two aspects of a program: the levels
of protection accorded to attributes, and the ways in which
attributes are actually accessed. (This allows us to tell, for
example, if an attribute has been given wider scope than is
used in practice, such as when a package-accessible attribute
is only ever used locally in its class.)

To characterise protection levels, we count the num-
ber of attributes in a program with public, package,
protected and private access. These numbers give a
good overview of how rigorously data is hidden from the
outside world.

Characterising actual accesses to attributes is a little more
complex. Our program accumulates the number of accesses
to public, package, protected and private at-
tributes. It also counts the number of accesses that originate
inside and outside the object that contains the attribute, and
the number of accesses that originate inside or outside the
class that defines the attribute. This allows us to count the
number of accesses that cross both types of encapsulation
boundary.

Accesses from outside a class that defines an attribute
are easy to find. However, a more sophisticated approach
is required to determine if an access comes from outside
an object. Because we perform static analysis of source
code, objects - which are a runtime concept - do not yet
exist and it is virtually impossible to determine precisely
whether a reference refers to the same object as the one
doing the accessing. We instead employ a simple heuristic

which will work correctly in the vast majority of cases.
If an access originates in a class that is neither the class
that defines the attribute, nor a subclass of the class that
defines the attribute, then the access must come from outside
the object. If, however, the access originates in the same
class or a subclass, the access may or may not come from
the same object. If this is the case, we check exactly
how the access was done in code. If the access is of the
form fieldName (without a qualifier), the access comes from
within the same object. Similarly, if the access is of the form
this.fieldName or super.fieldName, the access comes from
within the same object. On the other hand, if the access
is of the form qualifier.fieldName, we presume the access
comes from outside the object.

While this strategy works well for the vast majority of
cases, there are exceptions. The most common occurs with
inner classes, which can access attributes in the outer class.
This syntax appears to be an access from within an object
when it is really an access from a different (inner) object.
However, we decided that this situation was sufficiently rare
(and also outside our simple formulation of the concept of
an object encapsulation boundary) that our straightforward
heuristic would provide an acceptable approximation for a
first study. We plan to refine this aspect of our instrument
in later versions.

Our program has the ability to analyse the data it has
collected and report on what encapsulation the program
uses: object or class encapsulation. In many cases, we
expect that a mixture of the two will be used, and in such
cases our program reports to what degree the two types of
encapsulation are used.

We implemented our program using Java Symbol Table
(JST), a semantic model of Java developed by Irwin and
Churcher [25]–[27], to extract information about Java pro-
grams. JST constructs a model of the semantic structure
of a program, representing concepts such as packages,
classes, methods, constructors, parameters, attributes and
local variables. The relationships between these entities are
also captured by the model.

We used the latest version of the Qualitas Code Corpus
produced by the University of Auckland as a repository of
real-world software to be analysed [28]. This version of the
corpus contains 100 Java projects of diverse provenance,
including some very well-known programs such as Eclipse
and ANTLR.

The Java version for which these programs were written
varies from Java 1.1 to Java 1.6. Our Java parser is generated
from the grammar for version 1.6. In many cases, Java is suf-
ficiently backwards-compatible that our parser and JST can
handle older source code, but some programs contain syntax
that has been made illegal by changes in the Java language.
The most common syntax error - which prevents about 20
programs from compiling - is caused by the introduction
of enum as a keyword. Early versions of Java provided the



unfortunately named Enumerator which was later deprecated
in favour of Iterator, and local variables of the Enumerator
type were commonly named enum, leading to the name
clash. The late introduction of the assert keyword produced
a similarly widespread problem. We chose to exclude these
programs from our experiments because they are no longer
correct Java.

For this experiment, we chose to analyse 34 programs
from the corpus; these were the ones for which the complete
source code could be processed by the current version of
our tools without difficulty. We also analysed an additional
11 student programs to see if there was a similar difference
between students’ and professionals’ encapsulation practices
to that found by the survey. The student programs were
each produced by a group of 6-7 second-year software
engineering students as part of a semester-long project for
real clients.

V. RESULTS AND ANALYSIS

In the 34 corpus programs, the number of attributes ranged
from 69 to 2159, while the number of accesses to attributes
ranged from 355 to 10818. In the 11 student programs,
the number of attributes ranged from 55 to 469, while the
number of accesses to attributes ranged from 208 to 1973.

Figure 4. Use of protection levels in real and student programs

Figure 4 shows the relative numbers of different protection
levels used in corpus and students programs; Figure 5 shows
the relative numbers of accesses to attributes with those
different protection levels. Unsurprisingly, the two graphs
have very similar shapes.

Clearly, private is the most frequently declared and
the most heavily accessed protection level. This tendency
is more pronounced in student programs than in corpus
programs, where 40% of attributes are not private. This
suggests that student programs are more tightly encapsulated
on average.

It is also interesting to note that students rarely declared
protected attributes and that corpus programs tended to

Figure 5. Accesses in real and student programs by protection level

access protected attributes somewhat more frequently
than other types.

Average (%) Minimum (%) Maximum (%) Standard
Deviation

Public 8.8 0 63.6 13.9
Protected 18.0 0 61.9 20.0
Package 14.6 0 69.7 14.6
Private 58.6 1.9 99.6 27.6

Table I
PROTECTION LEVEL STATISTICS FOR DECLARATIONS IN CORPUS

PROGRAMS

Average (%) Minimum (%) Maximum (%) Standard
Deviation

Public 4.6 0 20.5 5.8
Protected 3.0 0 13.4 4.9
Package 9.6 0.2 42 11.8
Private 82.8 60.1 94.5 11.0

Table II
PROTECTION LEVEL STATISTICS FOR DECLARATIONS IN STUDENT

PROGRAMS

The data shown in the above figures is aggregated over all
systems, but does not show the variations between programs.
We found a great diversity of encapsulation practices in the
corpus programs but relatively consistent practices in the
student programs, as can be seen in Table I and Table II. This
no doubt reflects the greater variety of domains, purposes
and scales of the corpus programs as well as the diversity
of the developers.

A notable characteristic of this data is the very high
standard deviations of the corpus programs’ use of protection
levels. Private data in particular spans a range from
virtually no use to almost exclusive use. This is evidence
that encapsulation practices in industry are inconsistent.

We found similar levels of variation in the number of
accesses to attributes. Of particular note was:



• Public attributes unsurprisingly were used quite
heavily from outside the class that declared them
(57.5% for corpus programs and 40.8% for student
programs), and were also used heavily internally.

• In Java, the protected access modifier gives access
rights to subclasses, as well as to other classes in
the same package. We found that in corpus programs
subclass access was used much more common (27.9%)
than same-package access (5.6%). The remaining ac-
cesses were from within the declaring class. Student
programs, however, revealed a different picture. Out of
the eight programs that used the protected protec-
tion level, two used it as package access, four used
it as private access, and two used it as subclass ac-
cess. This suggests a considerable degree of confusion
among students regarding Java’s protected access
mechanism.

• Package attributes were much less commonly ac-
cessed from outside the class in which they were de-
clared (averaging 20.1%). In Java, package access
is the default protection level, and it seems likely that
this level of access has been granted in many cases by
developers forgetting to specify tighter access. This is
the case in student programs in particular, where 6 out
of 11 systems never accessed package attributes from
outside the declaring class.

• Because Java uses class encapsulation, private at-
tributes can be accessed from other objects of the same
class. We found that almost all corpus and student
programs made some use of this; however, the average
percentage of accesses to private attributes from
other objects was very low (3.0% and 1.3% respec-
tively).

Category of Access Percentage
1 Same object, same class 82.6
2 Same object, superclass 6.6
3 Different object, same class 2.7
4 Different object, superclass 0.2
5 Different object, different class 7.8

Table III
PERCENTAGE OF ACCESSES BY CATEGORY IN CORPUS PROGRAMS

Category of Access Percentage
1 Same object, same class 93.7
2 Same object, superclass 0.3
3 Different object, same class 1.5
4 Different object, superclass 0.0
5 Different object, different class 4.5

Table IV
PERCENTAGE OF ACCESSES BY CATEGORY IN STUDENT PROGRAMS

Figure 6 shows the main categories of access we mea-
sured. Table III and Table IV show what percentage of all

Figure 6. An overview of access categories

accesses belonged to each category in the corpus and student
programs.

Unsurprisingly, in both populations the dominant category
of access is within the same object and class. This cate-
gory does not reveal anything about encapsulation boundary
preferences as it crosses no encapsulation boundaries. Cat-
egories 4 and 5 similarly do not yield useful information
about encapsulation boundary preference as the accesses in
these categories cross both kinds of boundary. Interestingly,
category 4 accesses are much less frequent than category
5, suggesting that developers are more averse to accessing
superclass data than data in a completely unrelated class.

Category 2 accesses cross the class boundary but not the
object boundary, indicating the use of object encapsulation.
Category 3 is the inverse, indicating the use of class encap-
sulation.

In corpus programs, when an encapsulation boundary
preference is evident, object encapsulation (6.6%) is used
more than twice as much as class encapsulation (2.7%). This
is consistent with our expectations and earlier survey results
showing that object encapsulation is more intuitive.

In student programs, the number of accesses in Cate-
gory 2 and Category 3 suggest the opposite result: class
encapsulation appears to be preferred. This conflicts with
our findings from the survey where object encapsulation was
overwhelmingly preferred by students. This difference could
be explained by the fact that the scenario in the survey was a
lot simpler, the students’ programs show evidence of general
confusion about encapsulation mechanisms in Java, and the
total number of accesses in Category 2 and Category 3 was
very low.



The great majority of accesses in both populations ei-
ther cross no encapsulation boundary or both kinds, which
confirms our earlier observations that current encapsulation
practice is inconsistent. No systems measured used either
type of encapsulation exclusively, although some showed
a strong preference for one or the other. The percentage
of accesses crossing a class encapsulation boundary ranged
from 0.3% to 39.9% for corpus programs and 1.3% to 6.1%
for student programs. The percentage of accesses crossing
an object encapsulation boundary ranged from 2.0% to
40.2% for corpus programs and 3.8% to 15.4% for student
programs.

Some corpus programs were notable for having large
numbers of accesses from outside both the class and the
object. For example, the highest number of class and object
boundary crossings (39.9% and 40.2%) occurred in one
program. This indicates not only that the data is barely
protected and encapsulation is very loose, but also that the
data is poorly distributed amongst the classes because the
program’s behaviour is not located with the data on which
it acts.

When protected access is used, it tends to be used
for object encapsulation. For both populations, the access
to protected attributes from outside the object was less
common (8.3% for corpus programs and 4.5% for student
programs) than for attributes with other protection levels.

VI. CONCLUSIONS AND FUTURE WORK

Encapsulation is a fundamental mechanism for controlling
complexity in programs. However, the units of encapsulation
employed by OO programming languages differ; some lan-
guages place the encapsulation boundary around classes, and
some around objects.

We measured many Java programs and found incoherent
encapsulation practices, not only between programs but
within programs. Neither class nor object encapsulation was
practised consistently in any of the programs. It also appears
that common advice to make attributes private was not
consistently followed; on average 58%, and in the worst case
1.9%, of attributes were private. Student programs were
more tightly and more consistently encapsulated, no doubt
because students had recently been instructed to program this
way. Even so, students broke the rule in 17% of declarations.

Protection levels of attributes can be used to enforce
particular encapsulation practices but even in the absence
of these protections the same encapsulation boundaries can
be respected by simply choosing not to access the attributes.
We found, however, that accessible attributes did tend to be
accessed. For example, approximately half the accesses to
public attributes came from outside the declaring class.
Similarly, accesses to protected attributes came from
subclasses approximately 30% of the time.

The dominant encapsulation practice is to access attributes
from within the object and class that declares it. Here,

the encapsulation boundary is effectively the intersection
between the object and class boundary. We refer to this
as Intersection Encapsulation. Intersection encapsulation is
likely to be a strategy adopted in response to the general
confusion around encapsulation boundaries. It represents
the common ground between developer’s intuition and the
programming language mechanism for encapsulation. It is
safe because it crosses no boundaries. However, this is
a restrictive approach because it provides minimal access
to attributes, which in turn may lead to heavier use of
accessors and mutators, and hence an effective weakening
of encapsulation.

In those programs which did exhibit a preference for
object or class encapsulation, the majority of programs
tended towards object encapsulation. In corpus programs,
6.6% of accesses showed an object encapsulation tendency,
while only 2.7% showed a class encapsulation tendency.
This adds weight to the findings of our previous study.

Class encapsulation allows objects of the same class to
access each other’s private attributes, but this ability is
rarely used in practice. In corpus programs only 3% of
accesses to private fields come from outside the object.
This suggests that there is a certain level of uneasiness
among developers regarding this access mechanism.

Java defaults to package access. This default supports
neither object nor class encapsulation. It appears that in
many cases omission of the access modifier is in fact
unintended, particularly in student programs.

In C++ and C# it is possible to grant access to sub-
classes exclusively but in Java protected access also
grants package access. In practice, however, protected
attributes tend not to be accessed outside the class hierar-
chy and Java’s protected mechanism appears to cause
confusion among students.

In the near future, we intend to investigate the use
of protection levels on methods in Java to broaden our
understanding of encapsulation practices beyond attributes.

We are working on tools to automatically tighten en-
capsulation so that a consistent encapsulation policy will
be applied throughout a program. These policies include
object encapsulation, class encapsulation and intersection
encapsulation.

In the absence of these tools, however, developers could
significantly improve the quality of their programs by being
more aware of their encapsulation practices and consciously
choosing which boundary to apply.

We would hope that in the future programming languages
will be designed to more closely match the expectations of
programmers. This may be a relatively simple change to
existing languages such as Java. For example, Java could
be made to support object encapsulation by eliminating
syntax that accesses a field of any object other than this,
and removing the class encapsulation access levels.
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E A Guide to Using Java Symbol Table to Analyse Software

This is the guide we wrote about using JST to analyse a program in order to clarify the structure of JST for future
researchers.
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Overview of JST

Java Symbol Table (JST) is a semantic model for Java, developed by Irwin and Churcher
[2, 3, 4]. It constructs a model of a Java program in memory, capturing various semantic
concepts. This includes concepts such as packages, classes, methods, constructors, parameters,
fields and local variables. The relationships between these entities are also represented by the
model.

JST is a much richer model than other existing Java semantic models like Javasrc. These
models often only include simple relationships between entities such as method invocation
and commonly struggle to resolve polymorphic and inherited method calls, leading to an
inaccurate model. By using JST, you can get a very accurate model of your program, allowing
you to analyse it very carefully.

JST currently accepts valid source code written in any Java version up to Java 1.6.
A UML class diagram giving an overview of the structure of JST can be seen in Figure 1.
Despite the size and complexity of JST, information can be extracted from JST quite

easily by ‘walking’ the semantic model. This can be done using a Visitor design pattern [1]
as demonstrated in previous work [5, 6]. This article explains how to write a simple visitor
to extract information from the latest version of JST (for programs using up to Java 1.6).

Running JST

In order to be able to create a JST model of your program in memory, you first need to parse
the Java files into parsetrees that JST can understand. You can do this by running a parser
created using Yakyacc [?] over your program. This parser reads in the Java files and writes
the resulting parsetrees out to XML. If there are no parse errors, you can run JST giving it
the location of the XML files containing the parsetrees for your program. This will build a
model of your program in memory, allowing you to manipulate and analyse it.

The Visitor Design Pattern

We recommend that you use a visitor design pattern to visit the different parts of the JST
model. This is quite easy to do by extending an existing JST visitor as explained below.

The visitor design pattern has a number of advantages, including that it cleanly separates
the JST model code from your visitor logic. Your visitor program should only need to go
through the public interface of the model, thus making it easy to upgrade your program when
a new version of JST comes out.
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Figure 1: A UML class diagram of JST
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JST Visitors

JST already contains a very simple visitor which walks the entire semantic model in a logical
order. This visitor does not implement any specific operations and only contains the code for
visiting the model. By subclassing this visitor, you can override the operations that deal with
parts of the model you are interested in without having to worry about the rest. This makes
writing visitors for JST very fast and simple.

The basic visitor is called CompositionVisitor and can be found in the package jst.symtab.visitor.
It contains different methods for visiting each relevant part of the semantic model. Do not
change the code in this class unless you know what you are doing as it may alter or break the
visiting process. Instead, subclass this class to create your own visitor.

Once you have subclassed CompositionVisitor, you have to decide which parts of the
model you want to visit. This will decide which methods you need to override in your visitor.
To understand exactly which Java concept each of the parts of JST represents, a thorough
knowledge of Java is required. This particularly applies if you are dealing with Java generics
which are quite complicated.

The different parts of the model which can be visited using your visitor are:

• Decl represents any kind of declaration and is an ancestor of all other classes described
below. Each Decl has a name and a scope.

• PackageDecl represents a package declaration. A package may have sub-packages (of
type PackageDecl) and contains source files (of type SourceFile).

• SourceFile represents an entire Java source file which may contain any number of
classes or interfaces. A source file knows about the types that have been imported (of
type UserType) and resolves these imports so that the correct types can be found.

• TypeDecl is a superclass for all declarations which represent a type such as classes,
interfaces, arrays and primitive types.

• PrimitiveType represents a primitive type such as int, float, boolean or double.

• NullType simply represents the type of the keyword null.

• Actual Type is a type which can be used as a type argument for Java generics. This
includes reference types such as class types, interface types and array types as well
as wildcard types. For example, it is possible in Java to declare a set of students
(Set¡Student¿) but not to declare a set of ints (Set¡int¿) because int is a primitive type,
not a reference type or wildcard.

• ReferenceType represents a type which is stored and passed by reference by Java, such
as class types and array types. Most types, that is subclasses of TypeDecl, are also
reference types, except for PrimitiveType and NullType.

• ArrayType represents an array type, such as an array of strings.

• UserType represents any class or interface, which may be part of a library or declared
by a user. It contains fields (of type FieldDecl) and methods (of type MethodDecl)
and may contain other types (of type UserType), including anonymous types.
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• InterfaceType represents an interface. Interfaces know which other interfaces (of type
InterfaceType) they implement.

• GenericInterfaceType represents an interface type which has some type parameters
that are provided when an object of that class is created. For example, Comparable<T>
is a generic interface with type parameter T.

• ParameterizedInterfaceType represents the type that results when instantiating a
generic interface. For example, Comparable<T> is a generic interface and Comparable<String>
is the parameterized interface type that results from providing String as a type param-
eter.

• ClassType represents any class, whether library classes or classes declared by the
user. Classes know their superclass (of type ClassType) and the interfaces (of type
InterfaceType) they implement. They also contain constructors (of type ConstructorDecl).

• GenericClassType represents a class type which has some type parameters that are
provided when an object of that class is created. An example of a genric class is
HashSet<T> which has a type parameter T.

• ParameterizedClassType represents the type that results from constructing an object
of a generic class. For example, HashSet<T> is a generic class and HashSet<String> is
the parameterized class type that results from providing String as a type parameter.

• TypedDecl is a superclass for declarations which have a type, such as variable and field
declarations. As opposed to TypeDecl, these declarations don’t declare a particular
type but have a particular type.

• VariableDecl represents a variable declaration, such as a field, local variable or pa-
rameter declaration.

• FieldDecl represents a field declaraction. A field may have a field initialiser (of type
FieldInitializer) which represents the expression used to initialise the field when it
is declared.

• LocalVariableDecl represents a local variable declaration.

• ParameterDecl represents a parameter declaration.

• OperationDecl represents an operation declaration, such as a method or a constructor
declaration. An operation has a set of parameters (of type ParameterDecl), a body (of
type Block) and a set of exceptions that it may throw (of type ClassType).

• MethodDecl represents a method declaraion and also contains some information about
the methods overridden and hidden by this method (of type MethodDecl).

• ConstructorDecl represents a constructor declaration.

• ExecutableCode represents sections of code which can be executed, such as method
blocks; that is the code that is actually inside a method. An executable piece of code
knows about the other parts of the model it refers to (of type TypedDecl) such as
variables or methods.
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• Block represents a block of code; that is the code between a pair of matching braces.
This includes whole methods, if-statements and loops. A block can have other blocks
(of type Block) and local variable declarations (of type LocalVariableDecl) inside of
it.

• CatchBlock represents a catch block that is used to catch exceptions. A catch block
contains a parameter declaration (of type ParameterDecl).

• FieldInitializer represents a field initialiser; that is the expression that is used to
initialise the value of a field when it is first declared.

• WildcardType represents a wildcard for Java generics. Using generics, we can declare a
set of students (Set¡Student¿) where student is a reference type. Alternatively, we can
declare a set that can hold students and objects of student subclasses (Set¡? extends
Student¿). The type ¡? extends Student¿ is a wildcard type that matches Student or
any descendants of Student. We say that the wildcard type has an upper bound of type
Student.

• TypeParameter can be used in a generic class to describe the parts of the class (including
variable types or method return types) that are not yet known until an object of the
class is created. For example, the generic class HashSet<T> uses a type parameter T to
define some of its parameters and return types. The actual type of T is not know until
a HashSet is created. If we then create a HashSet¡String¿, String is substituted for T.
T is the type parameter.

When you have decided which parts of the model you want to visit, you need to override
the corresponding methods in your visitor. Make sure that you call the corresponding method
in CompositionVisitor at some point in the overridden method, as there may be important
code to visit other parts of the model in CompositionVisitor.

When writing the code to visit each part of the model, it is a good idea to have a look
at the public interface of the corresponding JST class to see what methods you can use.
Unfortunately, there are far too many methods to describe them all here but finding out
what you can and need to do is usually relatively easy.
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F A Guide to Using JST Parse Trees for Code Generation

This is the guide we wrote about using JST parse trees which can be used for code generation. It is intended to
allow future researchers to more easily get started using JST parse trees.
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Overview of JST Parse trees

Java Symbol Table is a Java semantic model, representing a variety of semantic Java concepts
including classes and methods. It reads a program in form of parse trees. These parse trees
can be easily generated from .java files by using a Java parser generated using the yakyacc
parser generator [1]. Such a parser will output the resulting parse trees in the form of an .xml
file which JST can understand and read.

By simply giving the location of these XML files to JST as a command line argument, you
can ask JST to read the parse trees and build a semantic model of the program in memory
[1, 2, 3].

JST is a semantic model, meaning that its in-memory model of a program consists of all
the important semantic Java concepts like classes and methods, making it easy to analyse
the structure of the program. Each of these semantic concepts knows about its source; that
is the part of the parse tree from which it was constructed. This makes it easy to find the
correspondence between parse trees and JST model entities.

Most of the time when using JST you will not need to use parse trees, meaning that you
will not need to understand their structure. However, parse trees can be very useful for code
generation. It is relatively easy to analyse the structure of a program using JST and decide
on things that should be changed or refactored. These changes can then be made in the parse
trees before the parse trees are written back out to file. In this way, refactoring tools can be
built relatively easily. In order to be able to do this, you need a good understanding of the
structure of the parse trees which will be explained in this guide.

1 Java Grammar, XML files and Parse Trees

Both the structure of the XML files containing the parse trees and the in-memory parse trees
are closely based on the Java grammar. This grammar specifies exactly what is legal in Java.
There are some mistakes in the original grammar provided by Sun so we have modified it to
create a working parser.

The grammar specifies what is valid syntax in Java. It is made up of nonterminals and
terminals. Nonterminals appear between angle brackets (¡¿) and contain other terminals or
nonterminals. Terminals do not have brackets around them and do not contain any other
symbols. Terminals in java include keywords such as int or static, symbols such as ( or ; and
identifiers.

The Java grammar uses production rules to specify what other symbols nonterminals
contains. The nonterminal in question appears on the left-hand side of the production rule,
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followed by a ::= sign and the nonterminals and terminals it contains. If there are several
alternatives, they are separated by an | symbol. The options for a single nonterminal are
terminated by a semicolon to signal that the rules for this nonterminal are finished. And
example of a production rule is shown below:

<PrimitiveType>
::= <NumericType>
| boolean
;

This production rule states that a PrimitiveType contains either a NumericType or the
terminal boolean. NumericType in turn can be either a IntegralType or a FloatingPointType
and so on.

When a nonterminal contains several terminals and nonterminals, the order in which they
are specified in the grammar needs to be adhered to in the code. A production rule for
FieldDeclaration can be seen below:

<FieldDeclaration>
::= <FieldModifiers>? <Type> <VariableDeclarators> ";"
;

This production rule states that when declaring a field we need to specify its modifiers
first, followed by its type, its declaration and finally a semicolon. We cannot specify the type
before the field modifiers because the order specified in the grammar must be adhered to.

The ? symbol can be used to specify that some parts of the production rule are optional.
For example in a field declaration field modifiers are optional and may be left off. However,
both the type, variable declaration and semicolon are compulsory and cannot be ommitted.

While the Java grammar seems very large at first sight, it is easy to understand if you
understand the examples above.

The structure of the XML files and parse trees is based closely on the Java grammar.
Each nonterminal is represented in the XML file by an XML element whose type is the name
of the nonterminal in the grammar. A terminal is represented by an XML element of type
token which contains the actual symbol represented by the terminal.

Let us consider the simple field declaration private int i;. From the grammar, we
know that this is represented by the nonterminal FieldDeclaration. In the XML file, we can
easily find an element of type FieldDeclaration which contains a number of other elements:

<FieldDeclaration>
<FieldModifiers>
<FieldModifier>
<token column="2" id="private" line="5">private</token>
<token column="9" id="WHITESPACE" line="5"> </token>
</FieldModifier>

</FieldModifiers>
<Type>
<PrimitiveType>
<NumericType>
<IntegralType>
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<token column="10" id="int" line="5">int</token>
<token column="13" id="WHITESPACE" line="5"> </token>
</IntegralType>
</NumericType>
</PrimitiveType>

</Type>
<VariableDeclarators>
<VariableDeclarator>
<VariableDeclaratorId>
<token column="14" id="identifier" line="5">i</token>
</VariableDeclaratorId>
</VariableDeclarator>

</VariableDeclarators>
<token column="15" id=";" line="5">;</token>
</FieldDeclaration>

Clearly, this FieldDeclaration element corresponds to the field that we just created. From
the grammar we know that a FieldDeclaration should contain a FieldModifiers child, a Type,
a VariableDeclarators child and a semicolon. We can see that in the XML file, the Field-
Declaration element clearly contains these four children. A semicolon is a terminal so it is
represented by a token XML element which contains the ; symbol. The other children are
all nonterminals. In the grammar, we can easily look up what those nonterminals contain to
verify that this XML file is correct.

Figure 1: The parse tree of the field declaration.

This XML file can be read in by JST and a parse tree can be constructed in memory. The
structure of this parse tree is essentially identical to that of the XML file. A diagram showing
the structure of the in-memory parse tree can be seen in Figure 1. From this, it becomes clear
that the information in the parse tree is identical to that in the XML file; only the manner
this information is represented in is slightly different. Clearly, it is very easy to determine
what a program’s parse tree will look like by looking at the XML file. We can also easily
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derrive the parse tree structure by looking at the Java grammar. This is very useful because
it means that you can determine exactly what changes you want to make to the parse tree
and how you need to make these changes by simply looking at the XML files and the Java
grammar.

We will now look more closely at the important classes that you need to know about
in order to work with JST parse trees. A UML class diagram showing the most important
parse tree classes can be seen in Figure 2. The interface SyntaxTree represents the most
abstract parse tree concept: any parse tree node including terminals and nonterminals. The
SyntaxTreeBranch and SyntaxTreeLeaf interfaces represent an inner node and a leaf node
respectively. An inner parse tree node is a nonterminal; it has at least one child. A leaf node
on the other hand represents a nonterminal because it has no children.

The Token class which represents a terminal or token in the parse tree implements
the SyntaxTreeLeaf interface. When the parse trees are constructed from the XML files,
the XML elements of type token are turned into Token objects. The type of the token is
also recorded, which corresponds to the id attribute of the token element in the XML file.
ValueToken is a subclass of Token. It represents a particular kind of token that contains
a string value. Some tokens, like tokens of type semicolon, do not require a string value to
be stored; it is obvious from their type what string they represent. However, tokens like
identifiers and whitespace need to store more than just their type and also include their ac-
tual string value. In the case of the identifier token in the example above, its type would
be identifier while its string value would be i. Therefore, this token would be turned into a
ValueToken object.

Nonterminals, or branch nodes, are represented by either a ParseTreeBranch or a ASTList.
These two representations only differ in the way they represent a list of children, with
ParseTreeBranch using a recursive representation and ASTList using a list representation.
However, in most cases, you should not have to worry about these different representations.
The recursive representation used by ParseTreeBranch is used by JST so you do not have
to worry about the alternative representation. The next section will look more closely at the
recursive representation and the implications for updating the parse trees.

Each part of the JST semantic model of the program, including classes, methods, fields
and variables, contains a reference to the part of the parse tree from which it was constructed.
This is known as the source of the JST entity and can be extracted using the getSource()
method. This parse tree part is always a branch rather than a leaf node. For example, a JST
FieldDecl’s source will point to the FieldDeclaration node in the parse tree. From there,
it is easy to extract and change the field modifiers, field type and variable declaration. The
source of a JST entity is of type JstParseTreeBranch, a subclass of ParseTreeBranch.

2 Code Generation

Using JST you can analyse a program and then modify it. You can modify the parts of the
parse tree corresponding to the parts of program you want to change. After changing the
parse trees, you can use them to create .java files.

2.1 Modifying the Parse Tree

Once you have decided what part of the program you want to modify, you need to look at the
parse tree structure to see what part of the parse tree you need to change and what specific
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Figure 2: UML class diagram showing the main parse tree classes
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changes you need to make. It is very important to check that the changes you make are
legal because otherwise the parse trees will become unusable and the generated code may be
invalid. The easiest way to check that the changes you are making are legal is to check the
Java grammar and remember the correspondence between parse trees and the grammar.

One particular issue to be aware of when modifying parse trees is the recursive way in
which some parts are represented. A FieldDeclaration contains FieldModifiers. Looking at
the Java grammar, we can see that the production rule for FieldModifiers is:

<FieldModifiers>
::= <FieldModifier>
| <FieldModifiers> <FieldModifier>
;

We can see that a FieldModifiers node can either contain a single FieldModifier, or another
FieldModifiers node followed by a FieldModifier. For example, Figure 3 shows how four
FieldModifier nodes are chained together in the parse tree.

Figure 3: Four FieldModifier nodes chained together in a parse tree

When adding a FieldModifier node we are therefore required to add another FieldMod-
ifiers node and insert it in the right position in the parse tree. Similarly, when removing a
FieldModifier node, we will also have to remove a FieldModifiers node. This is easy enough
to do as long as you remember the recursive structure of the grammar and the parse tree.

The SyntaxTree interface, which is implemented by all nodes in the parse tree, specifies
a few very useful methods. The getParent() method can be used to move upwards through
the tree. This method is implemented by both leaf nodes and inner nodes. Inner nodes also
contain a getKids() method as defined in the SyntaxTreeArrayBranch which you can use
to find the child nodes of an inner tree node. This method returns an array of all child nodes,
which may be either leaf nodes or inner nodes. It is also very useful when trying to determine
the number of children a node has.

In addition to the methods that can be used to navigate the parse tree, there is also a
method to determine the type of a node. Both inner and leaf nodes have this method which
is called getSymbolType(). The type of a node is equal to the type of the XML element it
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was constructed from. For example, in the parse tree in Figure 3 the root node has the type
FieldDeclaration.

2.2 Generating Code

Each parse tree node has a getValue() method which returns the concatenated values of all
of its children. If you call the getValue() method of the root of the parse tree, it will return
all tokens in the parse tree concatenated together in their original order. This is an easy way
to generate code. After changing the parse tree, you can thus use the getValue() method to
create .java files.

However, this method has a couple of problems. Firstly, only a single space is added
between tokens, meaning that the resulting code will look a little like this:

public boolean equals ( Object other ) {

which may not be desirable.
The second problem is more serious. The getValue() method only includes the tokens

that are directly connected to the parse tree. This includes all tokens which are required
by the grammar, but excludes both whitespace and comments. Therefore, they will not be
reached by the getValue() method and thus the final output will contain no newlines, tabs
or any other whitespace other than the standard single space inserted automatically between
tokens by the getValue() method. Comments are also not included and will not appear in
the generated code. This is a significant issue since comments are very important in real-world
software. If the refactoring tools created using these parse trees will ever need to be used in
reality, removing comments is not acceptable.

Fortunately, there is another way to generate code from the parse trees. The whitespace
and comment tokens are created even though they are not directly connected to parts of the
parse tree. However, they are connected to other tokens. All tokens are chained together
using the next field in the Token class. In this way, the order they were in originally in the
Java file is preserved. This means that to generate code, you simply need to find the first
token in the parse tree and follow the token chain, printing the contents of each token. The
first token can easily be found by continually going down the left branch of the tree until a
leaf is reached.

In the current version of the parse trees, comment tokens are not created and added to the
token chain. While the whitespace tokens are added to the token chain, they only produce a
single space when printed out rather than tabs or new lines as they should. However, these
shortcomings are likely to be fixed in future versions of parse trees and therefore writing your
code so that it can handle the updated versions is a good idea.

Another issue with using the token chain to generate code is that there may be several
repeated tokens in ambiguous sections of the parse tree. For example, whenever you use a
class name, it is not clear from the grammar if the entity you are refering to is a class or
an interface. Therefore, two versions of the parse tree are created, one representing the class
variant and the other representing the interface variant. As a result, the token containing the
class name you are using is repeated several times in the token chain. When following the
token chain to generate the code, you need to check if you are in an ambiguous section of the
parse tree. If you are, you need to take steps to ensure that duplicate tokens are skipped.
You can determine if you are in an ambiguous section by looking up the parse tree. If any

7



G Human Ethics Application for the Encapsulation Surveys

This section contains all the information about the encapsulation survey. It includes the consent and information
form given to respondents before the survey as well as the survey used for students (in Java) and professional
software developers (in C#). In addition, the original low risk ethics application and the human ethics committee
approval for the survey are included.
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Janina Voigt, Dr. Warwick Irwin and Dr. Neville Churcher 
Department of Computer Science and Software Engineering 
University of Canterbury 
Email: jvo24@student.canterbury.ac.nz 
 
Date: 27/4/09 
 
 

Encapsulation in Object Oriented Systems 
 
You are invited to participate in a research project about encapsulation in object oriented systems. 
  
The aim of this experiment is to find out how people practise encapsulation when writing software 
and what they see as good and bad practice. We are not trying to assess your programming skills or 
knowledge of computer science in any way. 
  
For this experiment, we will ask you to write a couple of methods for a given scenario containing one 
or two classes. We will also ask you to rank several different ways of writing a method, from what 
you think is best to what you think is worst. 
 
The results of the experiment may be published, but you may be assured of the complete 
confidentiality of data gathered in this investigation: the identity of participants will not be made 
public. To ensure anonymity and confidentiality, the survey you will be asked to fill in is anonymous. 
  
The project is being carried out as part of an Honours project by Janina Voigt under the supervision 
of Dr. Warwick Irwin (03 364 2987 ext 8225 ) and Dr. Neville Churcher (03 364 2987 ext 6352). They 
will be pleased to discuss any concerns you may have about participation in the project.  
  
The project has been reviewed and approved by the University of Canterbury Human Ethics 
Committee.  



 
 
 
 
 
 
 
 
 
Janina Voigt, Dr. Warwick Irwin and Dr. Neville Churcher 
Department of Computer Science and Software Engineering 
University of Canterbury 
Email: jvo24@student.canterbury.ac.nz 
 
Date: 27/4/09 
 

Consent Form 
 

Encapsulation in Object Oriented Systems 
 
 

I have read and understood the description of the above-named project.   On this basis I agree to 
participate in the project, and I consent to publication of the results of the project with the 
understanding that anonymity will be preserved.  
  
I understand also that I may at any time withdraw from the project, including withdrawal of any 
information I have provided.  
  
I note that the project has been reviewed and approved by the University of Canterbury Human 
Ethics Committee.  
 
  
 
 
Name (please print):  ______________________________________________ 
 
 
 
Signature:   ______________________________________________ 
 
 
 
Date:   ______________________________________________ 



Encapsulation in Object Oriented Systems 
 
 
Previous Programming Experience 
 
1) How long ago did you first learn to program? ________________________________________ 
 
2) How familiar are you with OO? ___________________________________________________ 
 
_______________________________________________________________________________ 
 
3) When did you first learn OO? _____________________________________________________ 
 
4) What programming language(s) have you used? __________________________ 
 
_______________________________________________________________________________ 
 
_______________________________________________________________________________ 
 
_______________________________________________________________________________ 
 
_______________________________________________________________________________ 
 
5) What programming language do you feel most proficient in? ___________________________ 
 
6) How much experience do you have using C#? _______________________________________ 
 
_______________________________________________________________________________ 
 
  



Consider the following class Vehicle: 
 
class Vehicle { 

 private int weight;  

 

 public int GetWeight() { 

  return weight; 

 } 

 

 public bool IsHeavierThan(Vehicle other) { 

  //Something goes here 

 } 

} 

 

 
7) Write a ToString() method for the Vehicle class that returns “Vehicle weighs weight kg”, where 
weight is the Vehicle’s weight. 
 
 
 
 
  

 



Now we want to complete the code for the IsHeavierThan(Vehicle other) method of the 
Vehicle class.  
 
Here are several ways in which we could complete this method: 
 
Option 1 
public bool IsHeavierThan(Vehicle other) { 

 return this.weight > other.weight; 

} 

 
Option 2 
public bool IsHeavierThan(Vehicle other) { 

 return this.weight > other.GetWeight(); 

} 

 
Option 3 
public bool IsHeavierThan(Vehicle other) { 

 return this.GetWeight() > other.GetWeight(); 

} 

 
 
8) Which of the above options do you consider the best? Rank the three options, from best to worst. 
 
1 ________________________________________________________________________________ 
 
2 ________________________________________________________________________________ 
 
3 ________________________________________________________________________________ 
 
 
Give reasons for the way you ranked the options: 
 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 



We will now extend our design by adding a second class, Truck, which is a subclass of Vehicle. The 
Truck class contains a field payload storing the maximum load the truck is allowed to carry.  
 

 

class Truck:Vehicle { 

 private int payload; 

 

 public int GetPayLoad() { 

  return payload; 

 } 

 

 public int GetGrossWeight() { 

  //Something goes here 

 } 

} 

 

 

9) Write a ToString() method for the Truck class that returns “Truck weighs weight kg and can carry 
up to payload kg”,  where weight is the Truck’s weight and payload is the maximum load it can carry. 
 
 
 
 
  

 



Now we want to complete the code in the GetGrossWeight() method of the Truck class. This 
method is supposed to calculate the gross weight of the truck, i.e. the weight of the truck plus the 
maximum load it can carry. Here are several different ways in which this method could be written: 
 
Option 1 
public int GetGrossWeight() { 

 return weight + payload; 

} 

 
Option 2 
public int GetGrossWeight() { 

 return GetWeight() + payload; 

} 

 
Option 3 
public int GetGrossWeight() { 

 return GetWeight() + GetPayload(); 

} 

 
 
10) Which of the above options do you consider the best? Rank the three options, from best to 
worst. 
 
1 ________________________________________________________________________________ 
 
2 ________________________________________________________________________________ 
 
3 ________________________________________________________________________________ 
 
 
Give reasons for the way you ranked the options: 
 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 
 
 
 



Encapsulation in Object Oriented Systems 
 
 
Previous Programming Experience 
 
1) What was your first programming language? ________________________________________ 
 
2) What other programming language(s) have you used (if any) ? __________________________ 
 
_______________________________________________________________________________ 
 
_______________________________________________________________________________ 
 
_______________________________________________________________________________ 
 
_______________________________________________________________________________ 
 
3) What programming language do you feel most proficient in? ___________________________ 
 
4) How much experience do you have using Java? ______________________________________ 
 
_______________________________________________________________________________ 
 
  



Consider the following class Vehicle: 
 
public class Vehicle { 

 private int weight;  

 

 public int getWeight() { 

  return weight; 

 } 

 

 public boolean isHeavierThan(Vehicle other) { 

  //Something goes here 

 } 

} 

 

 
5) Write a toString() method for the Vehicle class that returns “Vehicle weighs weight kg”, where 
weight is the Vehicle’s weight. 
 
 
 
 
  

 



Now we want to complete the code for the isHeavierThan(Vehicle other) method of the 
Vehicle class.  
 
Here are several ways in which we could complete this method: 
 
Option 1 
public boolean isHeavierThan(Vehicle other) { 

 return this.weight > other.weight; 

} 

 
Option 2 
public boolean isHeavierThan(Vehicle other) { 

 return this.weight > other.getWeight(); 

} 

 
Option 3 
public boolean isHeavierThan(Vehicle other) { 

 return this.getWeight() > other.getWeight(); 

} 

 
 
6) Which of the above options do you consider the best? Rank the three options, from best to worst. 
 
1 ________________________________________________________________________________ 
 
2 ________________________________________________________________________________ 
 
3 ________________________________________________________________________________ 
 
 
Give reasons for the way you ranked the options: 
 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 



We will now extend our design by adding a second class, Truck, which is a subclass of Vehicle. The 
Truck class contains a field payload storing the maximum load the truck is allowed to carry.  
 

 

public class Truck extends Vehicle { 

 private int payload; 

 

 public int getPayLoad() { 

  return payload; 

 } 

 

 public int getGrossWeight() { 

  //Something goes here 

 } 

} 

 

 

7) Write a toString() method for the Truck class that returns “Truck weighs weight kg and can carry 
up to payload kg”,  where weight is the Truck’s weight and payload is the maximum load it can carry. 
 
 
 
 
  

 



Now we want to complete the code in the getGrossWeight() method of the Truck class. This 
method is supposed to calculate the gross weight of the truck, i.e. the weight of the truck plus the 
maximum load it can carry. Here are several different ways in which this method could be written: 
 
Option 1 
public int getGrossWeight() { 

 return weight + payload; 

} 

 
Option 2 
public int getGrossWeight() { 

 return getWeight() + payload; 

} 

 
Option 3 
public int getGrossWeight() { 

 return getWeight() + getPayload(); 

} 

 
 
8) Which of the above options do you consider the best? Rank the three options, from best to worst. 
 
1 ________________________________________________________________________________ 
 
2 ________________________________________________________________________________ 
 
3 ________________________________________________________________________________ 
 
 
Give reasons for the way you ranked the options: 
 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 
 
 
 



 

 

UNIVERSITY OF CANTERBURY 

LOW RISK APPLICATION FORM 

(For research proposals which are not considered in full by the University Human Ethics Committee) 

 

FOR STUDENT RESEARCH UP TO AND INCLUDING MASTERS LEVEL 

  

EETTHHIICCAALL    AAPPPPRROOVVAALL    OOFF    LLOOWW    RRIISSKK    RREESSEEAARRCCHH    IINNVVOOLLVVIINNGG    HHUUMMAANN  PPAARRTTIICCIIPPAANNTTSS    RREEVVIIEEWWEEDD    

BBYY    DDEEPPAARRTTMMEENNTTSS  

PLEASE read the important notes appended to this form before completing the sections below 

 

1 RESEARCHER’S NAME: Janina Voigt 

 

2 NAME OF DEPARTMENT OR SCHOOL: Department of Computer Science and Software Engineering 
 

3 EMAIL ADDRESS: jvo24@student.canterbury.ac.nz 

 

4       TITLE OF PROJECT: Encapsulation in Object Oriented Systems 

 

 

5 PROJECTED START DATE OF PROJECT: 1/5/09 
 

6 STAFF MEMBER/SUPERVISOR RESPONSIBLE FOR PROJECT: Dr. Warwick Irwin and Dr. Neville 

Churcher 
 

7 NAMES OF OTHER PARTICIPATING STAFF AND STUDENTS: None 

 

8 STATUS OF RESEARCH: (e.g. class project, thesis) Honours Project 

 

9 BRIEF DESCRIPTION OF THE PROJECT:  
Please give a brief summary (approx. 300 words) of the nature of the proposal in lay language, including the 

aims/objectives/hypotheses of the project, rationale, participant description, and procedures/methods of the project:- 

 

This project aims to identify how software engineers practise encapsulation. Encapsulation refers to 

the practice of hiding information and data within components of the system. It is an important tool 

used by software developers to manage the complexity of software and to avoid errors and mistakes in 

code. 

We are planning to conduct a short survey to find out how software engineering students think about 

and use encapsulation when programming. In the survey, the students will be asked to write a small 

amount of code. They will also be asked to rank a number of different pieces of code, from best to 

worst. It is hoped this will give us an indication of how they think about encapsulation and how they 

use it. 

The survey will be given to second and third year software engineering students during their lab or 

tutorial times. 
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Low Risk Application Form - 2007 

10 WHY IS THIS A LOW RISK APPLICATION? 

 Description should include issues raised in the Low Risk Checklist 

 Please give details of any ethical issues which were identified during the consideration of the proposal and the way in 

which these issues were dealt with or resolved. :- 

 

 

This research is conducted as part of an Honours project. It is low risk because it does not involve 

threat, deception, invasion of privacy, mental, physical or cultural risk or stress, and does not involve 

gathering personal information of sensitive nature about or from individuals.  

The students who will take part in the experiment will not be asked to perform any tasks that could 

be harmful to them and no personal information will be gathered about them.  

The experiment will be performed as a part of a lab or tutorial session. The survey should take up to 

15 minutes to complete and will thus not interfere significantly with their normal class time.  

Participation in the experiment is completely voluntary and no incentives or inducements will be 

given. The project and its goals will be explained at the start of the session to give students the 

opportunity to give informed consent. Students will also be given the opportunity to pull out of the 

experiment at any time during or after the session. This is done to ensure that students do not feel 

stressed about their performance. There is no deception involved in this project since students will be 

told up-front about the experiment and its goals.  
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Low Risk Application Form - 2007 

Please ensure that Section A, B and C below are all completed 

 

 

APPLICANT’S SIGNATURE: ...................................................  Date ............................... 

 

 

 

A SUPERVISOR DECLARATION: 

 

1 I have made the applicant fully aware of the need for and the requirement of seeking HEC approval for research 

involving human participants. 

2 I have ensured the applicant is conversant with the procedures involved in making such an application. 

3 In addition to this form the applicant has individually filled in the full application form which has been reviewed 

by me. 

 

 

 

 SIGNED (Supervisor): ............................................. Date ................................. 

 

 

B SUPPORTED BY THE DEPARTMENTAL/SCHOOL RESEARCH COMMITTEE:  
 

 

 

 Name  ....................................................... Signature:  .............................................................  Date ..................... 

 

 

 

C APPROVED BY HEAD OF DEPARTMENT/SCHOOL:  

 

 

 

 Name  ....................................................... Signature:  .............................................................  Date ..................... 
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Low Risk Application Form - 2007 

__________________________________________________________________________________________________ 

 

 

ACTION TAKEN BY HUMAN ETHICS COMMITTEE: 
 

 Added to Low Risk Reporting Database  Referred to University of Canterbury HEC 

 

 Referred to another Ethics Committee  -  Please specify: 

 

 ............................................................................................................................................................................ 

 

 

REVIEWED BY:......................................................................  Date .................................................. 

 

 

Please attach copies of any Information Sheet and/or Consent Form 

Forward two copies to: 

 

The Secretary 

Human Ethics Committee 

Level 6, Registry Building 

 

 

All queries will be forwarded to the applicant within 7 days   

Please include a copy of this form as an appendix in your thesis or course work 
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Low Risk Application Form - 2007 

NOTES CONCERNING LOW RISK REPORTING SHEETS 

1.  This form should only be used for proposals which are Low Risk as defined in the University of Canterbury Human 

Ethics Committee Principles and Guidelines policy document, and which may therefore be properly considered and 

approved at departmental level under Section 5 of that document; 

 

2. Low Risk applications are: 

a Masters theses where the projects do not raise any issue of deception, threat, invasion of privacy, mental, physical 

or cultural risk or stress, and do not involve gathering personal information of a sensitive nature about or from 

individuals. 

 

b Masters level supervised projects undertaken as part of specific course requirements where the projects do not raise 

any issue of deception, threat, invasion of privacy, mental, physical or cultural risk or stress, and do not involve 

gathering personal information of sensitive nature about or from individuals. 

 

c Undergraduate and Honours class research projects which do not raise any issue of deception, threat, invasion of 

privacy, mental, physical or cultural risk or stress, and do not involve gathering personal information of sensitive 

nature about or from individuals, but do not have blanket approval as specified in Section 4 of the Principles and 

Guidelines. 

 

3. No research can be counted as low risk if it involves: 

 

(i) invasive physical procedures or potential for physical harm 

(ii) procedures which might cause mental/emotional stress or distress, moral or cultural offence 

(iii) personal or sensitive issues 

(iv) vulnerable groups 

(v) Tangata Whenua 

(vi) cross cultural research 

(vii) investigation of illegal behaviour(s)  

(viii) invasion of privacy 

(ix) collection of information that might be disadvantageous to the participant 

(x) use of information already collected that is not in the public arena which might be disadvantageous to the 

participant  

(xi) use of information already collected which was collected under agreement of confidentiality 

(xii) participants who are unable to give informed consent 

(xiii) conflict of interest e.g. the researcher is also the lecturer, teacher, treatment-provider, colleague or employer of 

the research participants, or there is any other power relationship between the researcher and the research 

participants. 

(xiv) deception 

(xv) audio or visual recording without consent 

(xvi) withholding benefits from “control” groups 

(xvii) inducements 

(xviii) risks to the researcher 

 

 

This list is not definitive but is intended to sensitise the researcher to the types of issues to be considered.  Low 

risk research would involve the same risk as might be encountered in normal daily life. 

 

4. Responsibility 

 

 Supervisors are responsible for: 

 

(i) Theses where the projects do not raise any issues listed below. 

(ii) Masters level supervised projects undertaken as part of specific course requirements where the projects do not 

raise any issue. 

(iii) Undergraduate and Honours class research projects which do not raise any issue listed but do not have blanket 

approval as specified in the Principles and Guidelines. 

 

HODs are responsible for: 

 

(i) Giving final approval for the low risk application. 

(ii) Ensuring a copy of all applications are kept on file in the Department/School. 



 

 

 

 

 

 

 

 

 

 

Ref:  HEC 2009/LR/17  

 

 

 

 

11 June 2009 

 

Janina Voigt 

Department of Computer Science & Software Engineering 

UNIVERSITY OF CANTERBURY 

 

 

Dear Janina  

 

Thank you for forwarding to the Human Ethics Committee a copy of the low risk 

application you have recently made for your research proposal “Encapsulation in 

object oriented systems”.   

 

I am pleased to advise that this application has been reviewed and I confirm support 

of the Department’s approval for this project. 

 

With best wishes for your project.  

 

 

Yours sincerely 

 

 

 

 

 

Dr Michael Grimshaw 

Chair, Human Ethics Committee 
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