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Normal programs perform one task at a time. Parallel programs perform several 
tasks simultaneously, improving performance, scalability, and responsiveness. 
By writing parallel programs, your projects can take complete advantage of the 
latent power that multi-core and multi-processor computers have to offer. 

This book shows you how to get things done. I focus on the practice, rather 
than the theory and show you how the technology works using complete code 
examples to illustrate my points. Each chapter not only explains the principals 
of parallel programming but also contains a list of common pitfalls together 
with details of how to recognize them, and the steps you can take to prevent 
them happening to you. This book is an invaluable companion when tackling a 
wide range of parallel programming features and techniques including:

• Using the .NET 4 Task Parallel Library (TPL)
• Using synchronization to share data between tasks
• Coordinating parallel execution
• Using parallel loops
• Using Parallel LINQ
• Testing and debugging parallel programs
• Implementing common parallel algorithms

Each topic is explained with a complete fully working code example, so you can 
see, in one place, everything you need to do. 
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Introducing Parallel Programming 

When I started programming in the mid-1990s, Java was the hot new language. One of the most talked-
about features was its support for parallel programming—the ability for an application to do more than 
one task simultaneously. I was very excited; I worked in a research lab, and I finally had a way to use the 
four CPUs in the Sun server that I had managed to get in a moment of budget madness. 

Having a four-CPU machine was a big—no, huge—deal in those days. It cost $150,000 and designed 
for use in a data center, and I made the machine into a desktop computer by adding a couple of 
monitors and shoe-horning it into my tiny office. On a summer’s day, the office temperature reached 95 
degrees, and I got dizzy from dehydration. But I was in geek heaven—cool hardware, cool language, and 
cool project.  

When I started to actually write parallel code, I hit a brick wall; my code didn’t behave the way I 
wanted. Everything would suddenly stop, or I’d get bad results or tie up all of the CPUs so badly that I 
would have to reboot the machine. A reboot took up to an hour, which was far from ideal when giving 
demonstrations. 

So, like many other people before me, I embarked on a long and painful learning process to figure 
out how to get things right.  

A lot has changed over the years. Sun has been sold; a computer with ten times the power of my old 
Sun server can be bought at the local mall for $500, and there are rules against making a sauna out of an 
office, even in the name of geek glory.  

One thing that has remained the same is the gulf between the knowledge and skills required to write 
single-threaded versus parallel code. Languages have evolved to make the programmer’s life easier for 
writing regular programs, but little has changed for parallel programming—until now, of course. 
Microsoft has added features to C#, the .NET Framework, and Visual Studio 2010 that take a big step 
toward pairing a modern programming language with a modern approach to parallel programming.  

Introducing .NET Parallel Programming 
This book is about the parallel programming features of .NET 4, specifically the Task Parallel Library 
(TPL), Parallel LINQ, and the legion of support classes that make writing parallel programs with C# 
simpler and easier than ever before.  

I have been writing parallel programs on and off since I had that overheated office, about 15 years in 
all. I can honestly say that the TPL is the single most impressive, useful, and well thought out 
enhancement in all that time.  

With the widespread use of multiprocessor and multicore computers, parallel programming has 
gone mainstream. Or it would have, if the tools and skills required had been easier to use and acquire. 
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Microsoft has responded to the need for a better way to write parallel programs with the enhancements 
to the .NET framework I describe in this book. 

.NET has had support for parallel programming since version 1.0, now referred to as classic 
threading, but it was hard to use and made you think too much about managing the parallel aspects of 
your program, which detracts from focusing on what needs to be done.  

The new .NET parallel programming features are built on top of the classic threading support. The 
difference between the TPL and classic threading becomes apparent when you consider the basic 
programming unit each uses. In the classic model, the programmer uses threads. Threads are the engine 
of execution, and you are responsible for creating them, assigning work to them, and managing their 
existence. In the classic approach, you create a little army to execute your program, give all the soldiers 
their orders, and keep an eye on them to make sure they do as they were told. By contrast, the basic unit 
of the TPL is the task, which describes something you want done. You create tasks for each activity you 
want performed, and the TPL takes care of creating threads and dealing with them as they undertake the 
work in your tasks. The TPL is task-oriented, while the classic threading model is worker-oriented.  

Tasks let you focus primarily on what problem you want to solve instead of on the mechanics of how 
it will get done. If you have tried parallel programming with classic threads and given up, you will find 
the new features have a refreshing and enabling approach. You can use the new features without having 
to know anything about the classic features. You’ll also find that the new features are much better 
thought out and easier to use. 

As I said, the classic threading model is still there, but the TPL takes care of it for you. Threads are 
created and used to execute one or more of your tasks, all without you having to pay attention to the 
details of how it happens. The process is very cool and makes parallel programming much more 
pleasant and productive.  

What’s in This Book (and What Is Not) 
If you want to know how to write parallel programs using C#, this is the book for you. This focused, 
hands-on book shows you the classes and features, how to use them, and the kinds of problems they can 
be used to solve. Lots of fully worked code samples are included, as well as lists of methods and 
properties and pointers and warnings for topics that have potential traps.  

This book contains a lot of code. I believe that the best way to learn how to use a feature is to see it 
used. You’ll often see a chain of examples that only have minor differences, and I make no apology for 
this similarity. When you want to remind yourself of a specific class or technique, you will want to see it 
being used fully, without having to piece together fragments of examples from different sections and 
chapters. For the same reason, the examples tend to be trivial, often adding a series of numeric values or 
calculating integer powers. The point is always to show you how to use something in the TPL, not for me 
to demonstrate that I can write large applications. Seeing small, simple, frequent, repetitive code, and 
more code, is how programmers learn best. 

I have avoided writing about the theory behind the new features, and I’m pretty liberal in my use of 
terms. Parallel programming is an active area of academic research, and the new .NET parallel features 
incorporate some recent innovations and ideas. But this is a book about programming, and my guess is 
that you have picked up this book because you, like me, want to know how to program as quickly and as 
effectively as possible. I love the research; I find it interesting and respect the people who do it, but this 
book is not the place for it. 

Similarly, I don’t cover the classic threading model except in a couple of advanced sections 
explaining how you can control the way that the TPL interacts with the underlying threads used to 
perform your work. Some good books are available on the classic model, but given that the whole point 
of the TPL is to abstract away from the details, I am comfortable leaving that material to other authors.  
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Understanding the Benefits (and Pitfalls) of Parallel 
Programming 
Parallel computing is, at heart, a performance play. The work that a program performs is broken up into 
pieces, which are performed by multiple cores, processors, or computers. Some of those pieces of work 
will be performed at the same time, that is, in parallel, or concurrently, which is where the two key terms 
for this kind of programming arise. Writing the code that breaks up and arranges for parallel computing 
is called parallel programming. 

If you have a multicore or multi-processor machine, spreading the pieces of work across them can 
reduce the amount of time to complete the work overall. The key phrase here is can reduce; there are 
some caveats that you should be aware of as you read this book. 

Considering Overhead 
Parallel execution doesn’t come for free. There are overhead costs associated with setting up and 
managing parallel programming features. If you have only a small amount of work to perform, the 
overhead can outweigh the performance benefit.  

Coordinating Data 
If your pieces of work share common data or need to work in a concerted manner, you will need to 
provide coordination. I explain this is detail in Chapters 3 and 4, but as a general rule, the more 
coordination that is required, the poorer the performance of your parallel program. If the pieces of work 
can be performed in complete isolation from one another, you don’t have to worry. But such situations 
are uncommon, and mostly, you will have to take care to ensure that coordination is used to get the 
results you desire.  

Applying coordination is not hard, but applying just the right amount is a trick that comes with 
forethought and experience. Too much coordination compromises the performance of your parallel 
program; too little gets you unexpected results.  

Scaling Applications 
Adding a second core or CPU might increase the performance of your parallel program, but it is unlikely 
to double it. Likewise, a four-core machine is not going to execute your parallel program four times as 
quickly— in part because of the overhead and coordination described in the previous sections. However, 
the design of the computer hardware also limits its ability to scale. You can expect a significant 
improvement in performance, but it won’t be 100 percent per additional core, and there will almost 
certainly be a point at which adding additional cores or CPUs doesn’t improve the performance at all.  

Deciding When to Go Parallel 
My advice for assessing if a problem can be parallelized successfully is to just give it a try and measure 
the results. If a problem is difficult to write a parallel solution for, you will find out pretty quickly. If the 
problem can be parallelized but is affected by one or more of the caveats in the previous section, you can 
make an informed decision as to whether to use the parallel version or stick with the sequential 
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implementation. Either way, you’ll have increased your exposure to, and experience with, parallel 
programming. 

The key is measurement. Don’t just assume that a parallel solution will give you better performance 
and move on. Aside from the caveats I mentioned, you may well find that your first attempt can stand to 
be improved, and unless you measure, measure and measure again, you won’t know what’s going on. 
See Chapter 7 for details of how to use the Stopwatch class as a simple and effective measurement tool. 

Deciding When to Stay Sequential 
It may seem odd to emphasize the value of sequential execution in a book about parallel programming, 
but effective parallel programmers know when to leave well enough alone. Some problems are 
inherently sequential in nature—there are no pieces of work that can be performed concurrently. Some 
problems require so much coordination that the overhead incurred by parallel execution cancels out the 
performance gains. Some problems come with a mass of legacy code that would require too much 
rewriting to integrate with parallel code.  

One of the most important times to consider sequential execution is when something is wrong with 
your parallel code and you can’t work out why. There are some new parallel features in the Visual Studio 
2010 debugger that can be very helpful in tracking down bugs (see Chapter 7), but sometimes you need 
to go back to the basics to make sure that you are able to code a solution that works at all.  

Getting Prepared for This Book 
You should already know how to write C# code and use Visual Studio to create, compile, and run .NET 
applications in C#.  You need Visual Studio 2010 and .NET 4 for this book. The edition of Visual Studio 
you have doesn’t matter except in Chapter 8, which uses the Concurrency Visualizer and some debugger 
features that are only available with the commercial editions. All of the examples in this book are 
available for download as Visual Studio solutions; you can get them from the Source Code page at 
www.Apress.com.  

Understanding the Structure of This Book 
The first several chapters of this book focus on introducing and using the basic unit of the TPL, the Task 
class. There is a lot to take in, especially in Chapter 2, but stick with it, and you will start to make sense of 
it all. When you get to Chapters 3 and 4, I hope you will start to see how these features can be of use to 
you in your programming.  

Chapter 5 focuses on parallel loops, which are replacements for the standard for and foreach loops, 
except that loop iterations are processed in parallel. This is like “parallel programming light,” but I have 
put it after the Task class chapters, because to get the most from these useful loops, you need to 
understand something of what is happening behind the scenes. 

Chapter 6 looks at Parallel Language Integrated Query (PLINQ), which is a parallel-enabled version 
of LINQ to Objects. If you are a LINQ programmer (and if not, why not?), you will love this chapter. 
PLINQ is a happy marriage of the performance of parallelism and the flexibility and ingenuity of LINQ. 

In Chapter 7, I give a very brief overview of the tools available to help you measure the performance 
of your parallel code and track down bugs. Parallel programming adds some unique problems to 
debugging, but the new Visual Studio 2010 parallel debugger features go a long way to addressing them. 

http://www.Apress.com
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The final chapter, Chapter 8, contains some sample implementations of common parallel 
algorithms. In many cases, especially when you are starting with parallel programming, you will find that 
what you are looking for—or at least something that you can use as a starting point—is contained in this 
chapter. If nothing else, you should look at these examples to understand how the new parallel features 
of .NET can be combined to create powerful algorithms with surprisingly little code.  

Getting the Example Code 
You can get the source code for all of the examples from the Apress web site. There is a different Visual 
Studio solution for each chapter and each listing is contained in a separate project. Figure 1-1 shows you 
how this appears in Visual Studio 2010. 

 

  

Figure 1-1. The example code for Chapter 2 in Visual Studio 2010 

To run a listing, right-click the project in the Solution Explorer window, and select Set As Startup 
Project, as shown in Figure 1-2. Once you have selected the project you want, press Ctrl+F5 to compile 
and run the code. 
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Figure 1-2. Selecting the startup project 

Summary 
It should be clear that I am very enthusiastic about the new .NET parallel programming features—
enthusiastic enough to write this book and to say that I have huge respect for the team that created 
them. These well-designed and well-implemented features will, I am sure, change the way that parallel 
programming is perceived by mainstream programmers and do much to drive up the utilization of all of 
those multicore machines out there. 
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Task Programming 

Listing 2-1. Hello Task 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_01 { 
 
    class Listing_01 { 
 
        static void Main(string[] args) { 
 
            Task.Factory.StartNew(() => { 
                Console.WriteLine("Hello World"); 
            }); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

Hello Task 
Do you feel different? Did your brain pop at the versatility, utility and general flexibility of the new task 
programming model? Probably not, but don’t be disappointed. Listing 2-1 shows how to start a simple 
task, but it doesn’t begin to illustrate the power of the Task Programming Library. 

This chapter shows you the basics. If you have used .NET classic threads, you will see that 
standardizing the building blocks for creating and managing tasks can drastically reduce the amount of 
code you have to write to create a parallel application.  If you are new to parallel programming, then you 
should take the time to read through each of the sections – these are techniques that you will use in 
every program that you write. 

We will start with the Task class, which is at the heart of the Task Programming Library (TPL). I’ll 
show you how to use the new standardization features to create and start different types of Task, cancel 
them, wait for them to complete, and read their results, as well as how to deal with exceptions. 
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To start, take a quick look at the first code listing; it includes some key building blocks that you’ll see 
throughout this book and use in your own code. Look at the imported namespace: 

 
using System.Threading.Tasks; 

 
This namespace is one that we will be spending a lot of time with, and you will see it in almost all of 

the examples in this book; it contains the key classes for parallel programming. Another important 
namespace is System.Threading, which you may recognize as the home of the classic .NET threading 
classes. This namespace contains classes we’ll use when we come to coordinate the work of several tasks 
in Chapter 4.  

The most important part of the first listing is the following: 
 

Task.Factory.StartNew(() => { 
    Console.WriteLine("Hello World"); 
}); 

 
This is your first sight of the System.Threading.Tasks.Task class, the fundamental class for parallel 

programming. We use the static Task.Factory.StartNew() method to create a simple Task whose body 
prints a message to the console. This is the simplest way to create a task that requires no input data and 
produces no result. You’ll learn how to create and start more complicated tasks in the following sections.  

And that is our first (simple) parallel program. Running the program produces the following result: 

Main method complete. Press enter to finish. 

Hello World 

Creating and Starting Tasks 
To create the simplest of Tasks, you only need to have a task body, that is, a delegate or action that 
represents the workload you want performed in parallel. The Task in Listing 2-1 has a simple body, 
where the workload consisted of printing a message to the console. We defined the Task body using  
a lambda expression, which is the form we will use most often throughout this book. Table 2-1 
summarizes the different ways that you can use Tasks and the listings in this section that  
demonstrate them. 
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Table 2-1. Getting Started with Tasks 

Problem Solution Listing 

Create and start  
a simple task 

Call the static Task.Factory.StartNew() method with an Action delegate 
as an argument.  

2-1 

 Create a new Task with an Action delegate as an argument. Call Start() 
on the Task instance. 

2-2 

Provide state to  
a task 

Create a new Task with an Action<object> delegate and an object as 
constructor arguments. 

2-3 and 
2-4 

Get a result from  
a task 

Create a new Task<T>, where T is the type of the result you want, and use 
an Action or Action<object> delegate as a constructor argument.  Use 
the return keyword in the task body to create the result in the task. Read 
the result by calling the blocking Task.Result property. 

2-5 

 Call the static Task.Factory.StartNew<T>() method (where T is the type 
of the result you want) with an Action or Action<object> delegate as an 
argument. Use the return keyword in the task body to create the result 
in the task. Read the result by calling the blocking Task.Result property. 

2-6 

Creating Simple Tasks 
To perform a simple Task, create a new instance of the Task class, passing in a System.Action delegate 
that represents the workload that you want performed as a constructor argument. You can explicitly 
create the Action delegate so that it refers to a named method, use an anonymous function, or use a 
lambda function. Once you have created an instance of Task, call the Start() method, and your Task is 
then passed to the task scheduler, which is responsible for assigning threads to perform the work. We 
look at the task scheduler in detail in Chapter 4. Listing 2-2 shows the different ways of creating and 
starting simple tasks.  

Simple Tasks, while often useful, are limited by their lack of data input and result output. The TPL 
provides ways for you to create Tasks with both inputs and outputs, and I’ll show you all of the options 
available in the following sections. 

Listing 2-2. Four Ways to Create Basic Tasks 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_02 { 
 
    class Listing_02 { 
 
        static void Main(string[] args) { 
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            // use an Action delegate and a named method 
            Task task1 = new Task(new Action(printMessage)); 
 
            // use a anonymous delegate 
            Task task2 = new Task(delegate { 
                printMessage(); 
            }); 
 
            // use a lambda expression and a named method 
            Task task3 = new Task(() => printMessage()); 
 
            // use a lambda expression and an anonymous method 
            Task task4 = new Task(() => { 
                printMessage(); 
            }); 
 
            task1.Start(); 
            task2.Start(); 
            task3.Start(); 
            task4.Start(); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
 
        static void printMessage() { 
            Console.WriteLine("Hello World"); 
        } 
    } 
} 

 
Running the code in Listing 2-2 gives the obvious result of calling the printMessage() method four 

times, as follows: 

Main method complete. Press enter to finish. 

Hello World 

Hello World 

Hello World 

Hello World 

Listing 2-1 uses the Task.Factory.StartNew() method to create and start a Task. There is little 
difference between the approaches shown in Listing 2-2 and the Factory.StartNew() method, but 
Microsoft recommends using Factory.StartNew() for simple, short-lived tasks. 
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■ Tip You can’t Start() a Task that has already run. If you need to repeat the work performed by a Task that has 
completed, you must create another Task instance with the same workload. 

Setting Task State 
You can supply the state for a Task by passing in an instance of System.Action<object> and an object 
representing your state as the command line arguments. Setting the Task state lets you have Tasks 
perform similar workloads on different data. For example, imagine that we want our four Tasks from the 
previous example to print out different messages to the console so that we know which technique 
printed which message. We create instances of Action<object> to set the message that we wanted each 
task to print out and use them as we create the Tasks. Listing 2-3 shows how to do this. 

Listing 2-3.  Adding Task State 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_03 { 
 
    class Listing_03 { 
 
        static void Main(string[] args) { 
 
            // use an Action delegate and a named method 
            Task task1 = new Task(new Action<object>(printMessage),  
                "First task"); 
 
            // use a anonymous delegate 
            Task task2 = new Task(delegate (object obj) { 
                printMessage(obj); 
            }, "Second Task"); 
 
            // use a lambda expression and a named method 
            // note that parameters to a lambda don’t need  
            // to be quoted if there is only one parameter 
            Task task3 = new Task((obj) => printMessage(obj), "Third task"); 
 
            // use a lambda expression and an anonymous method 
            Task task4 = new Task((obj) => { 
                printMessage(obj); 
            }, "Fourth task"); 
 
            task1.Start(); 
            task2.Start(); 
            task3.Start(); 
            task4.Start(); 
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            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
 
        static void printMessage(object message) { 
            Console.WriteLine("Message: {0}", message); 
        } 
    } 
} 

 
The example may not seem that useful until we pick one technique for creating Tasks and then use 

the state feature to create several at once. Listing 2-4 shows how to get the same effect as in Listing 2-3 
but in a much clearer and more concise manner. Now, we are able to create several Tasks, each of which 
has the same code statements in the body, but which operates on different state data.  

Listing 2-4. Creating Several Tasks Using Task State 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_04 { 
 
    class Listing_04 { 
 
        static void Main(string[] args) { 
 
 
            string[] messages = { "First task", "Second task",  
                "Third task", "Fourth task" }; 
 
            foreach (string msg in messages) { 
                Task myTask = new Task(obj => printMessage((string)obj), msg); 
                myTask.Start(); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
 
        static void printMessage(string message) { 
            Console.WriteLine("Message: {0}", message); 
        } 
    } 
} 

 
Notice that we explicitly cast the state data to a string so that we can call the printMessage() method 

in the lambda expression in Listing 2-4. The only way to pass state to a Task constructor is using 
Action<object>, so you must convert or cast explicitly if you need to access the members of a specific 
type. Running the code in Listing 2-4 produces the following results: 
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Main method complete. Press enter to finish. 

Message: Second task 

Message: Fourth task 

Message: First task 

Message: Third task 

The order in which the messages print out when you run the code may be different to the order 
shown in these results. The task scheduler decides how to allocate threads to perform Tasks and the 
order can vary.  

Getting a Result 
To get a result from a Task, create instances of Task<T>, where T is the type of the result that will be 
produced and return an instance of that type in your Task body. To read the result, you call the Result 
property of the Task you created. 

It is simple and easy to do. Listing 2-5 shows two Tasks that return results, one that uses state and 
one that doesn’t. 

Listing 2-5. Getting Results from a Task 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_05 { 
 
    class Listing_05 { 
 
        static void Main(string[] args) { 
 
            // create the task 
            Task<int> task1 = new Task<int>(() => { 
                int sum = 0; 
                for (int i = 0; i < 100; i++) { 
                    sum += i; 
                } 
                return sum; 
            }); 
 
            // start the task 
            task1.Start(); 
 
            // write out the result 
            Console.WriteLine("Result 1: {0}", task1.Result); 
            // create the task using state 
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            Task<int> task2 = new Task<int>(obj => { 
                int sum = 0; 
                int max = (int)obj; 
                for (int i = 0; i < max; i++) { 
                    sum += i; 
                } 
                return sum; 
            }, 100); 
 
            // start the task 
            task2.Start(); 
 
            // write out the result 
            Console.WriteLine("Result 2: {0}", task2.Result); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Reading the Result property waits until the Task it has been called on has completed. In Listing 2-5, 

this means that the second Task will not be started until the first has completed, because we call the 
Result property on the first Task before creating and starting the second Task.  

In Listing 2-1, we are able to create and start a new Task using the static Task.Factory.StartNew() 
method. Task.Factory also includes the StartNew<T> method, which will create and start a Task<T> in a 
single step as shown by Listing 2-6. 

Listing 2-6. Getting a Result with the Task Factory  

using System; 
using System.Threading.Tasks; 
 
namespace Listing_06 { 
 
    class Listing_06 { 
 
        static void Main(string[] args) { 
 
            // create the task 
            Task<int> task1 =  Task.Factory.StartNew<int>(() => { 
                int sum = 0; 
                for (int i = 0; i < 100; i++) { 
                    sum += i; 
                } 
                return sum; 
            }); 
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            // write out the result 
            Console.WriteLine("Result 1: {0}", task1.Result); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

Specifying Task Creation Options 
Some of the constructor overloads for Task allow values from the 
System.Threading.Tasks.TaskCreationOptions enumeration to be specified. We will discuss the classes 
these options relate to later in this book, but they are listed in Table 2-2 just for completeness. 

Table 2-2. Members of the TaskCreationOptions Enumeration 

Member Description 

None Uses the default task creation options 

PreferFairness A request to the task scheduler to schedule tasks as fairly as possible (See Chapter 4 
for more information about the task scheduler.) 

LongRunning Specifies that the task will be long running, which is a hint to the task scheduler 
(See Chapter 4 for more information about the task scheduler.) 

AttachedToParent Specifies that a child task is attached to a parent in the task hierarchy (See Chapter 
4 for more information about the child and parent tasks.) 

Identifying Tasks 
The Task.CurrentId property returns a unique int that identifies the current Task. This property will 
return null if it is called outside of a Task body. 

Cancelling Tasks 
One of the new areas of standardization in the TPL is cancelling tasks. This may seem like an odd thing 
to regard as useful, especially if you are accustomed to writing your own cancellation code using classic 
.NET threads. The new approach makes parallel code simpler and more consistent and reduces the risk 
of encountering some of the most commonly encountered problems when performing a cancellation, as 
you will see when we discuss putting a thread to sleep later in this chapter. 
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Creating a Task that you can cancel is a four-step process: 

1. Create a new instance of System.Threading.CancellationTokenSource: 

CancellationTokenSource tokenSource = new CancellationTokenSource 

2. Call the CancellationTokenSource.Token property to get a System.Threading. 
CancellationToken: 

CancellationToken token = tokenSource.Token; 

3. Create a new Task or Task<T> using an Action or Action<object> delegate and 
the CancellationToken from step 2 as constructor arguments: 

Task task1 = new Task(new Action(myMethod), token); 

4. Call the Start() method on your Task or Task<T> as you would normally. 

To cancel a Task, simply call the Cancel() method on the CancellationTokenSource created in step 1. 
Task cancellation is cooperative, which means that the .NET Framework doesn’t force your tasks to 
finish; you have to monitor the CancellationToken you used to create your task and stop your task when 
you detect that a cancellation has been requested. Passing the cancellation token to the Task constructor 
allows the .NET Framework to avoid starting tasks that rely on tokens that have already been cancelled. 
Table 2-3 provides a quick summary of the different mechanisms available for cancelling tasks, each of 
which I describe in the following sections. 

Table 2-3. Canceling Tasks 

Problem Solution Listing 

Create a 
cancellable 
task. 

Get a System.Threading.CancellationToken by creating a new instance of 
System.Threading.CancellationTokenSource and accessing the Token 
property. Use the token as a constructor argument to the Task class. 

2-7 

Cancel a task. Call the Cancel() method on CancellationTokenSource. 2-7 

Cancel several 
tasks. 

Use a single CancellationToken in the constructor of several Tasks, and call 
the Cancel() method on the CancellationTokenSource. 

2-10 

Monitor several 
tokens. 

Create a composite cancellation source by calling the 
CancellationTokenSource.CreateLinkedTokenSource() method. 

2-11 

Poll for task 
cancellation. 

Check the isCancellationRequested property of CancellationToken each 
time your task body loop iterates. If this property returns true, release any 
resources you have been using and throw an instance of 
OperationCanceledException. 

2-7 

Poll for task 
cancellation. 

Call the Token.ThrowIfCancellationRequested() method to check for 
cancellation, and throw an instance of OperationCanceledException in a 
single code statement. 

2-8 
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Problem Solution Listing 

Use a delegate 
for task 
cancellation. 

Pass an Action delegate to the Token.Register() method. The delegate will 
be invoked when the CancellationTokenSource.Cancel() method is called. 

 2-8 

Use a wait 
handle for task 
cancellation. 

Call the Token.WaitHandle.WaitOne() method to block the calling thread 
until the CancellationTokenSource.Cancel() method is called. 

2-9 

Determine if a 
task was 
cancelled. 

Read the Task.IsCancelled property, which returns true if the Task was 
cancelled. 

2-12 

Monitoring Cancellation by Polling 
Many task bodies contain loops to iteratively process data. You can use the loop iterations to check if 
your task has been cancelled by polling the IsCancellationRequested property of the CancellationToken 
class. If the property returns true, you need to break out of the loop and release any resources you are 
holding (network connections, transaction containers, etc.)  

You must also throw an instance of System.Threading.OperationCanceledException in your task 
body; this is how you acknowledge the cancellation, and if you forget, the status of your task will not be 
set correctly. The following code fragment shows the basic anatomy of a task body loop that polls for 
cancellation: 

 
while (true) { 
   if (token.IsCancellationRequested) { 
      // tidy up and release resources 
      throw new OperationCanceledException(token); 
   } else { 
      // do a unit of work 
   } 
} 

 
If you don’t have any resources to release, you can simplify your code by calling the 

CancellationToken.ThrowIfCancellationRequested() method, which will perform the cancellation check 
and throw the exception in one step. This changes the loop anatomy as follows: 

 
while (true) { 
   token.ThrowIfCancellationRequested(); 
      // do a unit of work 
   } 
} 

 
Listing 2-7 demonstrates creating a cancellable task and polling to check for cancellation. 
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Listing 2-7. Cancelling a Task 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_07 { 
 
    class Listing_07 { 
 
        static void Main(string[] args) { 
 
            // create the cancellation token source 
            CancellationTokenSource tokenSource  
                = new CancellationTokenSource(); 
 
            // create the cancellation token 
            CancellationToken token = tokenSource.Token; 
 
            // create the task 
            Task task = new Task(() => { 
                for (int i = 0; i < int.MaxValue; i++) { 
                    if (token.IsCancellationRequested) { 
                        Console.WriteLine("Task cancel detected"); 
                        throw new OperationCanceledException(token); 
                    } else { 
                        Console.WriteLine("Int value {0}", i); 
                    } 
                } 
            }, token); 
 
            // wait for input before we start the task 
            Console.WriteLine("Press enter to start task"); 
            Console.WriteLine("Press enter again to cancel task"); 
            Console.ReadLine(); 
 
            // start the task 
            task.Start(); 
 
            // read a line from the console. 
            Console.ReadLine(); 
 
            // cancel the task 
            Console.WriteLine("Cancelling task"); 
            tokenSource.Cancel(); 
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            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

Monitoring Cancellation with a Delegate 
You can register a delegate with a CancellationToken, which will be invoked when the 
CancellationTokenSource.Cancel() method is called. You can use this as an alternative to the method 
shown in Listing 2-7 for checking cancellation, which can be useful if your task relies on other 
asynchronous operations, such as I/O reads. You can also use the delegate feature to be notified when a 
cancellation happens; this can be useful in UI applications. Listing 2-8 shows how the delegate feature 
can be used. 

Listing 2-8. Monitoring Cancellation with a Delegate 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_08 { 
    class Listing_08 { 
        static void Main(string[] args) { 
 
            // create the cancellation token source 
            CancellationTokenSource tokenSource 
                = new CancellationTokenSource(); 
 
            // create the cancellation token 
            CancellationToken token = tokenSource.Token; 
 
            // create the task 
            Task task = new Task(() => { 
                for (int i = 0; i < int.MaxValue; i++) { 
                    if (token.IsCancellationRequested) { 
                        Console.WriteLine("Task cancel detected"); 
                        throw new OperationCanceledException(token); 
                    } else { 
                        Console.WriteLine("Int value {0}", i); 
                    } 
                } 
            }, token); 
 
            // register a cancellation delegate 
            token.Register(() => { 
                Console.WriteLine(">>>>>> Delegate Invoked\n"); 
            }); 
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            // wait for input before we start the task 
            Console.WriteLine("Press enter to start task"); 
            Console.WriteLine("Press enter again to cancel task"); 
            Console.ReadLine(); 
 
            // start the task 
            task.Start(); 
 
            // read a line from the console. 
            Console.ReadLine(); 
 
            // cancel the task 
            Console.WriteLine("Cancelling task"); 
            tokenSource.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Listing 2-8 is very similar to Listing 2-7, with the addition of the cancellation delegate registered 

using the Register() method of the CancellationToken class, which is shown in the bold code in the 
listing. The Register() method takes an instance of Action or Action<object>. The latter allows you 
provide a state object to your delegate in much the same manner as you would when passing state to a 
task delegate. When the Task is cancelled, the Action you have specified is performed. In the case of 
Listing 2-8, this is to print out a simple message. 

Monitoring Cancellation with a Wait Handle 
The third way to monitor task cancellation is to call the WaitOne() method of the CancellationToken. 
WaitHandle property. I cover wait handles in depth later in this book, but for this chapter, it is enough to 
know that when you call the WaitOne() method it blocks until the Cancel() method is called on the 
CancellationTokenSource that was used to create the token whose wait handle you are using. 

Listing 2-9 demonstrates the use of the wait handle for cancellation monitoring. Two Tasks are 
created, one of which (task2) calls the WaitOne() method, which blocks until the first Task is cancelled. 

Listing 2-9. Cancelation Monitoring with a Wait Handle 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_09 { 
    class Listing_09 { 
        static void Main(string[] args) { 
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            // create the cancellation token source 
            CancellationTokenSource tokenSource 
                = new CancellationTokenSource(); 
 
            // create the cancellation token 
            CancellationToken token = tokenSource.Token; 
 
            // create the task 
            Task task1 = new Task(() => { 
                for (int i = 0; i < int.MaxValue; i++) { 
                    if (token.IsCancellationRequested) { 
                        Console.WriteLine("Task cancel detected"); 
                        throw new OperationCanceledException(token); 
                    } else { 
                        Console.WriteLine("Int value {0}", i); 
                    } 
                } 
            }, token); 
 
            // create a second task that will use the wait handle 
            Task task2 = new Task(() => { 
                // wait on the handle 
                token.WaitHandle.WaitOne(); 
                // write out a message 
                Console.WriteLine(">>>>> Wait handle released"); 
            }); 
 
 
            // wait for input before we start the task 
            Console.WriteLine("Press enter to start task"); 
            Console.WriteLine("Press enter again to cancel task"); 
            Console.ReadLine(); 
 
            // start the tasks 
            task1.Start(); 
            task2.Start(); 
 
            // read a line from the console. 
            Console.ReadLine(); 
 
            // cancel the task 
            Console.WriteLine("Cancelling task"); 
            tokenSource.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 
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Cancelling Several Tasks 
You can use a single token when creating several Tasks and cancel them all with a single call to the 
CancellationTokenSource.Cancel() method. Listing 2-10 shows this in action. 

Listing 2-10. Cancelling Multiple Tasks 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_10 { 
 
    class Listing_10 { 
 
        static void Main(string[] args) { 
 
            // create the cancellation token source 
            CancellationTokenSource tokenSource  
                = new CancellationTokenSource(); 
            // create the cancellation token 
            CancellationToken token = tokenSource.Token; 
 
            // create the tasks 
            Task task1 = new Task(() => { 
                for (int i = 0; i < int.MaxValue; i++) { 
                    token.ThrowIfCancellationRequested(); 
                    Console.WriteLine("Task 1 - Int value {0}", i); 
                } 
            }, token); 
 
            Task task2 = new Task(() => { 
                for (int i = 0; i < int.MaxValue; i++) { 
                    token.ThrowIfCancellationRequested(); 
                    Console.WriteLine("Task 2 - Int value {0}", i); 
                } 
            }, token); 
 
            // wait for input before we start the tasks 
            Console.WriteLine("Press enter to start tasks"); 
            Console.WriteLine("Press enter again to cancel tasks"); 
            Console.ReadLine(); 
 
            // start the tasks 
            task1.Start(); 
            task2.Start(); 
 
            // read a line from the console. 
            Console.ReadLine(); 
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            // cancel the task 
            Console.WriteLine("Cancelling tasks"); 
            tokenSource.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

Creating a Composite Cancellation Token 
You can create a token that is composed from several CancellationTokens that will be cancelled if any of 
the underlying tokens is cancelled. You do this by calling the System.Threading. 
CancellationTokenSource.CreateLinkedTokenSource() method and passing in the CancellationTokens 
that you want to link. The result is a new CancellationToken that you can use normally. Listing 2-11 
demonstrates creating and using a composite cancellation token. 

Listing 2-11. Using a Composite Cancellation Token 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_11 { 
 
    class Listing_11 { 
 
        static void Main(string[] args) { 
 
            // create the cancellation token sources 
            CancellationTokenSource tokenSource1 = new CancellationTokenSource(); 
            CancellationTokenSource tokenSource2 = new CancellationTokenSource(); 
            CancellationTokenSource tokenSource3 = new CancellationTokenSource(); 
 
            // create a composite token source using multiple tokens 
            CancellationTokenSource compositeSource = 
                CancellationTokenSource.CreateLinkedTokenSource( 
                    tokenSource1.Token, tokenSource2.Token, tokenSource3.Token); 
 
            // create a cancellable task using the composite token 
            Task task = new Task(() => { 
                // wait until the token has been cancelled 
                compositeSource.Token.WaitHandle.WaitOne(); 
                // throw a cancellation exception  
                throw new OperationCanceledException(compositeSource.Token); 
            }, compositeSource.Token); 
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            // start the task 
            task.Start(); 
 
            // cancel one of the original tokens 
            tokenSource2.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

Determining If a Task Was Cancelled 
You can determine if a Task has been cancelled by checking the IsCancelled property, which will return 
true if the Task was cancelled. Listing 2-12 demonstrates the use of this property. 

Listing 2-12. Using the Task.isCancelled Property 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_12 { 
 
    class Listing_12 { 
 
        static void Main(string[] args) { 
 
            // create the cancellation token source 
            CancellationTokenSource tokenSource1 = new CancellationTokenSource(); 
            // create the cancellation token 
            CancellationToken token1 = tokenSource1.Token; 
 
            // create the first task, which we will let run fully 
            Task task1 = new Task(() => { 
                for (int i = 0; i < 10; i++) { 
                    token1.ThrowIfCancellationRequested(); 
                    Console.WriteLine("Task 1 - Int value {0}", i); 
                } 
            }, token1); 
 
            // create the second cancellation token source 
            CancellationTokenSource tokenSource2 = new CancellationTokenSource(); 
            // create the cancellation token 
            CancellationToken token2 = tokenSource2.Token; 
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            // create the second task, which we will cancel 
            Task task2 = new Task(() => { 
                for (int i = 0; i < int.MaxValue; i++) { 
                    token2.ThrowIfCancellationRequested(); 
                    Console.WriteLine("Task 2 - Int value {0}", i); 
                } 
            }, token2); 
 
            // start all of the tasks 
            task1.Start(); 
            task2.Start(); 
             
            // cancel the second token source 
            tokenSource2.Cancel(); 
 
            // write out the cancellation detail of each task 
            Console.WriteLine("Task 1 cancelled? {0}", task1.IsCanceled); 
            Console.WriteLine("Task 2 cancelled? {0}", task2.IsCanceled); 
     
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
 
        } 
    } 
} 

 
The code in Listing 2-12 creates two Tasks, each of which is constructed using a CancellationToken 

from a different CancellationTokenSource. The CancellationTokenSource for the second Task is 
cancelled, but the first Task is allowed to complete normally. The values of the IsCanceled property are 
printed out for each of the tasks. Running the code produces results similar to the following: 

Task 1 cancelled? False 

Task 2 cancelled? True 

Task 1 - Int value 0 

... 

Task 1 - Int value 9 

Main method complete. Press enter to finish. 

Waiting for Time to Pass 
It can be useful to have a Task wait for a given period of time, for example, if you are periodically polling 
the status of something before continuing executing the Task. Making a Task wait like this is referred to 
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as sleeping. You specify a period of time for the Task to sleep for, and it will wait until that period of time 
has elapsed, at which point the Task will wake up and continue execution.  

Table 2-4. Putting Tasks to Sleep 

Problem Solution Listing 

Sleep using a 
wait handle. 

Create a CancellationTokenSource, and use the CancellationToken wait 
handle by calling the CancallationToken.WaitHandle.WaitOne() instance 
method, specifying the number of milliseconds to sleep. The Task will sleep 
until the time specified has elapsed or the token has been cancelled. 

2-13 

Sleep using 
classic .NET 
threads. 

Call the static Thread.Sleep() method, specifying the number of 
milliseconds to sleep for. This method does not monitor cancellation 
tokens. 

2-14 

Sleep using spin 
waiting. 

Call the static Thread.SleepWait() method, specifying the number of CPU 
loops to wait for. Use this technique with caution. 

2-15 

Using a Cancellation Token Wait Handle 
The best way to put Tasks to sleep is to use the wait handle of a CancellationToken, which you saw earlier 
in the “Cancelling Tasks” section. Create an instance of CancellationTokenSource, and read the Token 
property to obtain the CancellationToken instance. Use the WaitHandle property, and call the overloaded 
WaitOne() method. In the “Cancelling Tasks” section, you saw the version that takes no arguments, 
which causes the calling thread to wait until the CancellationTokenSource.Cancel() method is called. 
However, other overloads of this method allow you to specify a period to wait using either an Int32 or a 
TimeSpan. When you specify a time period, the WaitOne() method will put the task to sleep for the specific 
number of milliseconds or until the CancellationToken is cancelled, whichever happens first. Listing 2-
13 demonstrates how this works. 

Listing 2-13. Putting a Task to Sleep 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_13 { 
 
    class Listing_13 { 
 
        static void Main(string[] args) { 
 
            // create the cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
            // create the cancellation token 
            CancellationToken token = tokenSource.Token; 
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            // create the first task, which we will let run fully 
            Task task1 = new Task(() => { 
                for (int i = 0; i < Int32.MaxValue; i++) { 
                    // put the task to sleep for 10 seconds 
                    bool cancelled = token.WaitHandle.WaitOne(10000); 
                    // print out a message 
                    Console.WriteLine("Task 1 - Int value {0}. Cancelled? {1}",  
                        i, cancelled); 
                    // check to see if we have been cancelled 
                    if (cancelled) { 
                        throw new OperationCanceledException(token); 
                    } 
                } 
            }, token); 
 
            // start task 
            task1.Start(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to cancel token."); 
            Console.ReadLine(); 
             
            // cancel the token 
            tokenSource.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Listing 2-13 creates a Task that prints out a message and then sleeps for 10 seconds using the 

WaitOne() method. If you run the code, the messages will be printed until you hit the return key, at which 
point the CancellationToken will be cancelled, causing the Task to wake up again. Remember, the 
WaitOne() method will wait until either the time specified has elapsed or the token has been cancelled, 
whichever happens first. The CancellationToken.WaitHandle.WaitOne() method returns true if the token 
has been cancelled and false if the time elapsed, causing the task has woken up because the time 
specified has elapsed. 

I prefer this technique for putting tasks to sleep because of the immediate response to the token 
being cancelled. You’ll see in a moment that this is an improvement over the classic threading model. 

Using Classic Sleep 
Because the TPL uses the classic .NET threading support behind the scenes, you can use the classic 
threading technique to put a Task to sleep. Call the static Thread.Sleep() method, and pass a time 
interval as an argument. Listing 2-14 reworks the previous example to use this technique. 
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Listing 2-14. Sleeping Using Classic Threads 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_14 { 
 
    class Listing_14 { 
 
        static void Main(string[] args) { 
 
            // create the cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
            // create the cancellation token 
            CancellationToken token = tokenSource.Token; 
 
            // create the first task, which we will let run fully 
            Task task1 = new Task(() => { 
                for (int i = 0; i < Int32.MaxValue; i++) { 
                    // put the task to sleep for 10 seconds 
                    Thread.Sleep(10000); 
                    // print out a message 
                    Console.WriteLine("Task 1 - Int value {0}", i); 
                    // check for task cancellation 
                    token.ThrowIfCancellationRequested(); 
                } 
            }, token); 
 
            // start task 
            task1.Start(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to cancel token."); 
            Console.ReadLine(); 
 
            // cancel the token 
            tokenSource.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The key difference with this technique is that cancelling the token doesn’t immediately cancel the 

task, because the Thread.Sleep() method will block until the time specified has elapsed and only then 
check the cancellation status. In this simple example, this means that the task continues to exist, albeit 
asleep, for up to 10 seconds after the token has been cancelled. 
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Using Spin Waiting 
The spin waiting technique is included in this chapter for completeness, but I recommend against using 
it. When you use the other two sleep techniques, the thread that is performing your task gives up its turn 
in the schedule when its sleeping, so any other threads can have a turn. The scheduler, which is 
responsible for managing the threads running at any given time, has to do some work to determine 
which thread should go next and make it happen. You can avoid the scheduler having to do this work by 
using a technique called spin waiting: the thread doesn’t give up its turn; it just enters a very tight loop 
on the CPU. Listing 2-15 demonstrates how to perform spin waiting by using the Thread.SpinWait() 
method. 

Listing 2-15. Sleeping by Spin Waiting 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_15 { 
 
    class Listing_15 { 
 
        static void Main(string[] args) { 
 
            // create the cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
            // create the cancellation token 
            CancellationToken token = tokenSource.Token; 
 
            // create the first task, which we will let run fully 
            Task task1 = new Task(() => { 
                for (int i = 0; i < Int32.MaxValue; i++) { 
                    // put the task to sleep for 10 seconds 
                    Thread.SpinWait(10000); 
                    // print out a message 
                    Console.WriteLine("Task 1 - Int value {0}", i); 
                    // check for task cancellation 
                    token.ThrowIfCancellationRequested(); 
                } 
            }, token); 
 
            // start task 
            task1.Start(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to cancel token."); 
            Console.ReadLine(); 
 
            // cancel the token 
            tokenSource.Cancel(); 
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            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The integer argument passed to the Thread.SpinWait() method is the number of times that the tight 

CPU loop should be performed, and the amount of time that this takes depends on the speed of your 
system. Spin waiting is most commonly used to acquire synchronization locks, which are described in 
the next chapter. The problem with spin waiting is that your task doesn’t stop using the CPU; it just 
burns a specified number of CPU cycles. This approach distorts the behavior of the scheduling process, 
and you can get some quite odd behaviors from an application if you use spin locks wrongly. My advice 
is to avoid spin locking, because it can cause a lot more problems than it solves. There are very few 
applications that cannot rely on the more robust and predictable sleep techniques. 

Waiting for Tasks 
When I showed you how to get a result from a Task, you learned that calling the Task.Result waits until 
the task has completed. You can also wait for tasks to complete without reading a result by using other 
methods in the Task class. This is useful if you want to wait for a Task that doesn’t return a result or if you 
need to do some basic coordination between tasks. You can wait for a single Task to complete, wait for a 
number of Tasks to complete or wait for the first of a number of Tasks to complete. Table 2-5 provides a 
quick summary of techniques for waiting for tasks.  

Table 2-5. Waiting for Tasks 

Problem Solution Listing 

Wait for a 
single task. 

Call the Wait() method on the Task instance, optionally providing a 
maximum duration to wait and a CancellationToken to monitor while 
waiting. 

2-16 

Wait for a set 
of tasks. 

Call the static Task.WaitForAll() method, supplying a Task array as an 
argument and optionally specifying a maximum duration to wait and a 
CancellationToken to monitor while waiting. 

2-17 

Wait for the 
first of a set of 
tasks. 

Call the static Task.WaitAny() method, supplying a Task array as an 
argument and optionally specifying a maximum duration to wait and a 
CancellationToken to monitor while waiting. 

2-18 

■ Tip Waiting for a task that has been cancelled will throw an exception; see the next section for details of 
handling exceptions in tasks. 
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Waiting for a Single Task 
You can wait for a single Task to complete by calling the Wait() instance method. The calling method 
will not return until the Task instance has completed, been cancelled or thrown an exception. See the 
next section for details of how to handle exceptions and the previous section for details of cancelling 
tasks. You can wait conditionally on a task by using the overloaded versions of the Wait() method. Table 
2-6 shows the overloaded versions. 

Table 2-6. Overloaded Versions of Task.Wait() Instance Method 

Method Description 

Wait() Wait until the Task completes, is cancelled, or throws an exception. 

Wait(CancellationToken) Wait until the CancellationToken is cancelled or the Task completes, is 
cancelled, or throws an exception. 

Wait(Int32) Wait for the specified number of milliseconds to pass or for the Task to 
complete, be cancelled, or throw an exception (whichever happens first). 

Wait(TimeSpan) Wait until the specified TimeSpan has passed or for the Task to complete, be 
cancelled, or throw an exception (whichever happens first). 

Wait(Int32, 
CancellationToken) 

Wait for the specified number of milliseconds to pass, for the 
CancellationToken to be cancelled, or for the Task to complete, be 
cancelled, or throw an exception (whichever happens first). 

 
Listing 2-16 illustrates how to use some of the overloaded versions of Wait().  

Listing 2-16. Waiting for a Single Task 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_16 { 
 
    class Listing_16 { 
 
        static void Main(string[] args) { 
 
            // create the cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
            // create the cancellation token 
            CancellationToken token = tokenSource.Token; 
 
            // create and start the first task, which we will let run fully 
            Task task = createTask(token); 
            task.Start(); 



CHAPTER 2 ■ TASK PROGRAMMING 

 

32  

            // wait for the task 
            Console.WriteLine("Waiting for task to complete."); 
            task.Wait(); 
            Console.WriteLine("Task Completed."); 
 
            // create and start another task 
            task = createTask(token); 
            task.Start(); 
 
            Console.WriteLine("Waiting 2 secs for task to complete."); 
            bool completed = task.Wait(2000); 
            Console.WriteLine("Wait ended - task completed: {0}", completed); 
 
            // create and start another task 
            task = createTask(token); 
            task.Start(); 
 
            Console.WriteLine("Waiting 2 secs for task to complete."); 
            completed = task.Wait(2000, token); 
            Console.WriteLine("Wait ended - task completed: {0} task cancelled {1}",  
                completed, task.IsCanceled); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
 
        static Task createTask(CancellationToken token) { 
            return new Task(() => { 
                for (int i = 0; i < 5; i++) { 
                    // check for task cancellation 
                    token.ThrowIfCancellationRequested(); 
                    // print out a message 
                    Console.WriteLine("Task - Int value {0}", i); 
                    // put the task to sleep for 1 second 
                    token.WaitHandle.WaitOne(1000); 
                } 
            }, token); 
        } 
    } 
} 

 
The overloaded versions that specify a time period return a Boolean result, which will be true if the 

Task completed before the duration elapsed and false otherwise.  

■ Note If an exception is thrown by a Task, it will be rethrown when the Wait() method is called. See the 
“Handling Exceptions in Tasks” section of this chapter for further details. 
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Waiting for Several Tasks 
You can wait for a number of tasks to complete by using the static Task.WaitAll() method. This method 
will not return until all of the tasks passed as arguments have completed, been cancelled, or thrown an 
exception. The WaitAll() method is overloaded and follows the same pattern of signatures as the 
Task.Wait() instance method (see Table 2-5 for details). Listing 2-17 demonstrates how to wait for 
several tasks. 

■ Tip When using this method, a Task is considered complete if it has finished its workload, been cancelled, or 
thrown an exception. If one or more of your tasks has thrown an exception, the WaitAll() method will throw an 
exception. See the “Handling Exceptions” section in this chapter for details. 

Listing 2-17. Waiting for Several Tasks 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_17 { 
 
    class Listing_17 { 
 
        static void Main(string[] args) { 
 
            // create the cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
            // create the cancellation token 
            CancellationToken token = tokenSource.Token; 
 
            // create the tasks 
            Task task1 = new Task(() => { 
                for (int i = 0; i < 5; i++) { 
                    // check for task cancellation 
                    token.ThrowIfCancellationRequested(); 
                    // print out a message 
                    Console.WriteLine("Task 1 - Int value {0}", i); 
                    // put the task to sleep for 1 second 
                    token.WaitHandle.WaitOne(1000); 
                } 
                Console.WriteLine("Task 1 complete"); 
            }, token); 
 
            Task task2 = new Task(() => { 
                Console.WriteLine("Task 2 complete"); 
            }, token); 
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            // start the tasks 
            task1.Start(); 
            task2.Start(); 
 
            // wait for the tasks 
            Console.WriteLine("Waiting for tasks to complete."); 
            Task.WaitAll(task1, task2);             
            Console.WriteLine("Tasks Completed."); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

 
In the listing, we create two tasks, one of which takes longer to complete than the other. Notice that 

we create cancellable tasks, because we want to use the CancellationToken wait handle to slow down the 
execution of the first task by putting it to sleep. We start both tasks and then call Task.WaitAll(), which 
blocks until both tasks are complete.  

Waiting for One of Many Tasks 
The Task.WaitAny() method waits for one of a set of tasks to complete, and this method has a number of 
overloads, all of which take a Task array. The method waits until any of the specified Tasks completes 
and returns the array index of the completed Task. If you use one of the overloads that accept additional 
arguments, a return value of -1 indicates that the time period expired or the CancellationToken was 
cancelled before any of the tasks completed. Listing 2-18 demonstrates the WaitAny() method. 

■ Tip When using this method, a Task is considered complete if it has finished its workload, been cancelled, or 
thrown an exception. If one or more of your tasks has thrown an exception, the WaitAny() method will throw an 
exception. See the “Handling Exceptions” section in this chapter for details. 

Listing 2-18. Using the WaitAny Method 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_18 { 
 
    class Listing_18 { 
 
        static void Main(string[] args) { 
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            // create the cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
            // create the cancellation token 
            CancellationToken token = tokenSource.Token; 
 
            // create the tasks 
            Task task1 = new Task(() => { 
                for (int i = 0; i < 5; i++) { 
                    // check for task cancellation 
                    token.ThrowIfCancellationRequested(); 
                    // print out a message 
                    Console.WriteLine("Task 1 - Int value {0}", i); 
                    // put the task to sleep for 1 second 
                    token.WaitHandle.WaitOne(1000); 
                } 
                Console.WriteLine("Task 1 complete"); 
            }, token); 
 
            Task task2 = new Task(() => { 
                Console.WriteLine("Task 2 complete"); 
            }, token); 
 
            // start the tasks 
            task1.Start(); 
            task2.Start(); 
 
            // wait for the tasks 
            Console.WriteLine("Waiting for tasks to complete."); 
            int taskIndex = Task.WaitAny(task1, task2); 
            Console.WriteLine("Task Completed. Index: {0}", taskIndex); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

Handling Exceptions in Tasks 
Another of the useful areas of standardization introduced by the TPL is in exception handling. It doesn’t 
matter how well we design, write, and test our code, we still have to handle exceptions.  

An exception that is thrown but dealt with is known as a handled exception. An exception that is 
thrown and not dealt with is an unhandled exception. Unhandled exceptions are something to avoid in 
general programming, but they are especially dangerous in when using the TPL, because by default, they 
will cause your program to exit unpredictably.  

The TPL provides a consistent model for handling exceptions that occur while a task is executing 
them, and the following sections describe the different aspects of this model and show you how to leave 
all of your exceptions unhandled and override the default policy for dealing with unhandled exceptions. 

Table 2-7 provides the quick guide for handling task exceptions. 
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Table 2-7. Handling Task Exceptions 

Problem Solution Listing 

Handle 
exceptions 
thrown by 
tasks. 

Call a trigger member (Task.Wait(), Task.WaitAll(), Task,WaitAny(), 
Task.Result), and catch System.AggregateException. Get an enumerable 
collection of the exceptions thrown by calling 
AggregateException.InnerExceptions. 

2-19 

Use an 
exception 
handler. 

Call the AggregateException.Handle() method, providing a delegate that 
takes a System.Exception and returns true if the exception has been 
handled and false if it should be escalated. 

2-20 

Read Task 
properties. 

Call the IsCompleted, IsFaulted, IsCancelled and Exception properties of 
the Task class. 

2-21 

Set a custom 
escalation 
policy. 

Register an event handler with 
System.Threading.Tasks.TaskScheduler.UnobservedTaskException. 

2-22 

Handling Basic Exceptions 
Any exception that is thrown (and not caught) by a Task is squirreled away by the .NET Framework until 
you call a trigger member, such as Task.Wait(), Task.WaitAll(), Task.WaitAny(), or Task.Result, at 
which point the trigger member will throw an instance of System.AggregateException.  

The AggregateException type is used to provider a wrapper around one or more exceptions, and this 
is useful because methods such as WaitAll() coordinate multiple Tasks and may need to present you 
with multiple exceptions. This feature is also useful for Task chaining, which is described in the next 
chapter. An AggregateException is always thrown by the trigger methods, even when there has been only 
one exception thrown. 

An example is always the best illustration, so Listing 2-19 creates three Tasks, two of which throw 
exceptions. The main thread starts the tasks and then calls the static WaitAll() method, catches the 
AggregateException and prints out details of the exceptions thrown by the individual Tasks. 

Listing 2-19. Basic Exception Handling 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_19 { 
 
    class Listing_19 { 
 
        static void Main(string[] args) { 
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            // create the tasks 
            Task task1 = new Task(() => { 
                ArgumentOutOfRangeException exception = new ArgumentOutOfRangeException(); 
                exception.Source = "task1"; 
                throw exception; 
            }); 
            Task task2 = new Task(() => { 
                throw new NullReferenceException(); 
            }); 
            Task task3 = new Task(() => { 
                Console.WriteLine("Hello from Task 3"); 
            }); 
 
            // start the tasks 
            task1.Start(); task2.Start(); task3.Start(); 
 
            // wait for all of the tasks to complete 
            // and wrap the method in a try...catch block 
            try { 
                Task.WaitAll(task1, task2, task3); 
            } catch (AggregateException ex) { 
                // enumerate the exceptions that have been aggregated 
                foreach (Exception inner in ex.InnerExceptions) { 
                    Console.WriteLine("Exception type {0} from {1}",  
                        inner.GetType(), inner.Source); 
                } 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

 
To get the exceptions that have been aggregated, you call the InnerExceptions property of 

AggregateException, which returns a collections of exceptions that you can enumerate.  
In the listing, tasks task1 and task2 throw exceptions, which are bundled up into an instance of 

AggregateException. This exception is thrown when we call the Task.WaitAll() trigger method. One 
shortcoming of this approach to handling exceptions is that there is no obvious way of correlating 
exceptions that have been thrown to the task that threw them. In the code listing, the Exception.Source 
property is used to indicate that task1 is the source of the ArgumentOutOfRangeException. 

Using an Iterative Handler 
Generally, you will need to differentiate between the exceptions that you were expecting and the ones 
that are unexpected and you need to propagate. The AggregateException class provides the Handle() 
method, which allows you to specify a function delegate that will be called for each exception. Your 
function or lambda expression should return true if the exception is one that you can handle and false 
otherwise. 
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The “Cancelling Tasks” section of this chapter explained that you should throw an instance of the 
OperationCanceledException to acknowledge a cancellation request. That type of exception is likely to be 
one you will have to process most frequently. Listing 2-20 shows you how to use the 
AggregateException.Handle() method to differentiate between an exception thrown for a cancellation 
and other kinds of exception. 

Listing 2-20. Using an Iterative Exception Handler 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_20 { 
 
    class Listing_20 { 
 
        static void Main(string[] args) { 
 
            // create the cancellation token source and the token 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
            CancellationToken token = tokenSource.Token; 
 
            // create a task that waits on the cancellation token 
            Task task1 = new Task(() => { 
                // wait forever or until the token is cancelled 
                token.WaitHandle.WaitOne(-1); 
                // throw an exception to acknowledge the cancellation 
                throw new OperationCanceledException(token); 
            }, token); 
 
            // create a task that throws an exception 
            Task task2 = new Task(() => { 
                throw new NullReferenceException(); 
            }); 
 
            // start the tasks 
            task1.Start(); task2.Start(); 
 
            // cancel the token 
            tokenSource.Cancel(); 
 
            // wait on the tasks and catch any exceptions 
            try { 
                Task.WaitAll(task1, task2); 
            } catch (AggregateException ex) { 
                // iterate through the inner exceptions using  
                // the handle method 
                ex.Handle((inner) => { 
                    if (inner is OperationCanceledException) { 
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                        // ...handle task cancellation... 
                        return true; 
                    } else { 
                        // this is an exception we don't know how 
                        // to handle, so return false 
                        return false; 
                    } 
                }); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

 
If you compile and run the code in Listing 2-20, you will see one of the exceptions—

NullReferenceException—being reported as unhandled. This is, of course, because the exception 
handler only marks OperationCanceledExceptions as handled. 

Reading the Task Properties 
An alternative to catching the exceptions is to use the properties of the Task class, in particular, the 
IsCompleted, IsFaulted, IsCancelled, and Exception properties. You still have to catch 
AggregateException when you call any of the trigger methods, but you can use the properties to 
determine if a task has completed, thrown an exception, or been cancelled, and if an exception was 
thrown, you can get the details of the exception. Listing 2-21 shows you how to use the Task properties. 

Listing 2-21. Exception Handling with Task Properties 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_21 { 
 
    class Listing_21 { 
 
        static void Main(string[] args) { 
 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
 
            // create a task that throws an exception 
            Task task1 = new Task(() => { 
                throw new NullReferenceException(); 
            }); 
 



CHAPTER 2 ■ TASK PROGRAMMING 

 

40  

            Task task2 = new Task(() => { 
                // wait until we are cancelled 
                tokenSource.Token.WaitHandle.WaitOne(-1); 
                throw new OperationCanceledException(); 
            }, tokenSource.Token); 
 
            // start the tasks 
            task1.Start(); 
            task2.Start(); 
 
            // cancel the token 
            tokenSource.Cancel(); 
 
            // wait for the tasks, ignoring the exceptions 
            try { 
                Task.WaitAll(task1, task2); 
            } catch (AggregateException) { 
                // ignore exceptions 
            } 
 
            // write out the details of the task exception 
            Console.WriteLine("Task 1 completed: {0}", task1.IsCompleted); 
            Console.WriteLine("Task 1 faulted: {0}", task1.IsFaulted); 
            Console.WriteLine("Task 1 cancelled: {0}", task1.IsCanceled); 
            Console.WriteLine(task1.Exception); 
 
            // write out the details of the task exception 
            Console.WriteLine("Task 2 completed: {0}", task2.IsCompleted); 
            Console.WriteLine("Task 2 faulted: {0}", task2.IsFaulted); 
            Console.WriteLine("Task 2 cancelled: {0}", task2.IsCanceled); 
            Console.WriteLine(task2.Exception); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The code in the listing creates two tasks: one throws an exception, and the other waits for a 

CancellationToken to be cancelled. Once the tasks are started, we cancel the token and call 
Task.WaitAll() to allow the tasks to complete. We ignore any exceptions by catching and discarding 
AggregateException and then print the values of the Task properties to the console, getting the following 
results: 
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Task 1 completed: True 

Task 1 faulted: True 

Task 1 cancelled: False 

System.AggregateException: One or more errors occurred. ---> System.NullReferenceException:  

... details of exception... 

Task 2 completed: True 

Task 2 faulted: False 

Task 2 cancelled: True 

 

Main method complete. Press enter to finish. 

The IsCompleted property will return true if the Task has completed and false otherwise. The 
IsFaulted property returns true if the Task has thrown an exception and false if it has not or if the Task 
has been cancelled. The IsCanceled property returns true if the Task has been cancelled.  

Using a Custom Escalation Policy 
If you don’t catch AggregateException when you call a trigger method, the .NET Framework will escalate 
the exceptions. By default, this means that the unhandled exceptions will be thrown again when your 
Task is finalized and cause your program to be terminated. Because you don’t know when the finalizer 
will be called, you won’t be able to predict when this will happen.  

But, if you are determined not to handle the exceptions using one of the techniques described in the 
previous sections, you can override the escalation policy and supply your own code to call when an 
exception is escalated. You do this by adding an event handler to the static 
System.Threading.Tasks.TaskScheduler.UnobservedTaskException member, as shown in the Listing 2-
22. Don’t worry about the other members of the TaskScheduler class; they are described in Chapter 4. 
Listing 2-22 shows how to implement an escalation policy that writes the exception type to the console. 
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Listing 2-22. Custom Escalation Policy 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_22 { 
 
    class Listing_22 { 
 
        static void Main(string[] args) { 
 
            // create the new escalation policy 
            TaskScheduler.UnobservedTaskException +=  
                (object sender, UnobservedTaskExceptionEventArgs eventArgs) => 
                    { 
                        // mark the exception as being handled 
                        eventArgs.SetObserved(); 
                        // get the aggregate exception and process the contents 
                        ((AggregateException)eventArgs.Exception).Handle(ex => { 
                            // write the type of the exception to the console 
                            Console.WriteLine("Exception type: {0}", ex.GetType()); 
                            return true; 
                        }); 
                    }; 
 
            // create tasks that will throw an exception 
            Task task1 = new Task(() => { 
                throw new NullReferenceException(); 
            }); 
            Task task2 = new Task(() => { 
                throw new ArgumentOutOfRangeException(); 
            }); 
 
            // start the tasks 
            task1.Start(); task2.Start(); 
 
            // wait for the tasks to complete - but do so 
            // without calling any of the trigger members 
            // so that the exceptions remain unhandled 
            while (!task1.IsCompleted || !task2.IsCompleted) { 
                Thread.Sleep(500); 
            } 
     
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish and finalize tasks"); 
            Console.ReadLine(); 
        } 
    } 
} 
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The .NET Framework calls the event handler each time an unhandled exception is escalated. Notice 
that the UnobservedTaskExceptionEventArgs.SetObserved() method is called to tell the .NET Framework 
that the exception has been handled and should not be escalated any further. If you omit the call to 
SetObserved(), the exception will be escalated using the default policy. You can get the exception by 
calling the UnobservedTaskExceptionEventArgs.Exception property, which will return instances of 
AggregateException. See the previous sections for examples of how to process this type. 

Getting the Status of a Task  
One other area of standardization for parallel programming is the status information available from the 
Task.Status property, which returns a value from the System.Threading.Tasks.TaskStatus enumeration. 
The enumeration members are shown in Table 2-8. 

Table 2-8. Members of the TaskStatus Enumeration 

Member Description 

Created The task has been initialized but not yet scheduled. 

WaitingForActivation 
WaitingToRun 

The task is waiting to be scheduled or has been scheduled and is 
awaiting execution. 

Running The task is running. 

WaitingForChildrenToComplete The task is waiting for a child task (covered in the next chapter) to 
complete. 

RanToCompletion The task completed without being cancelled and without an 
exception being thrown. 

Canceled The task was cancelled (see the ” Cancelling Tasks” section in this 
chapter). 

Faulted The task threw an exception (see the “Handling Exceptions in 
Tasks” section in this chapter). 

WaitingForChildrenToComplete See Chapter 4 for details about this value. 

Executing Tasks Lazily  
If you want to perform some work in parallel only when the result is required for the first time, you can 
use lazy task execution, which combines lazy variable initialization and the Task<>.Factory.StartNew() 
method. 
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Lazy variables are not initialized until they are required, allowing you to avoid potentially expensive 
computations until they are needed or to avoid doing work for variables that may not be needed at all. 
You can combine lazy variables with tasks to create a task that is not executed until the lazy variable is 
read.  

Listing 2-24 demonstrates lazy task execution using two examples: The first defines the task body as 
a function and then uses it to create a lazy variable. The second does the same thing in a single 
statement. I have included the first version because the code is a lot easier to understand when the two 
parts are created separately. 

Listing 2-23. Lazy Task Execution 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_23 { 
 
    class Listing_23 { 
 
        static void Main(string[] args) { 
 
            // define the function  
            Func<string> taskBody = new Func<string>(() => { 
                Console.WriteLine("Task body working..."); 
                return "Task Result"; 
            }); 
 
            // create the lazy variable 
            Lazy<Task<string>> lazyData = new Lazy<Task<string>>(() => 
                Task<string>.Factory.StartNew(taskBody)); 
 
            Console.WriteLine("Calling lazy variable"); 
            Console.WriteLine("Result from task: {0}", lazyData.Value.Result); 
 
            // do the same thing in a single statement 
            Lazy<Task<string>> lazyData2 = new Lazy<Task<string>>( 
                () => Task<string>.Factory.StartNew(() => { 
                    Console.WriteLine("Task body working..."); 
                    return "Task Result"; 
                })); 
 
            Console.WriteLine("Calling second lazy variable"); 
            Console.WriteLine("Result from task: {0}", lazyData2.Value.Result); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 
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Understanding Common Problems and Their Causes 
Take a look at the examples in this section for help in troubleshooting common Task programming 
problems.  

Task Dependency Deadlock 
If two or more Tasks depend on each other to complete, none can move forward without the others, so a 
deadlock (the condition where the Tasks involved cannot progress) occurs. 

Solution 
The only way to avoid this problem is to ensure that your Tasks do not depend on one another. This 
requires careful attention when writing your Task bodies and thorough testing. You can also use the 
debugging features of Visual Studio 2010 to help detect deadlocks (see Chapter 7 for details). 

Example 
In the following example, two Tasks depend upon one another, and each requires the result of the other 
to generate its own result. When the program is run, both Tasks are started by the main application 
thread and deadlock. Because the main thread waits for the Tasks to finish, the whole program seizes up 
and never completes. 

 
using System; 
using System.Threading.Tasks; 
 
namespace Dependency_Deadlock { 
 
    class Dependency_Deadlock { 
 
        static void Main(string[] args) { 
 
            // define an array to hold the Tasks 
            Task<int>[] tasks = new Task<int>[2]; 
 
            // create and start the first task 
            tasks[0] = Task.Factory.StartNew(() => { 
                // get the result of the other task, 
                // add 100 to it and return it as the result 
                return tasks[1].Result + 100; 
            }); 
 
            // create and start the second task 
            tasks[1] = Task.Factory.StartNew(() => { 
                // get the result of the other task, 
                // add 100 to it and return it as the result 
                return tasks[1].Result + 100; 
            }); 
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            // wait for the tasks to complete 
            Task.WaitAll(tasks); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

Local Variable Evaluation 
Assume that you create a series of Tasks in a for loop and refer to the loop counter in your lambda 
expressions. All of the Tasks end up with the same value because of the way that the C# variable scoping 
rules are applied to lambda expressions. 

Solution 
The simplest way to fix this problem is to pass the loop counter in as a state object to the Task.  

Example 
In the following example, five Tasks print out a message that references the counter of the loop that 
created them, and they all print the same value. Another five Tasks do the same thing, but get their 
values as state objects, and these get the expected values. 

 
using System; 
using System.Threading.Tasks; 
 
namespace Local_Variable_Evaluation { 
 
    class Local_Variable_Evaluation { 
 
        static void Main(string[] args) { 
 
            // create and start the "bad" tasks 
            for (int i = 0; i < 5; i++) { 
                Task.Factory.StartNew(() => { 
                    // write out a message that uses the loop counter 
                    Console.WriteLine("Task {0} has counter value: {1}",  
                        Task.CurrentId, i); 
                }); 
            } 
 
            // create and start the "good" tasks 
            for (int i = 0; i < 5; i++) { 
                Task.Factory.StartNew((stateObj) => { 
                    // cast the state object to an int 
                    int loopValue = (int)stateObj; 
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                    // write out a message that uses the loop counter 
                    Console.WriteLine("Task {0} has counter value: {1}",  
                        Task.CurrentId, loopValue); 
                }, i); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

Excessive Spinning 
Many programmers overestimate the performance impact of a Task waiting (either via Thread.Sleep() or 
by using a CancellationToken wait handle) and use spin waiting instead (through the Thread.SpinWait() 
method or by entering a code loop). 

For anything other than exceptionally short waits, spin waiting and code loops will cripple the 
performance of your parallel program, because avoiding a wait also avoids freeing up a thread for 
execution. 

Solution 
Restrict your use of spin waiting and code loops to situations where you know that the condition that 
you are waiting for will take only a few CPU cycles. If you must avoid a full wait, use spin waiting in 
preference to code loops. 

Example 
In the following example, one Task enters a code loop to await the cancellation of another Task. Another 
Task does the same thing but uses spin waiting. On the quad-core machine that I used to write this book, 
this example burns roughly 30 percent of the available CPU, which is quite something for a program that 
does nothing at all. You may get different results if you have fewer cores. 

 
using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Excessive_Spinning { 
 
    class Excessive_Spinning { 
 
        static void Main(string[] args) { 
 
            // create a cancellation token source 
            CancellationTokenSource tokenSource = 
                new CancellationTokenSource(); 
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            // create the first task 
            Task t1 = Task.Factory.StartNew(() => { 
                Console.WriteLine("Task 1 waiting for cancellation"); 
                tokenSource.Token.WaitHandle.WaitOne(); 
                Console.WriteLine("Task 1 cancelled"); 
                tokenSource.Token.ThrowIfCancellationRequested(); 
            }, tokenSource.Token); 
 
            // create the second task, which will use a code loop 
            Task t2 = Task.Factory.StartNew(() => { 
                // enter a loop until t1 is cancelled 
                while (!t1.Status.HasFlag(TaskStatus.Canceled)) { 
                    // do nothing - this is a code loop 
                } 
                Console.WriteLine("Task 2 exited code loop"); 
            }); 
 
            // create the third loop which will use spin waiting 
            Task t3 = Task.Factory.StartNew(() => { 
                // enter the spin wait loop 
                while (t1.Status != TaskStatus.Canceled) { 
                    Thread.SpinWait(1000); 
                } 
                Console.WriteLine("Task 3 exited spin wait loop"); 
            }); 
 
            // prompt the user to hit enter to cancel 
            Console.WriteLine("Press enter to cancel token"); 
            Console.ReadLine(); 
            tokenSource.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Main method complete. Press enter to finish."); 
            Console.ReadLine(); 
        } 
    } 
} 

Summary 
This chapter introduced you to the basic building blocks that we will use to explore the Task 
Programming Library (TPL).  You learned how to create and start Tasks, cancel Tasks as they are running, 
handle exceptions when things go wrong, and check the status of Tasks—all essential to writing parallel 
programs. In the next chapter, we’ll look at one of the most common complexities that parallel 
programmers face, specifically sharing data between tasks. 
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Sharing Data 

Listing 3-1. Hello Task 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_01 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_01 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create an array of tasks 
            Task[] tasks = new Task[10]; 
 
            for (int i = 0; i < 10; i++) { 
                // create a new task 
                tasks[i] = new Task(() => { 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        // update the balance 
                        account.Balance = account.Balance + 1; 
                    } 
                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
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            // wait for all of the tasks to complete 
            Task.WaitAll(tasks); 
 
            // write out the counter value 
            Console.WriteLine("Expected value {0}, Counter value: {1}",  
               10000, account.Balance); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine();  
        } 
    } 
} 

The Trouble with Data 
Listing 3-1 creates ten Tasks, each of which increments the BankAccount.Balance property 1,000 times. 
We wait for all of the Tasks to complete and print out the value of Balance. If there are ten Tasks and each 
of them increments Balance 1,000 times, the final value of Balance should be 10,000 (10 × 1000). 
Running Listing 3-1 might produce the following results: 

Expected value 10000, Balance: 8840 

Press any key to continue . . . 

You will certainly get a different result if you run the code. Repeatedly running the program 
produces a wide range of results. If we are fortunate, we might get the expected result once or twice. In 
this chapter, I explain why this happens and how to correct the problem.  

Going to the Races 
The odd behavior in Listing 3-1 is caused by a data race. Whenever we have two or more Tasks 
performing operations that update a shared piece data, there is the potential for a race. And if we don’t 
manage the race properly, we get unexpected and undesirable results.  

Incrementing the account balance in Listing 3-1 takes three steps:  

1. Read the current balance from the BankAccount object. 

2. Calculate the new value. 

3. Update the BankAccount with the new balance. 

Thinking of this as a three-step process is really a convenience. In fact, we don’t know how the 
compiler, the runtime, and the operating system are going to perform or optimize our increment 
operation, but let’s stick with three steps for the sake of simplicity.  

We get a range of results with Listing 3-1 because there are slight variations in the timing of each 
Task. If you run the program several times, your machine will be in a different state each time: the CPU 
will be more or less busy; there will be different amounts of memory available, and so on. These 
differences influence the way in which the Tasks are created, scheduled, and run. 

Boykma
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Figure 3-1 shows what can happen when two Tasks race. The Tasks are performing the steps of the 
balance update slightly out of phase with each other, because they have been started a short time apart. 
Task 1 reads the current balance and gets 0. A fraction of a second later, Task 2 reads the current 
balance of the counter and also gets 0—oops. Both Tasks calculate the new balance by incrementing the 
starting balance they received, so both produce a new balance of 1 —oops, again.  

Task 1 stores its new value, and a fraction of a second later, Task 2 comes steaming along and does 
the same thing. We used two Tasks to perform two increments but got a result of 1. That’s a data race—
two Tasks competing to manipulate a piece of shared data without any coordination between them. You 
can imagine how bad things get in Listing 3-1 with ten Tasks performing 1,000 increments each. 

 

 

Figure 3-1. A simple data race 

Creating Some Order 
A data race is like a birthday party. The Tasks are the party guests, and when the cake is brought out, the 
guests can get a little wild. If all of the guests rush to get themselves some cake at the same time, order 
breaks down.  

We created a mad scramble to read and write the shared data in Listing 3-1 and ended up with a 
data race. The cake in this example is the bank account balance. We have to manage a potential problem 
whenever multiple Tasks share and update the same data. There are four broad kinds of solution to 
shared data problems: 

• Sequential execution: We stop parallelizing the work.  

• Immutability: We stop Tasks being able to modify the data. 

• Isolation: We stop sharing the data. 

• Synchronization: We coordinate the actions of the Tasks so that they take turns 
instead of competing. 
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We discuss each of these solutions in the following sections and look at the various .NET features 
available to support them. 

Executing Sequentially 
Sequential execution solves the shared data problem by having only one active Task, in essence, going 
back to a single-threaded code model. Put another way, you don’t need to share the cake if you are the 
only person at the party. 

This is the least useful and interesting solution to the data race in a book on parallel programming, 
but don’t be afraid of sequential execution if the problem you are trying to solve is not well suited to the 
parallel world. 

Executing Immutably 
Immutability solves the shared data problem by not allowing data to be changed. If data can’t be 
changed, there is no scope for a data race. If sequential execution means that you get the cake to 
yourself, immutability means that you can look at the cake but can’t eat. 

C# supports immutability with the readonly and const keywords. Fields marked with the const 
modifier must be declared and assigned in a single statement, such as this: 

 
        public const int AccountNumber = 123456; 

 
Once declared and assigned, the const value cannot be changed, and the field can only be accessed 

through the type name, not an instance of the type. The readonly keyword is accessible through type 
instances and can be modified in a constructor; this means that the value of a readonly field can depend 
on which constructor is used to instantiate an immutable type. Listing 3-2 shows demonstrates both 
keywords in use. 

Listing 3-2. An Immutable Bank Account 

using System; 
 
namespace Listing_02 { 
 
    class ImmutableBankAccount { 
        public const int AccountNumber = 123456; 
        public readonly int Balance; 
 
        public ImmutableBankAccount(int InitialBalance) { 
            Balance = InitialBalance; 
        } 
 
        public ImmutableBankAccount() { 
            Balance = 0; 
        } 
    } 
 



CHAPTER 3 ■ SHARING DATA 

 

53 

    class Listing_02 { 
 
        static void Main(string[] args) { 
 
            // create a bank account with the default balance 
            ImmutableBankAccount bankAccount1 = new ImmutableBankAccount(); 
            Console.WriteLine("Account Number: {0}, Account Balance: {1}", 
                ImmutableBankAccount.AccountNumber, bankAccount1.Balance); 
 
            // create a bank account with a starting balance 
            ImmutableBankAccount bankAccount2 = new ImmutableBankAccount(200); 
            Console.WriteLine("Account Number: {0}, Account Balance: {1}",  
                ImmutableBankAccount.AccountNumber, bankAccount2.Balance); 
   
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Immutability is not a widely used solution in C#, because not being able to change data values is a 

huge limitation. In Listing 3-2, we ended up with a bank account whose balance can be read but not 
changed. Immutability is useful, however, for creating a clear separation between immutable reference 
data that can be safely shared between Tasks and mutable Task data that must be protected using a 
different technique.  

■ Tip See the “Unexpected Immutability” example in the “Understanding Common Problems and Their Causes” 
section at the end of this chapter for an example of how misusing immutability can cause problems. 

Executing in Isolation 
Isolation solves the shared data problem by giving everyone their own piece of data. You don’t need to 
share if everyone at the party gets their own cake.  

We can provide a Task with isolated data by using the constructor overload that takes a state object, 
as described in Chapter 2. Listing 3-3 updates our simple bank account example to use isolation. Each 
Task is given the current balance as a state object when it is created. The data is isolated because each 
Task only modifies its own version of the balance. When all of the Tasks have completed, we read the 
results and combine them to accurately update the bank account. 
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Listing 3-3. Isolation by Convention 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_03 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_03 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create an array of tasks 
            Task<int>[] tasks = new Task<int>[10]; 
 
            for (int i = 0; i < 10; i++) { 
                // create a new task 
                tasks[i] = new Task<int>((stateObject) => { 
 
                    // get the state object 
                    int isolatedBalance = (int)stateObject; 
 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        // update the balance 
                        isolatedBalance++; 
                    } 
 
                    // return the updated balance 
                    return isolatedBalance; 
 
                }, account.Balance); 
 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // get the result from each task and add it to 
            // the balance 
            for (int i = 0; i < 10; i++) { 
                account.Balance += tasks[i].Result; 
            } 
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            // write out the counter value 
            Console.WriteLine("Expected value {0}, Balance: {1}", 
                10000, account.Balance); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine();  
        } 
    } 
} 

 
There is no data race in Listing 3-3, because the Tasks are only concerned with their own local 

version of the balance. This is an example of isolation by convention: the code is written so that the Tasks 
works in isolation but the isolation is not enforced by the .NET runtime; we have to take care to ensure 
that Tasks don’t share data by mistake. 

.NET provides the System.Threading.ThreadLocal class, which creates isolation that is enforced by 
the .NET Framework. ThreadLocal represents a special kind of data called thread local storage (TLS), 
where a single ThreadLocal results in each thread that accesses the data getting its own isolated instance.  

TLS can be a little hard to understand, but try thinking of it like this—when we declare a ThreadLocal 
to hold, say a string, we make the following call: 

 
ThreadLocal<string> isolatedData = new ThreadLocal<string>(); 

 
Imagine that the .NET Framework creates Dictionary<Thread, string> behind the scenes and that 

whenever we call the ThreadLocal.Value property to get or set the isolated data value, the framework 
translates that into a query against the Dictionary so that we only read or write the value associated with 
the current thread and each thread has its own value.  

TLS doesn’t really use a Dictionary, but imagining that it does is a helpful way of understanding an 
unusual concept. The important thing to remember is each thread has its own isolated data value and 
can’t read or write the value belonging to any other thread.  

Now, notice that we are talking about threads and not Tasks, and remember from Chapter 1 that a 
single thread can be used to perform multiple Tasks. To ensure that you get the results you expect with 
Tasks, make sure that you set the ThreadLocal.Value property at the start of your Task body. Listing 3-4 
shows ThreadLocal being used in our simple bank account program, with the isolated data value being 
set at the start of the Task body. 

Listing 3-4. Using TLS 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_04 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
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    class Listing_04 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create an array of tasks 
            Task<int>[] tasks = new Task<int>[10]; 
 
            // create the thread local storage 
            ThreadLocal<int> tls = new ThreadLocal<int>(); 
 
            for (int i = 0; i < 10; i++) { 
                // create a new task 
                tasks[i] = new Task<int>((stateObject) => { 
 
                    // get the state object and use it 
                    // to set the TLS data 
                    tls.Value = (int)stateObject; 
 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        // update the TLS balance 
                        tls.Value++; 
                    } 
 
                    // return the updated balance 
                    return tls.Value; 
 
                }, account.Balance); 
 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // get the result from each task and add it to 
            // the balance 
            for (int i = 0; i < 10; i++) { 
                account.Balance += tasks[i].Result; 
            } 
 
            // write out the counter value 
            Console.WriteLine("Expected value {0}, Balance: {1}", 
                10000, account.Balance); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 



CHAPTER 3 ■ SHARING DATA 

 

57 

Even though we have created only one instance of ThreadLocal<int>, each Task is able to initialize 
its own isolated instance of the data using the state object and perform updates without worrying about 
data races. ThreadLocal provides an overloaded constructor so you can supply a factory delegate that will 
initialize the isolated data value. This factory delegate is lazily initialized, meaning that it will not be 
called until the Task calls the ThreadLocal.Value property for the first time.  

Be careful when using lazy initialization in TLS (or elsewhere in C#); it can trip you up. The factory 
delegate is not called until the first time that the variable is accessed, so any other data that you depend 
on will not be read until then. Remember also that TLS works on threads and not Tasks, so the value 
factory will only be called the first time a thread performs one of your Tasks. Take a look at Listing 3-5, 
which shows an ill-advised use of the value factory. 

Listing 3-5. A TLS Value Factory That Produced Unexpected Results  

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_05 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_05 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create an array of tasks 
            Task<int>[] tasks = new Task<int>[10]; 
 
            // create the thread local storage 
            ThreadLocal<int> tls = new ThreadLocal<int>(() => { 
                Console.WriteLine("Value factory called for value: {0}",  
                   account.Balance); 
                return account.Balance; 
            }); 
 
            for (int i = 0; i < 10; i++) { 
                // create a new task 
                tasks[i] = new Task<int>(() => { 
 



CHAPTER 3 ■ SHARING DATA 

 

58  

                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        // update the TLS balance 
                        tls.Value++; 
                    } 
 
                    // return the updated balance 
                    return tls.Value; 
 
                }); 
 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // get the result from each task and add it to 
            // the balance 
            for (int i = 0; i < 10; i++) { 
                account.Balance += tasks[i].Result; 
            } 
 
            // write out the counter value 
            Console.WriteLine("Expected value {0}, Balance: {1}", 
                10000, account.Balance); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Running Listing 3-5 yields the following results: 

Value factory called for value: 0 

Value factory called for value: 0 

Value factory called for value: 0 

Value factory called for value: 0 

Expected value 10000, Balance: 29000 

Press enter to finish 

We started ten Tasks, but the value factory was called to initialize the TLS only four times. Can you 
guess why? Yep, the code was run on a four-core machine, and four threads were used to execute the ten 
Tasks. As a consequence, the final balance from one Task was carried over to be the initial balance for 
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another, and we ended up with an overall balance that was unexpected. TLS can be a useful technique if 
used carefully but can trip up the unwary.  

Synchronizing Execution 
If sequential execution means being the only person at the party, immutability is having a plastic cake, 
and isolation is giving everyone their own cake, then synchronization is having many guests and one 
cake and asking your great aunt Matilda to make everyone act politely. Matilda makes sure that everyone 
gets a piece of the cake by having the guests take turns and play nice. 

Synchronization means making Tasks take turns, avoiding races by serializing access to shared data, 
usually only allowing one Task access to the shared data at any given time (although there are other 
options that we will cover in Chapter 4). 

The two key elements to understanding synchronization are the critical region and the 
synchronization primitive. In party terms, critical regions are the cakes, or the things that we want to 
control access to in order to avoid problems. Synchronization primitives play the role of the great aunt, 
or the way in which we enforce order and politeness. 

Defining Critical Regions 
A critical region is one or more C# statements that we want to serialize access to so we can avoid a data 
race. For the bank account example in Listing 3-1, the critical region is the statement that increments the 
account balance, as shown in the following fragment: 

 
for (int j = 0; j < 1000; j++) { 
    // update the balance 
    account.Balance = account.Balance + 1; // <-- critical region 
} 

 
More complex programs will have larger and more complex critical regions, of course. And classes 

can have more than one critical region. Imagine that we added new methods to our simple BankAccount 
type that read and update the balance. We must serialize access to the statements within each method 
but also across methods, so that a Task that calls one method doesn’t start a data race with a Task calling 
the other method. Don’t worry if the idea of critical regions doesn’t immediately make sense; there are 
plenty of examples in this chapter and throughout the rest of this book that will help. 

Defining Synchronization Primitives 
A synchronization primitive is a special kind of data type that is used to coordinate Tasks’ access to 
critical regions and, therefore, to shared data. A Task arrives at a point in its work where they need to 
access a critical region. The Task checks with the synchronization primitive to see if the critical section is 
already in use. If the critical section is free, then it proceeds to execute the code statements. If there is 
another Task already using the critical section, then the newly arrived Task is asked to wait. When the 
Task that is using the critical section has finished, it tells the synchronization primitive that it is done, so 
that another Task can be allowed to proceed.  

When a primitive grants access to a critical section, the Task is said to acquire or take the lock. When 
a Task notifies the primitive that is leaving the critical section, it is said to release or exit the lock. 



CHAPTER 3 ■ SHARING DATA 

 

60  

There are three kinds of synchronization primitives in the .NET Framework: 

• Lightweight primitives 

• Heavyweight (classic) primitives 

• Wait handles 

With .NET 4, Microsoft has introduced some new lightweight primitives, so called because they are 
more efficiently implemented than the equivalent classic threading classes. They can only provide 
synchronization within one application domain, but since this is usually what programmers require, you 
will find yourself using these primitives most frequently. 

The heavyweight threading primitives have existed since the early versions of .NET and have been 
widely used with the classic .NET threading model. They don’t perform as well as the lightweight 
primitives, but they can be used across application domains. 

Wait handles use a feature of the Windows operating system and can be used to provide 
synchronization between processes. Wait handles are often used to coordinate Tasks (something we will 
cover at length in the next chapter), but they can be used to avoid data races as well. They can also be 
used to provide synchronization across different processes. 

■ Note This note is for you particularly detail-oriented readers. You know from Chapter 1 that tasks are executed 
by threads. The .NET synchronization primitives actually operate at the thread level, but since the threads are 
executing Tasks, we will discuss synchronization as though it operated at the task level. There is no effective 
difference and keeping everything at the task level makes for clearer examples. 

Getting to grips with synchronization is one of the most challenging aspects of parallel 
programming, and it trips up everyone at some point. When you encounter problems (and you almost 
certainly will), stop and think about what you are trying to achieve and ask yourself a couple of 
questions. Have I selected the right synchronization primitive? And am I using it correctly. Nine times 
out of ten, the problem can be found in the answers to those two questions. 

Using Synchronization Wisely 
Before we cover the different synchronization primitives, let me set out some advice that you should 
consider if you want to write effective parallel programs: 

• Don’t synchronize too much. 

• Don’t synchronize too little. 

• Pick the lightest tool to do the job. 

• Don’t write you own synchronization primitives. 
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Don’t Synchronize Too Much 
Most programmers go through a transition period when they come to parallel programming in which 
they write the program structure as though they planned for sequential execution and apply parallel 
features later. Data races arise, which are then fixed using synchronization applied like a Band-Aid. 

Because the program was designed for sequential use, the programmer finds it hard to synchronize 
with any granularity and ends up synchronizing everything. 

As I said earlier, synchronization has a cost and can reduce performance. Synchronizing with a 
heavy hand means that your code will end up running restricting parallelism but still incur the 
synchronization overheads. 

Don’t Synchronize Too Little 
The natural reaction to having produced a program with too much synchronization is to over-
compensate and use too little. Now, we end up with a program that performs well because the number 
of synchronization points is drastically reduced but doesn’t protect all of the shared data and so suffers 
from data races. 

Pick the Lightest Tool 
The .NET Framework includes synchronization primitives from the classic .NET threading era and some 
new primitives introduced as part of the TPL. The new primitives are more efficient, but some of them 
lack useful features available in the heavyweight older primitives. 

It may sound obvious, but you should pick the most efficient primitive that meets your program 
requirements. As programmers, we tend to end up with a shortlist of types and primitives that we use 
again and again because we understand them and have confidence in them. While that is fine for general 
programming, it can easily produce problems in parallel programming by either introducing a 
performance penalty or by not delivering the required level of synchronization. 

Don’t Write Your Own Synchronization Primitives 
At some point, every parallel programmer struggles to use a particular synchronization primitive in a 
particular way and thinks, “hmmm, maybe I should write my own.” You will have those thoughts, too. 
Don’t do it; don’t give in and write your own. I guarantee you that you will end up making things much, 
much worse. 

Synchronization primitives are very difficult to write correctly. Most of the primitives in the .NET 
Framework rely on features of the operating system and, in some cases, of the machine hardware. My 
advice to you is to change the code whenever you can’t get one of the .NET primitives to fit in with your 
code model. That solution will be simpler and quicker, and you have a far greater chance of producing 
working code than if you try to write your own primitive. 

Using Basic Synchronization Primitives 
The following sections describe the basic .NET synchronization primitives. Each of these classes can be 
used to ensure that only one Task is able to enter a critical region. The next chapter will describe some 
advanced synchronization primitives that will allow you to work with different numbers of Tasks. 
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Table 3-1. Synchronization Primtives 

Problem Solution Listing 

Serialize access to a critical 
region. 

Use the lock keyword or System.Threading.Montor class,  
or use the System.Threading.SpinLock class. 

3-6, 3-7,  
and 3-10 

Increment or decrement a 
numeric value. 

Use the static members of the 
System.Threading.Interlocked class. 

3-8  
and 3-9 

Create cross process 
synchronization.  

Use the System.Threading.Mutex class to create a named 
mutex. 

3-11 

Perform synchronization using 
multiple locks. 

Use WaitAll() method of a primitive that extends 
System.Threading.WaitHandle. 

3-12 

Synchronize all of the methods 
in a class. 

Use declarative synchronization. 3-14 

Create locks that permit  
multiple readers. 

Use a reader-writer lock. 3-15  
and 3-16 

Locking and Monitoring 
The simplest way to use synchronization in C# is with the lock keyword, which is a two-stage process. 
First, you must create a lock object that is visible to all of your Tasks. Second, you must wrap the critical 
section in a lock block using the lock, as follows: 

 
lock (lockObj) { 
    ...critical section code... 
} 

 
Listing 3-6 shows the application of the lock keyword to the critical region of the bank account 

example from Listing 3-1.  

Listing 3-6. Applying the lock Keyword 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_06 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
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    class Listing_06 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create an array of tasks 
            Task[] tasks = new Task[10]; 
 
            // create the lock object 
            object lockObj = new object(); 
 
            for (int i = 0; i < 10; i++) { 
                // create a new task 
                tasks[i] = new Task(() => { 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        lock (lockObj) { 
                            // update the balance 
                            account.Balance = account.Balance + 1; 
                        } 
                    } 
                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // wait for all of the tasks to complete 
            Task.WaitAll(tasks); 
 
            // write out the counter value 
            Console.WriteLine("Expected value {0}, Balance: {1}", 
                10000, account.Balance); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The lock keyword is a C# shortcut for using the System.Threading.Monitor class, which is a 

heavyweight primitive.  
 

lock (lockObj) { 
    ...critical region code... 
} 
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The preceding fragment is equivalent to the following: 
 

bool lockAcquired; 
try { 
    Monitor.Enter(lockObj, ref lockAcquired); 
    ...critical region code... 
} finally { 
    if (lockAcquired) Monitor.Exit(lockObj); 
} 

 
The members of the Monitor class are static, which is why you must provide a lock object—this tells 

the Monitor class which critical region a Task is trying to enter.  

■ Tip It is important to ensure that all of your Tasks use the same lock object when entering a given critical 
region. See the discussion of the Isolated Lock References antipattern in this chapter for more details. 

The lock keyword automatically takes care of acquiring and releasing the lock for the critical region 
by calling Monitor.Enter() and Monitor.Exit() for you. If you decide to use the Monitor class directly 
(and there are some reasons for this that we’ll come to in a moment), you should ensure that you call 
Monitor.Exit() within a finally block, just as in the preceding fragment. If you do not, you run the risk 
of encountering the orphaned locks problem described at the end of this chapter. 

Monitor.Enter() takes a lock object and a pass-by-reference bool as arguments. The bool is set to 
true when the lock is acquired and should be checked before releasing the lock with Monitor.Exit(). 
There are some conditions under which you risk trying to release a lock that you have not acquired. 

When one Task has acquired the lock, no other Task can enter the critical region. Calls to 
Monitor.Enter() will block until the first Task releases the lock by calling Monitor.Exit(). If there are 
Tasks waiting when the lock is released, Monitor selects one of them and allows it to acquire the lock. 
Tasks may acquire the lock in any sequence; the order in which Tasks arrive at the critical region doesn’t 
guarantee anything about the order in which they will acquire the lock. 

You can try to acquire the lock by calling one of the overloads of the Monitor.TryEnter() method, 
which will let your Task try and acquire the lock without waiting indefinitely for it to become available. 
The overloads are listed in Table 3-2. 

 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 3 ■ SHARING DATA 

 

65 

Table 3-2. Overloads of the System.Threading.Monitor.TryEnter Method 

Overload Description 

Monitor.TryEnter 
(Object, Boolean) 

Attempt to acquire a lock using a given lock object. The Boolean 
argument is set to true if the lock was acquired and false otherwise. 

Monitor.TryEnter 
(Object, Int32, Boolean) 

Attempt to acquire a lock using the lock object, waiting a maximum of 
Int32 milliseconds. The Boolean argument is set to true if the lock was 
acquired and false otherwise. 

Monitor.TryEnter 
(Object,TimeSpan,Boolean) 

Attempt to acquire a lock using the lock object, waiting for the TimeSpan 
to see if the lock becomes available. The Boolean argument is set to true 
if the lock was acquired and false otherwise. 

 
The same lock object, as I have said, must always be used for a given critical region. If you wish to 

protect two related critical regions (perhaps because they update the same shared data), the same object 
should be used to enter either region.  

Listing 3-7 extends our simple bank account example to serialize access to critical regions. There are 
two groups of Tasks, one of which wants to increment the balance while the other wants to decrement it. 
By using the same lock object, we ensure that there is at most one Task working in the pair of critical 
regions. 

Listing 3-7. Using a Single Lock Object to Serialize Access to Two Critical Regions 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_07 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_07 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create an array of tasks 
            Task[] incrementTasks = new Task[5]; 
            Task[] decrementTasks = new Task[5]; 
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            // create the lock object 
            object lockObj = new object(); 
 
            for (int i = 0; i < 5; i++) { 
                // create a new task 
                incrementTasks[i] = new Task(() => { 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        lock (lockObj) { 
                            // increment the balance 
                            account.Balance++; 
                        } 
                    } 
                }); 
                // start the new task 
                incrementTasks[i].Start(); 
            } 
 
            for (int i = 0; i < 5; i++) { 
                // create a new task 
                decrementTasks[i] = new Task(() => { 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        lock (lockObj) { 
                            // decrement the balance 
                            account.Balance = account.Balance -2; 
                        } 
                    } 
                }); 
                // start the new task 
                decrementTasks[i].Start(); 
            } 
 
            // wait for all of the tasks to complete 
            Task.WaitAll(incrementTasks); 
            Task.WaitAll(decrementTasks); 
 
            // write out the counter value 
            Console.WriteLine("Expected value: -5000"); 
            Console.WriteLine("Balance: {0}", account.Balance); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 
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Using Interlocked Operations 
The System.Threading.Interlocked class provides a set of static methods that use special features of the 
operating system and hardware to provide high-performance synchronized operations. All of the 
methods in Interlocked are static and synchronized. Table 3-3 provides a summary of the key members. 

Table 3-3. Selected Members of the System.Threading.Interlocked Class 

Member Description 

Exchange(ref Double, Double) 
Exchange(ref Int32, Int32) 
Exchange(ref Int64, Int64) 
Exchange(ref Single, Single) 
Exchange(ref Object, Object) 
Exchange<T>(ref T, T) 

Set a value. 

Add(ref Int32, Int32) 
Add(ref Int64, Int64) 

Add two 32-bit or 64-bit integers 

Increment(ref Int32) 
Increment(ref Int64) 

Increment a 32-bit or 64-bit integer. 

Decrement(ref Int32) 
Decrement(ref Int64) 

Decrement a 32-bit or a 64-bit integer. 

CompareExchange(ref Double, Double, Double) 
CompareExchange(ref Int32, Int32, Int32) 
CompareExchange(ref Int64, Int64, Int64) 
CompareExchange(ref Single, Single, Single) 
CompareExchange(ref Object, Object, Object) 
CompareExchange<T>(ref T, T, T) 

Compare two values, and if they are equal, 
replace one of them. 

 
The Interlocked.Exchange() method sets the value of a variable. The following statements are 

functionally equivalent, but manage synchronization using different techniques: 
 

int myval = 99; 
 
lock (lockObj) { 
    // change value 
    myval = 100; 
} 
 
// change value - synchronized 
Interlocked.Exchange(ref myval, 101); 

 
The Add(), Increment(), and Decrement() methods are convenient shortcuts when using integers 

and work the way that you would expect. Listing 3-8 shows how we can use Interlocked.Increment() to 
fix the data race from Listing 3-1. Notice that we have had to change the BankAccount class to expose the 
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balance as an integer, because Interlocked methods require arguments modified by the ref keyword 
and values from properties cannot be used with ref. 

Listing 3-8. Using Interlocked.Increment() 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_08 { 
 
    class BankAccount { 
        public int Balance = 0; 
    } 
 
    class Listing_08 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create an array of tasks 
            Task[] tasks = new Task[10]; 
 
            for (int i = 0; i < 10; i++) { 
                // create a new task 
                tasks[i] = new Task(() => { 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        // update the balance 
                        Interlocked.Increment(ref account.Balance); 
                    } 
                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // wait for all of the tasks to complete 
            Task.WaitAll(tasks); 
 
            // write out the counter value 
            Console.WriteLine("Expected value {0}, Balance: {1}", 
                10000, account.Balance); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 
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The CompareExchange() method checks to see if a variable has a given value and, if it does, changes 
the value of variable. This is not as obtuse as it sounds, because this method allows you to tell if another 
Task has updated a shared variable and act accordingly. Using CompareExchange allows you to mix 
isolated data and then merge the isolated values with the shared data.  

Listing 3-9 updates the previous example so that individual Tasks make a note of the starting 
balance and work with isolated balances to perform their updates. When they have calculated their local 
balances, they use CompareExchange() to update the shared value. If the shared data has not changed, the 
account balance is updated; otherwise, a message is printed out. In a real program, instead of simply 
noting that the shared data has changed, you could repeat the Task calculation or try a different method 
to update the shared data. For example, in the listing, we could have tried to add the local balance to the 
shared value. 

Listing 3-9. Convergent Isolation with Interlocked.CompareExchange() 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_09 { 
 
    class BankAccount { 
        public int Balance = 0; 
    } 
 
    class Listing_09 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create an array of tasks 
            Task[] tasks = new Task[10]; 
 
            for (int i = 0; i < 10; i++) { 
                // create a new task 
                tasks[i] = new Task(() => { 
 
                    // get a local copy of the shared data 
                    int startBalance = account.Balance; 
                    // create a local working copy of the shared data 
                    int localBalance = startBalance; 
 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        // update the local balance 
                        localBalance++; 
                    } 
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                    // check to see if the shared data has changed since we started 
                    // and if not, then update with our local value 
                    int sharedData = Interlocked.CompareExchange( 
                        ref account.Balance, localBalance, startBalance); 
 
                    if (sharedData == startBalance) { 
                        Console.WriteLine("Shared data updated OK”); 
                    } else { 
                        Console.WriteLine("Shared data changed”); 
                    } 
                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // wait for all of the tasks to complete 
            Task.WaitAll(tasks); 
 
            // write out the counter value 
            Console.WriteLine("Expected value {0}, Balance: {1}", 
                10000, account.Balance); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Using Spin Locking 
We encountered spinning in the last chapter. Typically, when waiting to acquire a regular 
synchronization primitive, your Task is taken out of the schedule waits until it has acquired the primitive 
and can run again. Spinning takes a different approach; the Task enters a tight execution loop, 
periodically trying to acquire the primitive. 

Spinning avoids the overhead of rescheduling the Task because it never stops running, but it doesn’t 
allow another Task to take its place. Spinning is useful if you expect the wait to acquire the primitive to 
be very short. 

The System.Threading.Spinlock class is a lightweight, spin-based synchronization primitive. It has a 
similar structure to other primitives in that it relies on Enter(), TryEnter(), and Exit() methods to 
acquire and release the lock. Listing 3-10 shows the bank account example implemented using SpinLock. 

Listing 3-10. Using the SpinLock Primitive 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
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namespace Listing_10 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_10 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create the spinlock 
            SpinLock spinlock = new SpinLock(); 
 
            // create an array of tasks 
            Task[] tasks = new Task[10]; 
 
            for (int i = 0; i < 10; i++) { 
                // create a new task 
                tasks[i] = new Task(() => { 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        bool lockAcquired = false; 
                        try { 
                            spinlock.Enter(ref lockAcquired); 
                            // update the balance 
                            account.Balance = account.Balance + 1; 
                        } finally { 
                            if (lockAcquired) spinlock.Exit(); 
                        } 
                    } 
                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // wait for all of the tasks to complete 
            Task.WaitAll(tasks); 
 
            // write out the counter value 
            Console.WriteLine("Expected value {0}, Balance: {1}", 
                10000, account.Balance); 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The constructor for SpinLock has an overload that enables or disables owner tracking, which simply 

means that the primitive keeps a record of which Task has acquired the lock. SpinLock doesn’t support 
recursive locking, so if you have already acquired the lock, you must not try to acquire it again. If you 
have enabled owner tracking, attempting recursive locking will cause a 
System.Threading.LockRecursionException to be thrown. If you have disabled owner tracking and try to 
lock recursively, a deadlock will occur. SpinLock has three properties that can help you avoid inadvertent 
recursive lock attempts, described in Table 3-4. 

Table 3-4. System.Threading.SpinLock Properties 

Property Description 

IsHeld Return true if the lock is held by any thread. 

IsHeldByCurrentThread Return true if the lock is held by the thread executing the current 
Task. 

IsThreadOwnerTrackingEnabled Return true if owner tracking was enabled when the primitive 
instance was created. 

Using Wait Handles and the Mutex Class 
Wait handles are wrappers around a Windows feature called synchronization handles. Several .NET 
synchronization primitives that are based on wait handles, and they all derive from the 
System.Threading.WaitHandle class. Each class has slightly different characteristics, and we’ll walk 
through each of them in the next chapter when we explore coordinating Tasks.  

The wait handle class that has most relevance to avoiding data races and is System.Threading.Mutex. 
Listing 3-11 shows the basic use of the Mutex class to solve the bank account data race problem. You 
acquire the lock on Mutex by calling the WaitOne() method and release the lock by calling 
ReleaseMutex(). 

Listing 3-11. Basic Use of the Mutex Class 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_11 { 
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    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_11 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create the mutex 
            Mutex mutex = new Mutex(); 
 
            // create an array of tasks 
            Task[] tasks = new Task[10]; 
 
            for (int i = 0; i < 10; i++) { 
                // create a new task 
                tasks[i] = new Task(() => { 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        // acquire the mutex 
                        bool lockAcquired = mutex.WaitOne(); 
                        try { 
                            // update the balance 
                            account.Balance = account.Balance + 1; 
                        } finally { 
                            // release the mutext 
                            if (lockAcquired) mutex.ReleaseMutex(); 
                        } 
                    } 
                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // wait for all of the tasks to complete 
            Task.WaitAll(tasks); 
 
            // write out the counter value 
            Console.WriteLine("Expected value {0}, Balance: {1}", 
                10000, account.Balance); 
 



CHAPTER 3 ■ SHARING DATA 

 

74  

            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Acquiring Multiple Locks 
All classes that extend from WaitHandle inherit three methods that can be used to acquire the lock. You 
have seen the WaitOne() instance method in Listing 3-11. In addition, the static WaitAll() and WaitAny() 
methods allow you to acquire multiple locks with one call. Listing 3-12 demonstrates the WaitAll() 
method, which causes the Task to block until all of the locks can be acquired.  

The listing creates two BankAccounts and two Mutexes. Two Tasks are created that modify the balance 
of one of the two accounts, and each acquires the lock from the Mutex for the account it is working with. 
The third Task changes the balance of both accounts and, therefore, needs to acquire the lock from both 
Mutexes to avoid starting a data race with one of the other Tasks.  

Listing 3-12. Acquiring Multiple Locks with Mutex.WaitAll() 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_12 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_12 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instances 
            BankAccount account1 = new BankAccount(); 
            BankAccount account2 = new BankAccount(); 
 
            // create the mutexes 
            Mutex mutex1 = new Mutex(); 
            Mutex mutex2 = new Mutex(); 
 
            // create a new task to update the first account 
            Task task1 = new Task(() => { 
                // enter a loop for 1000 balance updates 
                for (int j = 0; j < 1000; j++) { 
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                    // acquire the lock for the account 
                    bool lockAcquired = mutex1.WaitOne();; 
                    try { 
                        // update the balance 
                        account1.Balance++; 
                    } finally { 
                        if (lockAcquired) mutex1.ReleaseMutex(); 
                    } 
                } 
            }); 
 
            // create a new task to update the first account 
            Task task2 = new Task(() => { 
                // enter a loop for 1000 balance updates 
                for (int j = 0; j < 1000; j++) { 
                    // acquire the lock for the account 
                    bool lockAcquired = mutex2.WaitOne(); 
                    try { 
                        // update the balance 
                        account2.Balance += 2; 
                    } finally { 
                        if (lockAcquired) mutex2.ReleaseMutex(); 
                    } 
                } 
            }); 
 
            // create a new task to update the first account 
            Task task3 = new Task(() => { 
                // enter a loop for 1000 balance updates 
                for (int j = 0; j < 1000; j++) { 
                    // acquire the locks for both accounts 
                    bool lockAcquired = Mutex.WaitAll(new WaitHandle[] { mutex1, mutex2}); 
                    try { 
                        // simulate a transfer between accounts 
                        account1.Balance++; 
                        account2.Balance--; 
                    } finally { 
                        if (lockAcquired) { 
                            mutex1.ReleaseMutex(); 
                            mutex2.ReleaseMutex(); 
                        } 
                    } 
                } 
            }); 
 
            // start the tasks 
            task1.Start(); 
            task2.Start(); 
            task3.Start(); 
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            // wait for the tasks to complete 
            Task.WaitAll(task1, task2, task3); 
 
            // write out the counter value 
            Console.WriteLine("Account1 balance {0}, Account2 balance: {1}",  
                account1.Balance, account2.Balance); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The WaitAll() method is inherited from the WaitHandle class and takes an array of WaitHandles as 

the set of locks to acquire. Notice that although you can acquire multiple locks in a single step, you must 
release them individually using the Mutex.ReleaseMutex() method. The WaitAny() method returns when 
any of the locks have been acquired, and it returns an int that tells you the position of the acquired lock 
in the WaitHandle array passed in as a parameter. 

The WaitOne(), WaitAll(), and WaitAny() methods are all overridden so that you can attempt to 
acquire a lock or set of locks for a given period of time; see the .NET Framework documentation for 
details.  

Configuring Interprocess Synchronization 
Wait handles can be shared between processes. The Mutexes in the previous two listings were local, 
meaning that they were only usable in one process; a local Mutex is created when you use the default 
constructor. 

You can also create a named system Mutex, which is the kind that can be shared between processes. 
You do this by using the overloaded constructors that take a name argument. When using a named 
Mutex, it is important to see if the Mutex you are looking for has already been created, because it is 
possible to create several Mutexes with the same name that exist independently of one another. 

You can test to see if a Mutex exists by using the static Mutex.OpenExisting() method, which takes a 
string argument as the name of the Mutex you wish to create. If a Mutex with the name you have 
provided exists, it is returned by the OpenExisting() method. A 
System.Threading.WaitHandleCannotBeOpenedException is thrown if a Mutex has not already been created 
with that name. Listing 3-13 shows how to use the OpenExisting() method and the overloaded 
constructor to test for, create, and use a shared Mutex. To test this listing, you must run two or more 
instances of the compiled program. Control of the Mutex will pass from process to process each time you 
press the Enter key. If you compile and run the code in this listing, the program will loop forever, so you 
can safely close the console window when you have had enough. 
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Listing 3-13. Interprocess Mutex Use 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_13 { 
 
    class Listing_13 { 
 
        static void Main(string[] args) { 
 
            // declare the name we will use for the mutex 
            string mutexName = "myApressMutex"; 
 
            // declare the mutext 
            Mutex namedMutext; 
 
            try { 
                // test to see if the named mutex already exists 
                namedMutext = Mutex.OpenExisting(mutexName); 
            } catch (WaitHandleCannotBeOpenedException) { 
                // the mutext does not exist - we must create it 
                namedMutext = new Mutex(false, mutexName); 
            } 
 
            // create the task 
            Task task = new Task(() => { 
                while (true) { 
                    // acquire the mutex 
                    Console.WriteLine("Waiting to acquire Mutex"); 
                    namedMutext.WaitOne(); 
                    Console.WriteLine("Acquired Mutex - press enter to release"); 
                    Console.ReadLine(); 
                    namedMutext.ReleaseMutex(); 
                    Console.WriteLine("Released Mutex"); 
                } 
            }); 
 
            // start the task 
            task.Start(); 
 
            // wait for the task to complete 
            task.Wait(); 
        } 
    } 
} 
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■ Tip You must be careful to pick a distinctive name for your Mutex to avoid conflicting with other programs 
running on the same machine. You will get some very odd behavior if you share a Mutex with someone else’s 
application. 

Using Declarative Synchronization 
So far, I have showed you how to selectively apply synchronization to critical regions. An alternative is to 
declaratively synchronize all of the fields and methods in a class by applying the Synchronization 
attribute. Your class must extend System.ContextBoundObject and import the 
System.Runtime.Remoting.Contexts namespace in order to be able to use the Synchronization attribute. 

To demonstrate declarative synchronization with our bank account example, let’s change the 
BankAccount class so that the balance can be read with the GetBalance() method and incremented with 
the IncrementBalance() method, as shown in Listing 3-14. Now, all of the code statements are contained 
in a single class and can be synchronized by applying the Synchronization attribute and having the 
BankAccount class extend ContextBoundObject. 

Listing 3-14. Using Declarative Synchronization 

using System; 
using System.Runtime.Remoting.Contexts; 
using System.Threading.Tasks; 
 
namespace Listing_14 { 
 
    [Synchronization] 
    class BankAccount : ContextBoundObject { 
        private int balance = 0; 
 
        public void IncrementBalance() { 
            balance++; 
        } 
 
        public int GetBalance() { 
            return balance; 
        } 
    } 
 
    class Listing_14 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create an array of tasks 
            Task[] tasks = new Task[10]; 
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            for (int i = 0; i < 10; i++) { 
                // create a new task 
                tasks[i] = new Task(() => { 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        // update the balance 
                        account.IncrementBalance(); 
                    } 
                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // wait for all of the tasks to complete 
            Task.WaitAll(tasks); 
 
            // write out the counter value 
            Console.WriteLine("Expected value {0}, Balance: {1}", 
                10000, account.GetBalance()); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The problem with using the Synchronization attribute is that every field and method of your class, 

even if they don’t modify shared data, becomes synchronized using a single lock, and this can cause a 
performance problem. Declarative synchronization is a heavy-handed approach to avoiding data races 
and should be used with caution. 

Using Reader-Writer Locks 
The synchronization primitives discussed so far consider all Tasks as equally likely to cause a data race. 
That idea is reasonable, but in many situations, it is not true. Often, there will be many Tasks that only 
need to read shared data and only a few that need to modify it. Lots of Tasks can read a data value 
concurrently without causing a data race—only changing data causes problems. 

A reader-writer lock is a common performance optimization and contains two locks—one for 
reading data and one for writing data—and allows multiple reader Tasks to acquire the read lock 
simultaneously. When a writer comes along and requests the write lock, it is made to wait for any active 
readers to release the read lock before being allowed to proceed, at which point the reader acquires both 
the read and write locks and has exclusive access to the critical region. This means that any requests by 
readers or writers to acquire either lock are made to wait until the active writer has finished with the 
critical region and releases the locks. 

Using the ReaderWriterLockSlim Class 
The System.Threading.ReaderWriterLockSlim class provides a convenient implementation of reader-
writer locking that takes care of managing the locks. This class is a lightweight alternative for the 
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heavyweight System.Threading.ReaderWriter, which Microsoft no longer recommends using. The 
lightweight version is simpler to use, offers better performance, and avoids some potential deadlocks. 

You acquire and release the ReaderWriterLockSlim read lock by calling the EnterReadLock() and 
ExitReadLock() methods. Similarly, you acquire and release the write lock by calling EnterWriteLock and 
ExitWriteLock(). The ReaderWriterLockSlim class only provides the synchronization primitives; it does 
not enforce the separation between read and write operations in your code. You must be careful to avoid 
modifying shared data in a Task that has only acquired the read lock. Listing 3-15 demonstrates the use 
of the ReaderWriterLockSlim class. 

Listing 3-15. Using the ReaderWriterLockSlim Class 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_15 { 
 
    class Listing_15 { 
 
        static void Main(string[] args) { 
 
            // create the reader-writer lock 
            ReaderWriterLockSlim rwlock = new ReaderWriterLockSlim(); 
 
            // create a cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
 
            // create an array of tasks 
            Task[] tasks = new Task[5]; 
 
            for (int i = 0; i < 5; i++) { 
                // create a new task 
                tasks[i] = new Task(() => { 
                    while (true) { 
                        // acqure the read lock 
                        rwlock.EnterReadLock(); 
                        // we now have the lock 
                        Console.WriteLine("Read lock acquired - count: {0}", 
                            rwlock.CurrentReadCount); 
                        // wait - this simulates a read operation 
                        tokenSource.Token.WaitHandle.WaitOne(1000); 
                        // release the read lock 
                        rwlock.ExitReadLock(); 
                        Console.WriteLine("Read lock released - count {0}",  
                            rwlock.CurrentReadCount); 
                        // check for cancellation 
                        tokenSource.Token.ThrowIfCancellationRequested(); 
                    } 
                }, tokenSource.Token); 
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                // start the new task 
                tasks[i].Start(); 
            } 
 
            // prompt the user 
            Console.WriteLine("Press enter to acquire write lock"); 
            // wait for the user to press enter  
            Console.ReadLine(); 
 
            // acquire the write lock 
            Console.WriteLine("Requesting write lock"); 
            rwlock.EnterWriteLock(); 
 
            Console.WriteLine("Write lock acquired"); 
            Console.WriteLine("Press enter to release write lock"); 
            // wait for the user to press enter  
            Console.ReadLine(); 
            // release the write lock 
            rwlock.ExitWriteLock(); 
 
            // wait for 2 seconds and then cancel the tasks 
            tokenSource.Token.WaitHandle.WaitOne(2000); 
            tokenSource.Cancel(); 
 
            try { 
                // wait for the tasks to complete 
                Task.WaitAll(tasks); 
            } catch (AggregateException) { 
                // do nothing 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The example creates five Tasks that acquire the read lock, wait for one second, and then release the 

read lock, repeating this sequence until they are cancelled. As the read lock is acquired and released, a 
message is printed to the console, and this message shows the number of holders of the read lock, which 
is available by reading the CurrentReadCount property. 

When you press the Enter key, the main application thread acquires the write lock, which is held for 
two seconds and then released. You can see from the following results that once the write lock has been 
requested, the number of Tasks holding the read lock starts to drop. This is because calls to 
EnterReadLock() will now wait until the writer lock has been released to ensure writer exclusivity. 
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... 

Read lock released - count 4 

Read lock acquired - count: 5 

 

Requesting write lock 

Read lock released - count 4 

Read lock released - count 3 

Read lock released - count 2 

Read lock released - count 1 

Read lock released - count 0 

Write lock acquired 

Press enter to release write lock 

 

Read lock acquired - count: 1 

Read lock acquired - count: 3 

Read lock acquired - count: 2 

Read lock acquired - count: 4 

Read lock acquired - count: 5 

Read lock released - count 4 

... 

If you press Enter again, the main application thread releases the write lock, which allows the Tasks 
to continue their acquire/release sequence once more. 
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Using Recursion and Upgradable Read Locks 
Listing 3-15 separates the code that reads the shared data from the code that modifies it. Often, you will 
want to read data and make a change only if some condition is met. You could acquire the write lock to 
do this, but that requires exclusive access. Because you don’t know in advance if you actually need to 
make changes, that would be a potential performance problem. 

But you are thinking, “Aha! I can acquire the (nonexclusive) read lock, perform the test, and then 
acquire the (exclusive) write lock if I need to make modifications.” In that case, you would produce some 
code similar to the following fragment: 

 
ReaderWriterLockSlim rwlock = new ReaderWriterLockSlim(); 
 
rwlock.EnterReadLock(); 
if (needToWrite) { 
    // acquire write lock 
    rwlock.EnterWriteLock(); 
    // ...perform write operations ... 
    // release the write lock 
    rwlock.ExitWriteLock(); 
} 
// release the read lock 
rwlock.ExitReadLock(); 

 
Unfortunately, when you came to run this code, you would get the following exception: 

Unhandled Exception: System.Threading.LockRecursionException: Write lock  

   may not be acquired with read lock held. This pattern is prone to deadlocks.  

Please ensure that read locks are released before taking a write lock.  

If an upgrade is necessary, use an upgrade lock in place of the read lock. 

   at System.Threading.ReaderWriterLockSlim.TryEnterWriteLockCore(Int32 

 millisecondsTimeout) 

... 

Acquiring the lock on a primitive when you already have a lock is called lock recursion. The 
ReaderWriterLockSlim class doesn’t support lock recursion by default, because lock recursion has the 
potential to create deadlocks. Instead, you should use an upgradable read lock, which allows you to read 
the shared data, perform your test, and safely acquire exclusive write access if you need it. You acquire 
and release an upgradable read lock by calling the EnterUpgradeableReadLock() and 
ExitUpgradeableReadLock() methods and then acquire and release the write lock (if needed) by calling 
the EnterWriteLock() and ExitWriteLock() as before. 
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■ Note Although it is not recommended, you can enable lock recursion in ReaderWriterLockSlim by using an 
overloaded constructor. See the .NET Framework documentation for details, but don’t be surprised when your 
application deadlocks. 

Once the upgradable lock is acquired, requests for the write lock and further requests for the 
upgradable read lock will block until ExitUpgradeableReadLock() is called, but multiple holders of the 
read lock are allowed. Upgrading the lock by calling EnterWriteLock() waits for all of the current holders 
of the read lock to call ExitReadLock() before the write lock is granted. Listing 3-16 demonstrates the use 
of the upgradable read lock by having five Tasks that read shared data and two that use the upgradable 
read lock to make changes.  

Listing 3-16. Avoiding Lock Recursion by Using an Upgradable Read Lock 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_16 { 
 
    class Listing_16 { 
 
        static void Main(string[] args) { 
 
            // create the reader-writer lock 
            ReaderWriterLockSlim rwlock = new ReaderWriterLockSlim(); 
 
            // create a cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
 
            // create some shared data 
            int sharedData = 0; 
 
            // create an array of tasks 
            Task[] readerTasks = new Task[5]; 
 
            for (int i = 0; i < readerTasks.Length; i++) { 
                // create a new task 
                readerTasks[i] = new Task(() => { 
                    while (true) { 
                        // acqure the read lock 
                        rwlock.EnterReadLock(); 
                        // we now have the lock 
                        Console.WriteLine("Read lock acquired - count: {0}", 
                            rwlock.CurrentReadCount); 
 
                        // read the shared data 
                        Console.WriteLine("Shared data value {0}", sharedData); 
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                        // wait - slow things down to make the example clear 
                        tokenSource.Token.WaitHandle.WaitOne(1000); 
 
                        // release the read lock 
                        rwlock.ExitReadLock(); 
                        Console.WriteLine("Read lock released - count {0}", 
                            rwlock.CurrentReadCount); 
 
                        // check for cancellation 
                        tokenSource.Token.ThrowIfCancellationRequested(); 
                    } 
                }, tokenSource.Token); 
                // start the new task 
                readerTasks[i].Start(); 
            } 
 
            Task[] writerTasks = new Task[2]; 
            for (int i = 0; i < writerTasks.Length; i++) { 
                writerTasks[i] = new Task(() => { 
                    while (true) { 
                        // acquire the upgradeable lock 
                        rwlock.EnterUpgradeableReadLock(); 
 
                        // simulate a branch that will require a write  
                        if (true) { 
                            // acquire the write lock 
                            rwlock.EnterWriteLock(); 
                            // print out a message with the details of the lock 
                            Console.WriteLine("Write Lock acquired - waiting readers {0},  
                                writers {1}, upgraders {2}", 
                                rwlock.WaitingReadCount, rwlock.WaitingWriteCount, 
                                rwlock.WaitingUpgradeCount); 
 
                            // modify the shared data 
                            sharedData++; 
 
                            // wait - slow down the example to make things clear 
                            tokenSource.Token.WaitHandle.WaitOne(1000); 
                            // release the write lock 
                            rwlock.ExitWriteLock(); 
                        } 
 
                        // release the upgradable lock 
                        rwlock.ExitUpgradeableReadLock(); 
 
                        // check for cancellation 
                        tokenSource.Token.ThrowIfCancellationRequested(); 
                    } 
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                }, tokenSource.Token); 
                // start the new task 
                writerTasks[i].Start(); 
            } 
 
            // prompt the user 
            Console.WriteLine("Press enter to cancel tasks"); 
            // wait for the user to press enter  
            Console.ReadLine(); 
 
            // cancel the tasks 
            tokenSource.Cancel(); 
 
            try { 
                // wait for the tasks to complete 
                Task.WaitAll(readerTasks); 
            } catch (AggregateException agex) { 
                agex.Handle(ex => true); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Only one holder of the upgradable lock is allowed at a time, which means you should partition your 

requests for locks carefully to have as few requests as possible for upgradable and write locks. You may 
be tempted to separate your read and write requests so that you release the read lock and then try to 
acquire the write lock only if you need to make a change, as shown in the following fragment: 

 
ReaderWriterLockSlim rwlock = new ReaderWriterLockSlim(); 
 
bool writeFlag = false; 
 
rwlock.EnterReadLock(); 
if (needToWrite) { 
    writeFlag = true; 
} 
 
// release the read lock 
rwlock.ExitReadLock(); 
 
if (writeFlag) { 
 
    // acquire write lock 
    rwlock.EnterWriteLock(); 
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    // ...perform write operations ... 
 
    // release the write lock 
    rwlock.ExitWriteLock(); 
} 

 
This creates a data race, because between the point at which you release the read lock and acquire 

the write lock, another Task could have modified the shared data and changed the condition that you 
were looking for. The only way this approach works is if there is only one Task that can change the 
shared data. If that is the case, there is no performance impact in using an upgradable lock, because 
there will be no other upgrade requests to contend with. 

Working with Concurrent Collections 
One of the most common ways of sharing data is through collection classes. Often, you will want to use 
Tasks to parallel process the contents of a collection or use a collection to gather the results produced by 
Tasks. Sharing a collection between Tasks creates the same kinds of data races as sharing other types. 

Listing 3-17 demonstrates a collection data race. A System.Collections.Generic.Queue<int> with 
1,000 items is processed by ten Tasks. While there are still items in the collection, the Tasks remove the 
first item and increment a counter, and the counter is synchronized using interlocked operations. 

Listing 3-17. A data Race Sharing a Collection 

using System; 
using System.Collections.Generic; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_17 { 
 
    class Listing_17 { 
 
        static void Main(string[] args) { 
 
            // create a shared collection  
            Queue<int> sharedQueue = new Queue<int>(); 
            // populate the collection with items to process 
            for (int i = 0; i < 1000; i++) { 
                sharedQueue.Enqueue(i); 
            } 
 
            // define a counter for the number of processed items 
            int itemCount = 0; 
 
            // create tasks to process the list 
            Task[] tasks = new Task[10]; 
            for (int i = 0; i < tasks.Length; i++) { 
                // create the new task 
                tasks[i] = new Task(() => { 
 



CHAPTER 3 ■ SHARING DATA 

 

88  

                    while (sharedQueue.Count > 0) { 
                        // take an item from the queue 
                        int item = sharedQueue.Dequeue(); 
                        // increment the count of items processed 
                        Interlocked.Increment(ref itemCount); 
                    } 
 
                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // wait for the tasks to complete 
            Task.WaitAll(tasks); 
 
            // report on the number of items processed 
            Console.WriteLine("Items processed: {0}", itemCount); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The example gives rise to two kinds of data race. The first is where the counter value exceeds 1,000, 

which happens because the steps in the Queue.Dequeue() method are not synchronized so Tasks are 
reading the same value several times from the head of the queue. The second is a 
System.InvalidOperationException, thrown when calls to Queue.Dequeue() are made when the queue is 
empty; this happens because the check to see if there are items left in the queue (sharedQueue.Count > 
0) and the request to take an item from the queue (sharedQueue.Dequeue()) are not protected in a critical 
region. 

There are three kinds of collection in the .NET Framework, and each requires a different approach 
to sharing them safely. 

Using .NET 4 Concurrent Collection Classes 
.NET 4 includes a set of collection classes in the System.Collections.Concurrent namespace. These 
classes are type safe and synchronized using the lightweight synchronization primitives described 
earlier in the chapter. You should use the new concurrent collection classes whenever you need to share 
a collection during parallel programming, because the combination of type safety and lightweight 
synchronization makes them safe to share and fast to use. Table 3-5 summarizes the four concurrent 
collection classes, each of which is detailed in the following sections. 

■ Note There is a fifth concurrent collection class, BlockingCollection. We will discuss this class in the next 
chapter. 
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Table 3-5. Concurrent Collection Classes 

Problem Solution Listing 

Safely collect data on a first-in, 
first-out basis. 

Use the System.Threading.Tasks.ConcurrentQueue class. 3-18 

Safely collect data on a first-in, 
last-out basis. 

Use the System.Threading.Tasks.ConcurrentStack class. 3-19 

Safely collect data without a 
specific ordering. 

Use the System.Threading.Tasks.ConcurrentBag class. 3-20 

Safely collect key-value pairs. Use the System.Threading.Tasks.ConcurrentDictionary 
class. 

3-21 

■ Tip Each of the concurrent collection classes implement a set of useful extension methods that range from 
Count(), to return the number of items in the collection, through to methods to calculate averages or search for 
items. See the .NET Framework documentation for details. 

ConcurrentQueue 
The ConcurrentQueue class implements a first in, first out (FIFO) queue, which means that when you take 
items from the queue, you get them in the same order in which they were added. To place an item into a 
ConcurrentQueue, you call the Enqueue() method. To take the first item in the queue, you call 
TryDequeue() and to get the first item in the queue without taking it, you call TryPeek(). 

TryDequeue() and TryPeek() take a parameter of the collection type, modified by the out keyword 
and return a bool result. If the result is true, the parameter will contain the data item. If it is false, no 
data item could be obtained. Listing 3-18 shows how to use the ConcurrentQueue class to resolve the data 
race demonstrated in Listing 3-17. 

Listing 3-18. Using the ConcurrentQueue Class 

using System; 
using System.Collections.Concurrent; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_18 { 
 
    class Listing_18 { 
 
        static void Main(string[] args) { 
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            // create a shared collection  
            ConcurrentQueue<int> sharedQueue = new ConcurrentQueue<int>(); 
 
            // populate the collection with items to process 
            for (int i = 0; i < 1000; i++) { 
                sharedQueue.Enqueue(i); 
            } 
 
            // define a counter for the number of processed items 
            int itemCount = 0; 
 
            // create tasks to process the list 
            Task[] tasks = new Task[10]; 
            for (int i = 0; i < tasks.Length; i++) { 
                // create the new task 
                tasks[i] = new Task(() => { 
 
                    while (sharedQueue.Count > 0) { 
                        // define a variable for the dequeue requests 
                        int queueElement; 
                        // take an item from the queue 
                        bool gotElement = sharedQueue.TryDequeue(out queueElement); 
                        // increment the count of items processed 
                        if (gotElement) { 
                            Interlocked.Increment(ref itemCount); 
                        }  
                    } 
 
                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // wait for the tasks to complete 
            Task.WaitAll(tasks); 
 
            // report on the number of items processed 
            Console.WriteLine("Items processed: {0}", itemCount); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The TryDequeue() and TryPeek() methods force you to code for possible failure, that is, for the 

eventuality that no data item is available. Listing 3-18 checks to see if there are items in the queue by 
reading the Count property. However, we can’t assume that there will still be items by the time our call to 
TryDequeue() is executed, so we have to check the bool result from TryDequeue() to see if we received 
data to process. Table 3-6 describes the key members of the ConcurrentQueue class. 
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Table 3-6. Key Members of System.Collections.Concurrent.ConcurrentQueue 

Member Description 

Enqueue(T) Add an item of type T to the queue. 

TryPeek(out T) Try to return an element from the head of the queue without removing it. Return 
true if a data item was returned. The element is set to the out parameter. 

TryDequeue(out T) Try to remove and return an element from the head of the queue. Return true if 
a data item was returned. The element is set to the out parameter. 

ConcurrentStack 
The System.Collections.Concurrent.ConcurrentStack class implements a last in, first out (LIFO) 
queue—taking an item from the queue returns the most recently added item. Items are added to the 
stack using the Push() and PushRange() methods and inspected and retrieved using the TryPeek(), 
TryPop(), and TryPopRange() methods. Listing 3-19 demonstrates the use of the ConcurrentStack 
collection. 

Listing 3-19. Using the ConcurrentStack Class 

using System; 
using System.Collections.Concurrent; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_19 { 
 
    class Listing_19 { 
 
        static void Main(string[] args) { 
 
            // create a shared collection  
            ConcurrentStack<int> sharedStack = new ConcurrentStack<int>(); 
 
            // populate the collection with items to process 
            for (int i = 0; i < 1000; i++) { 
                sharedStack.Push(i); 
            } 
 
            // define a counter for the number of processed items 
            int itemCount = 0; 
 
            // create tasks to process the list 
            Task[] tasks = new Task[10]; 
            for (int i = 0; i < tasks.Length; i++) { 
                // create the new task 
                tasks[i] = new Task(() => { 
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                    while (sharedStack.Count > 0) { 
                        // define a variable for the dequeue requests 
                        int queueElement; 
                        // take an item from the queue 
                        bool gotElement = sharedStack.TryPop(out queueElement); 
                        // increment the count of items processed 
                        if (gotElement) { 
                            Interlocked.Increment(ref itemCount); 
                        } 
                    } 
 
                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // wait for the tasks to complete 
            Task.WaitAll(tasks); 
 
            // report on the number of items processed 
            Console.WriteLine("Items processed: {0}", itemCount); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Table 3-7 describes the key members of the ConcurrentStack class. 

Table 3-7. Key members of System.Collections.Concurrent.ConcurrentStack 

Member Description 

Push(T) Insert an element at the head of the stack. 

PushRange(T[]) 
PushRange(T[], int, int) 

Insert multiple elements at the head of the stack. 

TryPeek(out T) Try to return an element from the head of the stack without 
removing it. Return true if a data item was returned. 

TryPop(out T) Try to remove and return an element from the head of the stack. 
Return true if a data item was returned. 

TryPopRange(out T[]) 
TryPopRange(out T[], int, int) 

Try to remove and return multiple elements from the head of the 
stack. Return the number of data items returned. 
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ConcurrentBag 
The ConcurrentBag class implements an unordered collection, such that the order in which items are 
added does not guarantee the order in which they will be returned. Items are added with the Add() 
method, returned and removed from the collection with the TryTake() method, and returned without 
being removed with the TryPeek() method. Listing 3-20 demonstrates use of the ConcurrentBag 
collection. 

Listing 3-20. Using the ConcurrentBag Class 

using System; 
using System.Collections.Concurrent; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_20 { 
 
    class Listing_20 { 
 
        static void Main(string[] args) { 
 
            // create a shared collection  
            ConcurrentBag<int> sharedBag = new ConcurrentBag<int>(); 
 
            // populate the collection with items to process 
            for (int i = 0; i < 1000; i++) { 
                sharedBag.Add(i); 
            } 
 
            // define a counter for the number of processed items 
            int itemCount = 0; 
 
            // create tasks to process the list 
            Task[] tasks = new Task[10]; 
            for (int i = 0; i < tasks.Length; i++) { 
                // create the new task 
                tasks[i] = new Task(() => { 
 
                    while (sharedBag.Count > 0) { 
                        // define a variable for the dequeue requests 
                        int queueElement; 
                        // take an item from the queue 
                        bool gotElement = sharedBag.TryTake(out queueElement); 
                        // increment the count of items processed 
                        if (gotElement) { 
                            Interlocked.Increment(ref itemCount); 
                        } 
                    } 
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                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // wait for the tasks to complete 
            Task.WaitAll(tasks); 
 
            // report on the number of items processed 
            Console.WriteLine("Items processed: {0}", itemCount); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Table 3-8 describes the key members of the ConcurrentBag class. 

Table 3-8. Key members of System.Collections.Concurrent.ConcurrentBag 

Member Description 

Add(T) Add an element to the collection. 

TryPeek(out T) Try to return an element from the collection without removing it. Return true if a 
data item was returned. 

TryTake(out T) Try to remove and return an element from the collection. Return true if a data 
item was returned. 

ConcurrentDictionary 
The ConcurrentDictionary class implements a collection of key-value pairs. Like the other collection 
classes in the System.Collections.Concurrent namespace, ConcurrentDictionary provides methods 
whose names are prefixed with Try and returns bool results if they operate successfully. Table 3-9 
describes the key members of the ConcurrentDictionary class. 
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Table3-9. Key members of System.Collections.Concurrent.ConcurrentDictionary 

Member Description 

TryAdd(TKey, TVal) Try to add a new key-value pair to the collection. Return true if the 
pair was added successfully. 

TryGetValue(TKey, out TVal) Try to get the value associated with the specified key. Return true if 
the value was obtained and placed in the out parameter. 

TryRemove(TKey, out TVal) Try to remove a key-value pair from the collection. The value will be 
placed in the out parameter. Return true if the key-value pair was 
removed successfully. 

TryUpdate(TKey, TVal, TVal) Try to update the value associated with a key. The first value 
parameter will be used to update the key-value pair if the current 
value in the collection is equal to the second value parameter. Return 
true if the value was updated. 

ContainsKey(TKey) Return true if the collection contains a key-value pair with the 
specified key. 

 
Bear in mind that the state of the collection may change between calls to individual methods. For 

example, if you call the ContainsKey() method and then call TryGetValue() using the key you have 
checked for, there is no guarantee that it will still be present, so your method calls may be interleaved 
with those from another parallel Task. 

Listing 3-21 shows the ConcurrentDictionary class being used to implement a variant of the data 
isolation pattern to allow multiple Tasks to keep track of their own account balances. 

Listing 3-21. Using the ConcurrentDictionary Class 

using System; 
using System.Collections.Concurrent; 
using System.Threading.Tasks; 
 
namespace Listing_21 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_21 { 
 
        static void Main(string[] args) { 
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            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create a shared dictionary 
            ConcurrentDictionary<object, int> sharedDict  
                = new ConcurrentDictionary<object, int>(); 
 
            // create tasks to process the list 
            Task<int>[] tasks = new Task<int>[10]; 
            for (int i = 0; i < tasks.Length; i++) { 
 
                // put the initial value into the dictionary 
                sharedDict.TryAdd(i, account.Balance); 
 
                // create the new task 
                tasks[i] = new Task<int>((keyObj) => { 
 
                    // define variables for use in the loop 
                    int currentValue; 
                    bool gotValue; 
 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        // get the current value from the dictionary 
                        gotValue = sharedDict.TryGetValue(keyObj, out currentValue); 
                        // increment the value and update the dictionary entry 
                        sharedDict.TryUpdate(keyObj, currentValue + 1, currentValue);  
                    } 
 
                    // define the final result 
                    int result; 
                    // get our result from the dictionary 
                    gotValue = sharedDict.TryGetValue(keyObj, out result); 
                    // return the result value if we got one 
                    if (gotValue) { 
                        return result; 
                    } else { 
                        // there was no result available - we have encountered a problem 
                        throw new Exception( 
                            String.Format("No data item available for key {0}", keyObj)); 
                    } 
                }, i); 
 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // update the balance of the account using the task results 
            for (int i = 0; i < tasks.Length; i++) { 
                account.Balance += tasks[i].Result; 
            } 
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            // write out the counter value 
            Console.WriteLine("Expected value {0}, Balance: {1}", 
                10000, account.Balance); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
 
        } 
    } 
} 

Using First-Generation Collections 
The first-generation collection classes are those that were included in .NET since version 1.0. These 
classes include two features to help with synchronization, but neither is ideal, and you should use the 
new concurrent collections wherever possible.  

The first synchronization helper is the static Synchronized method, which creates a wrapper around 
your collection instance. The wrapper synchronizes all of the methods of the collection, rather like the 
declarative synchronization demonstrated earlier in the chapter. Listing 3-22 shows the use of the 
Synchronized method for a System.Collections.Queue. 

Listing 3-22. Synchronizing a First-Generation Collection Class 

using System; 
using System.Collections; 
using System.Threading.Tasks; 
 
namespace Listing_22 { 
 
    class Listing_22 { 
 
        static void Main(string[] args) { 
 
            // create a collection  
            Queue sharedQueue = Queue.Synchronized(new Queue()); 
 
            // create tasks to process the list 
            Task[] tasks = new Task[10]; 
            for (int i = 0; i < tasks.Length; i++) { 
                // create the new task 
                tasks[i] = new Task(() => { 
 
                    for (int j = 0; j < 100; j++) { 
                        sharedQueue.Enqueue(j); 
                    } 
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                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // wait for the tasks to complete 
            Task.WaitAll(tasks); 
 
            // report on the number of items enqueued 
            Console.WriteLine("Items enqueued: {0}", sharedQueue.Count); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The Synchronized method works in Listing 3-22 because we are using it to stop multiple enqueue 

operations colliding. But while each method is synchronized, there is no support for maintaining 
consistency across method calls. If you need to perform multiple operations on the collection, such as 
checking that there are items in the queue and then removing one of them, the Synchronized method 
won’t help. 

The second synchronization helper is the SyncRoot instance member, which returns an object that 
you can use to perform locking with the lock keyword. Listing 3-23 demonstrates the use of SyncRoot. 

Listing 3-23. Manually Synchronizing a First-Generation Collection Class 

using System; 
using System.Collections; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_23 { 
 
    class Listing_23 { 
 
        static void Main(string[] args) { 
 
            // create a collection  
            Queue sharedQueue = new Queue(); 
 
            // populate the collection with items to process 
            for (int i = 0; i < 1000; i++) { 
                sharedQueue.Enqueue(i); 
            } 
 
            // define a counter for the number of processed items 
            int itemCount = 0; 
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            // create tasks to process the list 
            Task[] tasks = new Task[10]; 
            for (int i = 0; i < tasks.Length; i++) { 
                // create the new task 
                tasks[i] = new Task(() => { 
 
                    while (sharedQueue.Count > 0) { 
                        // get the lock using the collections sync root 
                        lock (sharedQueue.SyncRoot) { 
                            // check that there are still items 
                            if (sharedQueue.Count > 0) { 
                                // take an item from the queue 
                                int queueElement = (int)sharedQueue.Dequeue(); 
                                // increment the count of items processed 
                                Interlocked.Increment(ref itemCount); 
                            } 
                        } 
                    } 
 
                }); 
                // start the new task 
                tasks[i].Start(); 
            } 
 
            // wait for the tasks to complete 
            Task.WaitAll(tasks); 
 
            // report on the number of items processed 
            Console.WriteLine("Items processed: {0}", itemCount); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
In Listing 3-23, we make two calls to the Count property: one to keep the Task body running and one 

to check that there are still items in the queue once we have acquired sole access to the critical region. 
We need the second call because, unlike the concurrent classes, the first-generation collections are not 
designed to cope with interleaved parallel requests. When sharing first-generation collections between 
Tasks, you have to either write additional checks inside of the critical region or catch the exceptions that 
will be thrown when the state is out of kilter, for example, trying to dequeue from an empty queue.  

The other issue with the first-generation collections is that they are not type safe. We have to cast 
the result from the Dequeue() method to an int and deal with the exceptions that arise if a type other 
than an int is added to the collection. 

Using Generic Collections 
Generic collections are those from the System.Collections.Generic namespace. These collections are 
type safe but provide no support for synchronization. You must use one of the synchronization 
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primitives described earlier in this chapter when sharing these classes. Wherever possible, use the 
concurrent collections instead.  

Common Problems and Their Causes 
Sharing data safely between Tasks is one of the most error-prone aspects of parallel programming. You 
will almost certainly make mistakes as you come to terms with the nuances of parallel programming and 
strive to strike a balance between performance and safety. This section describes and demonstrates four 
of the most common problems in the hope that you will be able to more quickly determine the cause of a 
problem when it arises. 

Unexpected Mutability 
Types that are assumed to be immutable are built from mutable types whose states are changed by 
another Task. Unexpected and inconsistent program results from the point at which the state change 
occurs. 

Solution 
There is no programmatic solution to the Unexpected Mutability antipattern. The only way to avoid this 
problem is to check the field modifiers for all types that you are relying on as being immutable to make 
sure that they can’t be changed. 

Example 
C# does not enforce immutability of complex types; it is possible to declare a field to be readonly and 
still modify the members of the type instance assigned to it. For example, the following listing shows the 
type MyImmutableType, which declares a readonly field of the type MyReferenceData. The PI field of 
MyReferenceData is not readonly and is changed by the main thread of the program, causing incorrect 
calculations. 

 
using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Mistaken_Immutability { 
 
    class MyReferenceData { 
        public double PI = 3.14; 
    } 
 
    class MyImmutableType { 
        public readonly MyReferenceData refData = new MyReferenceData(); 
        public readonly int circleSize = 1; 
    } 
 
    class MistakenImmutability { 
 
        static void Main(string[] args) { 
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            // create a new instance of the immutable type 
            MyImmutableType immutable = new MyImmutableType(); 
 
            // create a cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
 
            // create a task that will calculate the circumference 
            // of a 1 unit circle and check the result 
            Task task1 = new Task(() => { 
                while (true) { 
                    // perform the calculation 
                    double circ = 2 * immutable.refData.PI * immutable.circleSize; 
                    Console.WriteLine("Circumference: {0}", circ); 
                    // check for the mutation 
                    if (circ == 4) { 
                        // the mutation has occurred - break 
                        // out of the loop 
                        Console.WriteLine("Mutation detected"); 
                        break; 
                    } 
                    // sleep for a moment 
                    tokenSource.Token.WaitHandle.WaitOne(250); 
                } 
            }, tokenSource.Token); 
 
            // start the task 
            task1.Start(); 
 
            // wait to let the task start work 
            Thread.Sleep(1000); 
 
            // perform the mutation 
            immutable.refData.PI = 2; 
 
            // join the task 
            task1.Wait(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Multiple Locks 
In a multiple lock scenario, multiple critical sections modify the same shared data, and each has its own 
lock or synchronization primitive. Access to each critical region is synchronized, but there is no overall 
coordination which means that a data race can still occur. 
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Solution 
Ensure that every Task that enters the critical region uses the same reference to acquire the 
synchronization lock. 

Example 
The following example shows two locks being used to synchronize access to critical regions that access 
the same shared data, in this case, the balance of our bank account example. Ten Tasks are created in 
two groups of five: members of the first group uses one lock to synchronize their balance updates, and 
the second group uses the other lock.  

 
using System; 
using System.Threading.Tasks; 
 
namespace Multiple_Locks { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Multiple_Locks { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create two lock objects 
            object lock1 = new object(); 
            object lock2 = new object(); 
 
            // create an array of tasks 
            Task[] tasks = new Task[10]; 
 
            // create five tasks that use the first lock object 
            for (int i = 0; i < 5; i++) { 
                // create a new task 
                tasks[i] = new Task(() => { 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        lock (lock1) { 
                            // update the balance 
                            account.Balance++; 
                        } 
                    } 
                }); 
            } 
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            // create five tasks that use the second lock object 
            for (int i = 5; i < 10; i++) { 
                // create a new task 
                tasks[i] = new Task(() => { 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        lock (lock2) { 
                            // update the balance 
                            account.Balance++; 
                        } 
                    } 
                }); 
            } 
 
            // start the tasks 
            foreach (Task task in tasks) { 
                task.Start(); 
            } 
 
            // wait for all of the tasks to complete 
            Task.WaitAll(tasks); 
 
            // write out the counter value 
            Console.WriteLine("Expected value {0}, Balance: {1}", 
                10000, account.Balance); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine();  
 
        } 
    } 
} 

Lock Acquisition Order 
You may run into a lock acquisition order issue if you acquire multiple locks in a nested code block but 
do so in a different order in two or more critical regions. The following fragment demonstrates a nested 
block: 

 
lock (lockObj1) { 
    lock (lockObj2) { 
        ...critical region... 
    } 
} 

 
If you repeat this nested acquisition to protect another critical region but don’t acquire the locks in 

the same order (i.e., acquire lockObj2 and then lockObj1), you create a potential deadlock where neither 
of the two Tasks (or any other Task that will wish to acquire either lock) can continue.  
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Solution 
If you are using wait-handle–based primitives, the best solution is to use the WaitAll() method 
demonstrated in the “Acquiring Multiple Locks” section of this chapter. This method will acquire the 
lock on multiple wait handles in a single step, which avoids the deadlock. 

If you are using another kind of primitive, the only solution is to ensure that you always acquire the 
locks in the same order. A simple trick is to name the primitive instances sequentially (lock1, lock2, etc.) 
and always acquire the lowest ordered name first. Ensuring that you don’t duplicate primitive instance 
names in your code is a lot easier than debugging a deadlock. 

Example 
The following example creates two objects used with the lock keyword. Two Tasks are created, and they 
acquire one of the locks, wait for 500 ms, and then acquire the second lock. The lock acquisition order is 
different for each Task and deadlock occurs. 

 
using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Lock_Acquisition_Order { 
 
    class Lock_Acquisition_Order { 
 
        static void Main(string[] args) { 
 
            // create two lock objects 
            object lock1 = new object(); 
            object lock2 = new object(); 
 
            // create a task that acquires lock 1 
            // and then lock 2 
            Task task1 = new Task(() => { 
                lock (lock1) { 
                    Console.WriteLine("Task 1 acquired lock 1"); 
                    Thread.Sleep(500); 
                    lock (lock2) { 
                        Console.WriteLine("Task 1 acquired lock 2"); 
                    } 
                } 
            }); 
 
            // create a task that acquires lock 2 
            // and then lock 1 
            Task task2 = new Task(() => { 
                lock (lock2) { 
                    Console.WriteLine("Task 2 acquired lock 2"); 
                    Thread.Sleep(500); 
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                    lock (lock1) { 
                        Console.WriteLine("Task 2 acquired lock 1"); 
                    } 
                } 
            }); 
 
            // start the tasks 
            task1.Start(); 
            task2.Start(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine();  
        } 
    } 
} 

Orphaned Locks 
The .NET synchronization primitives require you to explicitly acquire and release the lock. An orphaned 
lock is one that has been acquired but, because of an exception or poor programming, will never be 
released. 

Because the lock is never released, any Tasks that try to acquire the lock will wait indefinitely. 

Solution 
Ensure that you do not return from a method before releasing a lock and handle exceptions by releasing 
your lock in the finally block of a try. . .catch. . .finally sequence. Alternatively, use the lock 
keyword (although this may offer poor performance compared with one of the lightweight 
synchronization primitives). 

Example 
The following example uses a Mutex to demonstrate an orphaned lock. The first Task created repeatedly 
acquires and releases the Mutex. The second Task acquires the Mutex and then throws an exception, so 
the Mutex is never released. The first Task deadlocks waiting to acquire the Mutex and cannot move 
forward. The Mutex remains orphaned even when the second Task has finished and its exception has 
been processed. 

 
using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Orphaned_Locks { 
 
    class Orphaned_Locks { 
 
        static void Main(string[] args) { 
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            // create the sync primitive 
            Mutex mutex = new Mutex(); 
 
            // create a cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
 
            // create a task that acquires and releases the mutex 
            Task task1 = new Task(() => { 
                while (true) { 
                    mutex.WaitOne(); 
                    Console.WriteLine("Task 1 acquired mutex"); 
                    // wait for 500ms 
                    tokenSource.Token.WaitHandle.WaitOne(500); 
                    // exit the mutex 
                    mutex.ReleaseMutex(); 
                    Console.WriteLine("Task 1 released mutex"); 
                } 
            }, tokenSource.Token); 
 
            // create a task that acquires and then abandons the mutex 
            Task task2 = new Task(() => { 
                // wait for 2 seconds to let the other task run 
                tokenSource.Token.WaitHandle.WaitOne(2000); 
                // acquire the mutex 
                mutex.WaitOne(); 
                Console.WriteLine("Task 2 acquired mutex"); 
                // abandon the mutex 
                throw new Exception("Abandoning Mutex"); 
            }, tokenSource.Token); 
 
            // start the tasks 
            task1.Start(); 
            task2.Start(); 
 
            // put the main thread to sleep  
            tokenSource.Token.WaitHandle.WaitOne(3000); 
 
            // wait for task 2  
            try { 
                task2.Wait(); 
            } catch (AggregateException ex) { 
                ex.Handle((inner) => { 
                    Console.WriteLine(inner); 
                    return true; 
                }); 
            } 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine();  
 
        } 
    } 
} 

Summary 
In this chapter, we tackled the difficult topic of sharing data between tasks. Of the problems that you are 
likely to encounter as you write parallel programs, problems of this type are the most commonly 
occurring. Taking the time to make sure you understand how your data is shared between your tasks can 
save many hours of debugging. In the next chapter, we’ll look at how you can coordinate several tasks to 
build more complex parallel programs.
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Coordinating Tasks 

Listing 4-1. Task Continuation 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_01 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_01 { 
 
        static void Main(string[] args) { 
 
            Task<BankAccount> task = new Task<BankAccount>(() => { 
                // create a new bank account 
                BankAccount account = new BankAccount(); 
                // enter a loop 
                for (int i = 0; i < 1000; i++) { 
                    // increment the account total 
                    account.Balance++; 
                } 
                // return the bank account 
                return account; 
            }); 
 
            task.ContinueWith((Task<BankAccount> antecedent) => { 
                Console.WriteLine("Final Balance: {0}", antecedent.Result.Balance); 
            }); 
 
            // start the task 
            task.Start(); 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine();   
 
        } 
    } 
} 

Doing More with Tasks 
One of the most useful features of the TPL is the flexible way you can coordinate what groups of Tasks do 
to build complex parallel programs. In this chapter, we’ll look at the main approaches to coordination. 

The first two are task continuations and child tasks. Continuations let you create chains of Tasks that 
are executed one after the other. Child tasks are run in the body of another Task and let you break down 
work into smaller pieces in order to increase concurrency. Listing 4-1 demonstrates a simple task 
continuation. 

We’ll also build on the previous chapter to apply what you learned about synchronization; there are 
some advanced synchronization primitives that can be used to manage how Tasks interact with one 
another. This chapter describes these primitives and shows you how to use them. 

A core building block in many parallel programs is the Parallel Producer/Consumer pattern, which 
has one group of Tasks creating items which are then processed by a second group of Tasks. You’ll use 
this pattern time and time again. The .NET Framework includes a class that makes implementing this 
pattern very simple, and this chapter shows you how to create and customize this important 
programming model—if you only read one part of this chapter closely, make it this one. 

This chapter finishes up by showing you how to implement a custom task scheduler. The task 
scheduler is responsible for taking the Tasks that you create and having them executed by the classic 
threads that underpin the TPL. This is the only part of the book where you see the classic threads, and 
you’ll need to have some knowledge of how they work to follow along. But this is very much an optional 
(and advanced) topic. You can use the default TPL task scheduler without having any needing any 
experience with threads and, in fact, that’s exactly what I recommend you do. 

Using Task Continuations 
Task continuations allow you to chains of Tasks, which are performed in order, so when one Task in the 
chain finishes, the next one begins.  

In a simple continuation, each Task in the chain is followed by one other Task, which can be useful 
but not deeply so. The true power of continuations arises with multitask and selective continuations. 
Multitask continuations schedule several Tasks when one finishes, or schedule one Task when several 
finish. They create the potential for fine-grained parallelism, where steps that were performed 
sequentially inside a larger Task body can now be performed in parallel. Selective continuations allow 
you to schedule Tasks based on the status of the previous Task in the chain, allowing you to create 
complex, yet natural, sets of Tasks to represent complex application states. 

The following sections show you how to create and manage different types of continuations, 
building on what we learned in the previous chapter, as summarized in Table 4-1. 
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Table 4-1. Task Continuations 

Problem Solution Listing 

Create a simple 
continuation. 

Use the Task.ContinueWith() method for each Task continuation. 4-1 and 
4-2 

Create selective 
continuations. 

Use the Task.ContinueWith() method, and specify a value from the 
TaskContinuationOptions enumeration. 

4-4 

Create many-to-one 
and any-to-one 
continuations. 

Use the TaskFactory.ContinueWhenAll() and 
Task.Factory.ContinueWhenAny() methods. 

4-5 and 
4-6 

Canceling 
continuations. 

Use a CancellationToken when using the ContinueWith() method 
and, optionally, the NotOnCanceled value from the 
TaskContinuationOptions enumeration. 

4-7 

Handle exceptions in 
task continuations. 

Use selective continuations with the OnlyOnFaulted and 
NotOnFaulted values from the TaskContinuationOptions 
enumeration or propagate exceptions by handling and re-throwing 
them in continuations. 

4-8 and 
4-9 

Creating Simple Continuations 
Listing 4-1, at the start of this chapter, demonstrates a simple task continuation. Creating a simple 
continuation is a two step process: 

1. Create a new Task instance. 

2. Call the ContinueWith() method on the new Task, supplying a 
System.Action<Task> delegate as the method parameter.  

■ Note In Listing 4-1 and throughout this chapter, we will be using lambda expressions to create anonymous 
Action delegates. See Chapter 2 for more information about lambda expressions. 

Performing these steps creates two Tasks. The first Task is called the antecedent. The second Task, 
returned by the ContinueWith() method, is called the continuation. 

Once both Tasks have been created, calling the antecedent Start() method schedules the Task as 
usual and, when it has been completed, automatically schedules the continuation Task. Note that I used 
the word “schedules” here; other Tasks may be executed between the antecedent Task completing and 
the continuation Task being performed.   

In Listing 4-1, the antecedent increments the balance of a BankAccount, and the continuation prints 
out the final balance. But look closely, and you will see something interesting: the antecedent is defined 
to be a Task<BankAccount>, so the Task body returns the BankAccount instance when the Task completes. 
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The Task.ContinueWith() method takes a System.Action<Task> argument and uses this to pass the 
antecedent Task to the continuation, meaning that all of the methods and properties of the antecedent 
Task are available to you in your continuation code. Listing 4-1 uses this feature to get the BankAccount 
instance from the antecedent’s Result property. 

Using Task.ContinueWith<T>() allows you to create continuation Tasks that return a result, just like 
you did with stand-alone Tasks in the previous chapter. The result type of a continuation can differ from 
that of the antecedent. Listing 4-2 demonstrates a continuation that obtains a BankAccount instance from 
the antecedent Task and returns double the value of the Balance property as its own result. Notice that, 
in order to get the result from the continuation, we declare a Task<int> to hold the result from the 
Task.ContinueWith<int>() method so that we can read the Result property.  

Listing 4-2. Returning Results with Continuation Tasks 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_02 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_02 { 
 
        static void Main(string[] args) { 
 
            Task<BankAccount> task = new Task<BankAccount>(() => { 
                // create a new bank account 
                BankAccount account = new BankAccount(); 
                // enter a loop 
                for (int i = 0; i < 1000; i++) { 
                    // increment the account total 
                    account.Balance++; 
                } 
                // return the bank account 
                return account; 
            }); 
 
            Task<int> continuationTask  
                = task.ContinueWith<int>((Task<BankAccount> antecedent) => { 
                    Console.WriteLine("Interim Balance: {0}", antecedent.Result.Balance); 
                    return antecedent.Result.Balance * 2; 
                }); 
 
            // start the task 
            task.Start(); 
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            Console.WriteLine("Final balance: {0}", continuationTask.Result); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
 
        } 
    } 
} 

■ Note The Task returned from the Task.ContinueWith() method cannot be started using the Task.Start() 
method. It will be scheduled to run as a continuation when an antecedent has completed. 

There are five overloaded versions of the ContinueWith() method. The most complete version takes 
four arguments: ContinueWith(Action(Task), CancellationToken, TaskContinuationOptions, 
TaskScheduler). 

The Action(Task) is the task body and is required for all of the method versions. The 
CancellationToken is optional; see the “Canceling Continuations” section later in this chapter for details. 
The TaskContinationsOptions enumeration is described in Table 4-2 and allows you to create selective 
continuations. The TaskScheduler is described later in the “Using a Custom Task Scheduler” section of 
this chapter. When using the simpler overloads, default values are used for the ContinuationOptions and 
TaskScheduler while the CancellationToken is omitted. 

Creating One-to-Many Continuations 
An antecedent Task can have multiple continuations; that is to say that more than one Task can be 
automatically scheduled when the antecedent Task has completed. You call ContinueWith() for each 
continuation you need to create. And you can create chains of continuations by giving each of your 
continuations its own continuation. To do so, you just call the ContinueWith() method on the Tasks 
returned by your previous calls ContinueWith(). 

Listing 4-3 demonstrates multiple and chained continuations through a variation of our bank 
account example. The antecedent task creates a BankAccount, increments the balance, and returns it as 
the result. Two second-generation continuations are created: one doubles the balance from the 
antecedent, and the other halves the balance. Each of the second-generation Tasks has a third-
generation continuation that prints out its antecedent result, in this case, the final balance. One set of 
continuations is built up in stages while the others are created in a single statement. 

Listing 4-3. Using Multiple Generations of Continuation 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_03 { 
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    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_03 { 
 
        static void Main(string[] args) { 
 
            Task<BankAccount> rootTask = new Task<BankAccount>(() => { 
                // create a new bank account 
                BankAccount account = new BankAccount(); 
                // enter a loop 
                for (int i = 0; i < 1000; i++) { 
                    // increment the account total 
                    account.Balance++; 
                } 
                // return the bank account 
                return account; 
            }); 
 
            // create the second-generation task, which will double the antecdent balance 
            Task<int> continuationTask1 
                = rootTask.ContinueWith<int>((Task<BankAccount> antecedent) => { 
                    Console.WriteLine("Interim Balance 1: {0}", antecedent.Result.Balance); 
                    return antecedent.Result.Balance * 2; 
                }); 
 
            // create a third-generation task, which will print out the result 
            Task continuationTask2 
                = continuationTask1.ContinueWith((Task<int> antecedent) => { 
                    Console.WriteLine("Final Balance 1: {0}", antecedent.Result); 
                }); 
 
            // create a second and third-generation task in one step 
            rootTask.ContinueWith<int>((Task<BankAccount> antecedent) => { 
                Console.WriteLine("Interim Balance 2: {0}", antecedent.Result.Balance); 
                return antecedent.Result.Balance / 2; 
            }).ContinueWith((Task<int> antecedent) => { 
                Console.WriteLine("Final Balance 2: {0}", antecedent.Result); 
            }); 
 
            // start the task 
            rootTask.Start(); 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
 
        } 
    } 
} 

Creating Selective Continuations 
By default, continuation Tasks are automatically scheduled when the antecedent Task completes. We 
can be selective about scheduling continuations by using the values of the 
System.Threading.Tasks.TaskContinuationOptions enumeration when calling the Task.ContinueWith() 
method. Table 4-2 details the enumeration values. 

Table 4-2. Key Values  of the  System.Threading.Tasks.TaskContinuationOptions Enumeration 

Enumeration Value Description 

None This is equivalent to not specifying a value; that is, the continuation will be 
scheduled to run when the antecedent completes. 

OnlyOnRanToCompletion The continuation will be scheduled if the antecedent completed successfully; 
that is, the antecedent is not cancelled and does not throw an unhandled 
exception. 

NotOnRanToCompletion The continuation will be scheduled if the antecedent is cancelled or throws 
an unhandled exception. 

OnlyOnFaulted The continuation will be scheduled if the antecedent throws an unhandled 
exception.  

NotOnFaulted The continuation will be scheduled if the antecedent does not throw an 
unhandled exception. 

OnlyOnCancelled The continuation will be scheduled if the antecedent is cancelled. 

NotOnCancelled The continuation will be scheduled if the antecedent is not cancelled. 

 
Listing 4-4 demonstrates using the OnlyOnFaulted and NotOnFaulted values. The antecedent Task 

contains a code statement that throws a System.Exception. If the statement is commented out, the 
second continuation Task is scheduled on completion of the antecedent. If the line is left active, and the 
Exception is thrown, and the first continuation Task is scheduled. 
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Listing 4-4. Continuations Based on Exceptions 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_04 { 
 
    class Listing_04 { 
 
        static void Main(string[] args) { 
 
            // create the first generation task 
            Task firstGen = new Task(() => { 
                Console.WriteLine("Message from first generation task"); 
                // comment out this line to stop the fault 
                throw new Exception(); 
            }); 
 
            // create the second-generation task - only to run on exception 
            Task secondGen1 = firstGen.ContinueWith(antecedent => { 
                // write out a message with the antecedent exception 
                Console.WriteLine("Antecedent task faulted with type: {0}",  
                    antecedent.Exception.GetType()); 
            }, TaskContinuationOptions.OnlyOnFaulted); 
 
            // create the second-generation task - only to run on no exception 
            Task secondGen2 = firstGen.ContinueWith(antecedent => { 
                Console.WriteLine("Antecedent task NOT faulted"); 
            }, TaskContinuationOptions.NotOnFaulted); 
 
            // start the first generation task 
            firstGen.Start(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
 
        } 
    } 
} 

■ Tip The continuation that runs OnlyOnFaulted reads the Exception property of the antecedent. If this was not 
the case, the exception would have remained unhandled. See the “Handling Exceptions” section for more 
information about exceptions in continuation chains. 
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Creating Many-to-One and Any-To-One Continuations 
The continuations we have seen so far have been one-to-one or one-to-many; that is, one antecedent 
has one or more continuations. You can also perform many-to-one continuations using the 
ContinueWhenAll() and ContinueWhenAny() methods of the System.Threading.Tasks.TaskFactory class. 
You obtain an instance of TaskFactory through the static Task.Factory property. 

The ContinueWhenAll() and ContinueWhenAny() methods both take an array of Tasks argument.  —
ContinueWhenAll() schedules a continuation to be performed when all of the Tasks in the array have 
completed, whereas ContineWhenAny() schedules a continuation to be performed when any single Task 
in the array has completed. Listing 4-5 demonstrates a simple multitask continuation applied to the 
Isolation example from the previous chapter. 

Listing 4-5. A Multitask Continuation 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_05 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_05 { 
 
        static void Main(string[] args) { 
 
            // create the bank account instance 
            BankAccount account = new BankAccount(); 
 
            // create an array of tasks 
            Task<int>[] tasks = new Task<int>[10]; 
 
            for (int i = 0; i < 10; i++) { 
                // create a new task 
                tasks[i] = new Task<int>((stateObject) => { 
 
                    // get the state object 
                    int isolatedBalance = (int)stateObject; 
 
                    // enter a loop for 1000 balance updates 
                    for (int j = 0; j < 1000; j++) { 
                        // update the balance 
                        isolatedBalance++; 
                    } 
 



CHAPTER 4 ■ COORDINATING TASKS 

 

118  

                    // return the updated balance 
                    return isolatedBalance; 
 
                }, account.Balance); 
            } 
 
            // set up a multitask continuation 
            Task continuation = Task.Factory.ContinueWhenAll<int>(tasks, antecedents => { 
                // run through and sum the individual balances 
                foreach (Task<int> t in antecedents) { 
                    account.Balance += t.Result; 
                } 
            }); 
 
            // start the atecedent tasks 
            foreach (Task t in tasks) { 
                t.Start(); 
            } 
 
            // wait for the contination task to complete 
            continuation.Wait(); 
 
            // write out the counter value 
            Console.WriteLine("Expected value {0}, Balance: {1}", 10000, account.Balance); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine();  
        } 
    } 
} 

 
In the listing, there are ten antecedent Tasks, each of which updates its own isolated bank account 

balance. The TaskFactory.ContinueWhenAll() method is used to create a multitask continuation that is 
scheduled when all of the antecedents have completed. In Listing 4-5, the continuation Task reads the 
Result property of each antecedent Task and adds it to the account balance. 

The syntax of the ContinueWhenAll() method is slightly awkward if you are using lambda 
expressions because the array of antecedent Tasks appears twice, once as the first argument to the 
method and again as the input to the lambda expression.  

The other oddity of the ContinueWhenAll() syntax is the way in which you specify the results of the 
antecedent Tasks and the result that you want for the continuation Task. The format is as follows: 

 
Task<TAType>[] antecedents; 
Task<TCType> continuation; 
 
continuation = Task<TCType>.Factory.ContinueWhenAll<TAType>(antecedents, 
    antecedentsParam => { 
 
        ... task body... 
 
}); 
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Table 4-3 shows the main permutations of Task results and the generic versions of Task and 
ContinueWhenAll() or ContinueWhenAny() that you must use to get them. 

Table 4-3. Antecedent and Continuation Type Calls 

Antecedent Result Continuation Result Generic Form 

None None Task.Factory.ContineWhenAll() 
Task.Factory.ContineWhenAny() 

None TCType Task<TCType>.Factory.ContineWhenAll() 

Task<TCType>.Factory.ContineWhenAny() 

TAType None Task.Factory.ContinueWhenAll<TAType>() 

Task.Factory.ContinueWhenAny<TAType>() 

TAType TCType Task<TCType>.Factory.ContinueWhenAll<TAType>() 
Task<TCType>.Factory.ContinueWhenAny<TAType>() 

 
The ContinueWhenAny() method works in a very similar way to ContinueWhenAll(), except that the 

continuation Task will be scheduled to run as soon as any of the antecedent Tasks has completed. The 
delegate argument for the ContinueWhenAny() method is the antecedent Task that completed first. Listing 
4-6 demonstrates this kind of continuation. A set of ten antecedent Tasks uses a random number 
generator to wait for a period of time, and the first Task to wake up finishes and becomes the antecedent 
to the continuation Task. 

Listing 4-6. Using TaskFactory.ContinueWhenAny() 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_06 { 
 
    class Listing_06 { 
 
        static void Main(string[] args) { 
 
            // create an array of tasks 
            Task<int>[] tasks = new Task<int>[10]; 
 
            // create a cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
 
            // create the random number generator 
            Random rnd = new Random(); 
 
            for (int i = 0; i < 10; i++) { 
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                // create a new task 
                tasks[i] = new Task<int>(() => { 
                    // define the variable for the sleep interval 
                    int sleepInterval; 
                    // acquire exclusive access to the random 
                    // number generator and get a random value 
                    lock (rnd) { 
                        sleepInterval = rnd.Next(500, 2000); 
                    } 
                    // put the task thread to sleep for the interval 
                    tokenSource.Token.WaitHandle.WaitOne(sleepInterval); 
                    // check to see the current task has been cancelled 
                    tokenSource.Token.ThrowIfCancellationRequested(); 
                    // return the sleep interval as the result 
                    return sleepInterval; 
                }, tokenSource.Token); 
            } 
 
            // set up a when-any multitask continuation 
            Task continuation = Task.Factory.ContinueWhenAny<int>(tasks, 
                (Task<int> antecedent) => { 
                    // write out a message using the antecedent result 
                    Console.WriteLine("The first task slept for {0} milliseconds", 
                        antecedent.Result); 
                }); 
 
            // start the atecedent tasks 
            foreach (Task t in tasks) { 
                t.Start(); 
            } 
 
            // wait for the contination task to complete 
            continuation.Wait(); 
 
            // cancel the remaining tasks 
            tokenSource.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Canceling Continuations 
The techniques to handle cancellations for single Tasks, which we covered in the previous chapter, can 
be applied to continuations. The Task.ContinueWith(), TaskFactory.ContinueWhenAll(), and 
TaskFactory.ContinueWhenAny() methods all have overloaded versions that accept a CancellationToken, 
which you can obtain by creating an instance of CancellationTokenSource. 
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Listing 4-7 demonstrates canceling continuations. An antecedent Task is created and waits using a 
CancellationToken wait handle. When the user presses the enter key, the CancellationTokenSource, and 
therefore the antecedent Task, are cancelled. 

Listing 4-7. Cancelling Continuations 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_07 { 
 
    class Listing_07 { 
 
        static void Main(string[] args) { 
 
            // create a cancellation token source 
            CancellationTokenSource tokenSource 
                = new CancellationTokenSource(); 
 
            // create the antecedent task 
            Task task = new Task(() => { 
                // write out a message 
                Console.WriteLine("Antecedent running"); 
                // wait indefinately on the token wait handle 
                tokenSource.Token.WaitHandle.WaitOne(); 
                // handle the cancellation exception 
                tokenSource.Token.ThrowIfCancellationRequested(); 
            }, tokenSource.Token); 
 
            // create a selective continuation  
            Task neverScheduled = task.ContinueWith(antecedent => { 
                // write out a message 
                Console.WriteLine("This task will never be scheduled"); 
            }, tokenSource.Token); 
 
            // create a bad selective contination  
            Task badSelective = task.ContinueWith(antecedent => { 
                // write out a message 
                Console.WriteLine("This task will never be scheduled"); 
            }, tokenSource.Token, TaskContinuationOptions.OnlyOnCanceled,  
            TaskScheduler.Current); 
 
            // create a good selective contiuation 
            Task continuation = task.ContinueWith(antecedent => { 
                // write out a message 
                Console.WriteLine("Continuation running"); 
            }, TaskContinuationOptions.OnlyOnCanceled); 
 
            // start the task 
            task.Start(); 
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            // prompt the user so they can cancel the token 
            Console.WriteLine("Press enter to cancel token"); 
            Console.ReadLine(); 
            // cancel the token source 
            tokenSource.Cancel(); 
 
            // wait for the good continuation to complete 
            continuation.Wait(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Each of the three continuation Tasks behaves in a different way. The neverScheduled Task has been 

created with the same CancellationToken as the antecedent and so is never scheduled to be run.  
The second Task, called badSelective, is created using the OnlyOnCanceled value from the 

TaskContinuationOptions enumeration. Unfortunately, it is created using the same CancellationToken as 
the antecedent, so the options and the token can never be in a state where the Task will be scheduled. 
Tasks that rely on the OnlyOnCanceled value should not share a CancellationToken with their antecedent. 
The final Task, named continuation, shows a selective continuation that will run properly when the 
antecedent is cancelled. 

Waiting for Continuations 
Waiting for continuation Tasks works in just the same way as for single Tasks; you can use the Task 
instances created by the ContinueWith(), ContineWhenAll(), and ContinueWhenAny() methods with the 
Task.Wait() and Task.WaitAll() methods.  

Waiting on a Task does not mean waiting on its continuations. Each Task is scheduled separately, 
and a call to Task.Wait() on an antecedent will return when the antecedent itself has completed. If you 
want to wait for a continuation chain to complete, you should wait on the last continuation in the 
sequence. 

Handling Exceptions 
There are no special features for propagating exceptions through a continuation chain. Any exceptions 
thrown by any Task in a continuation chain must be processed, or they will be treated as unhandled 
exceptions when the finalizer for the Task is performed. See the previous chapter for details of 
processing Task exceptions. Listing 4-8 illustrates the problem with exceptions in chains. 

Listing 4-8. Unhandled Exceptions in Continuation Chains 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_08 { 
 
    class Listing_08 { 
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        static void Main(string[] args) { 
 
            // create a first generation task 
            Task gen1 = new Task(() => { 
                // write out a message 
                Console.WriteLine("First generation task"); 
            }); 
 
            // create a second-generation task 
            Task gen2 = gen1.ContinueWith(antecedent => { 
                // write out a message 
                Console.WriteLine("Second generation task - throws exception"); 
                throw new Exception(); 
            }); 
 
            // create a third-generation task 
            Task gen3 = gen2.ContinueWith(antecedent => { 
                // write out a message 
                Console.WriteLine("Third generation task"); 
            }); 
             
            // start the first gen task 
            gen1.Start(); 
 
            // wait for the last task in the chain to complete 
            gen3.Wait(); 
             
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The second-generation Task throws an exception, but the third-generation Task still runs. The main 

thread waits for the last Task in the chain to complete and prompts the user to press the Enter key. The 
program then exits, causing the finalizer to be called, at which point the exception from the second-
generation continuation is propagated, producing the following output: 
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First generation task 

Second generation task - throws exception 

Third generation task 

Press enter to finish 

 

Unhandled Exception: System.AggregateException: A Task's exception(s) were not 

observed either by Waiting on the Task or accessing its Exception property. As a result, 

the unobserved exception was rethrown by the finalizer thread. --->  

System.Exception: Exception of type 'System.Exception' was thrown. 

   at Listing_08.Listing_08.<Main>b__1(Task antecedent) 

   at System.Threading.Tasks.Task.<>c__DisplayClassb.<ContinueWith>b__a(Object obj) 

   at System.Threading.Tasks.Task.InnerInvoke() 

   at System.Threading.Tasks.Task.Execute() 

   --- End of inner exception stack trace --- 

   at System.Threading.Tasks.TaskExceptionHolder.Finalize() 

The best way to handle this kind of problem is to have each continuation Task check the status of 
the antecedent and handle the exception. You can rethrow the same exception to propagate it 
throughout the continuation chain. Doing so will cause all of the tasks in a chain to be scheduled and 
executed, but it does reduce the chance of an unhandled exception. Listing 4-9 demonstrates this check-
and-propagate approach. 

Listing 4-9. Propagating Exceptions Along a Continuation Chain 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_09 { 
 
    class Listing_09 { 
 
        static void Main(string[] args) { 
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            // create a first generation task 
            Task gen1 = new Task(() => { 
                // write out a message 
                Console.WriteLine("First generation task"); 
            }); 
 
            // create a second-generation task 
            Task gen2 = gen1.ContinueWith(antecedent => { 
                // write out a message 
                Console.WriteLine("Second generation task - throws exception"); 
                throw new Exception(); 
            }); 
 
            // create a third-generation task 
            Task gen3 = gen2.ContinueWith(antecedent => { 
                // check to see if the antecedent threw an exception 
                if (antecedent.Status == TaskStatus.Faulted) { 
                    // get and rethrow the antecedent exception 
                    throw antecedent.Exception.InnerException; 
                } 
                // write out a message 
                Console.WriteLine("Third generation task"); 
            }); 
 
            // start the first gen task 
            gen1.Start(); 
 
            try { 
                // wait for the last task in the chain to complete 
                gen3.Wait(); 
            } catch (AggregateException ex) { 
                ex.Handle(inner => { 
                    Console.WriteLine("Handled exception of type: {0}", inner.GetType()); 
                    return true; 
                }); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
By having the continuation process the exceptions thrown by the antecedent, we can catch 

exceptions thrown by the last Task in the chain and be sure to avoid unhandled exceptions. Note that the 
Exception property of an antecedent returns an instance of AggregateException. The  InnerException 
property is read in the continuation Task to avoid nested instances of AggregateException, unpacking 
the nesting in the exception handler would also work. See the previous chapter for details of how to 
process instances of AggregateException. 
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The same issue exists when performing multitask continuations. If any of the antecedent Tasks have 
thrown an exception that you don’t process, that exception becomes unhandled and will cause 
problems later. Processing antecedent exceptions with the ContinueWhenAll() method is simply a matter 
of checking each antecedent, such as with the following fragment: 

 
Task[] tasks; 
 
Task.Factory.ContinueWhenAll(tasks, antecedents => { 
    foreach (Task t in antecedents) { 
        if (t.Status == TaskStatus.Faulted) { 
            // ...process or propagate... 
        } 
    } 
    //...task contination code... 
}); 

 
Handling exceptions when using the ContinueWhenAny() method is more difficult. The continuation 

has one antecedent, but one of the other Tasks from the previous generation may throw an exception 
and this might well happen after the continuation has been executed. The best way to avoid unhandled 
exceptions in this situation is to combine a selective ContinueWhenAny() continuation with a 
ContinueWhenAll() that exists purely to process exceptions, as in the following fragment: 

 
Task[] tasks; 
 
Task.Factory.ContinueWhenAny(tasks, antecedent => { 
    // ...task continuaton code... 
}, TaskContinuationOptions.NotOnFaulted); 
 
Task.Factory.ContinueWhenAll(tasks, antecedents => { 
    foreach (Task t in antecedents) { 
        if (t.Status == TaskStatus.Faulted) { 
            // ...process exceptions... 
        } 
    } 
}); 

Creating Child Tasks 
A child Task, sometimes known as a nested Task, is one that is created inside the Task body of another. 
The Task in which the child is created is known as the parent. There are two kinds of child Task—
detached and attached. A detached Task, as demonstrated in Listing 4-10, has no special relationship 
with its parent; the child will be scheduled and can be performed concurrently with the parent but has 
no impact on the parent itself. 
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Table 4-4. Child Tasks 

Problem Solution Listing 

Create a detached  
child Task. 

Create a new Task within the body of an existing one. 

 

4-10 

Create an attached 
child Task. 

Create a new Task within the body of an existing one, specifying the 
AttachedToParent value from the TaskCreationOptions enumeration 

4-11 

Create a 
continuation of an 
attached child. 

Call the ContinueWith() method of the attached child, specifying the 
AttachedToParent value from the TaskContinuationOptions 
enumeration 

4-11 

Listing 4-10. A Simple Child Task 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_10 { 
 
    class Listing_10 { 
 
        static void Main(string[] args) { 
 
            // create the parent task 
            Task parentTask = new Task(() => { 
 
                // create the first child task 
                Task childTask = new Task(() => { 
                    // write out a message and wait 
                    Console.WriteLine("Child task running"); 
                    Thread.Sleep(1000); 
                    Console.WriteLine("Child task finished"); 
                    throw new Exception(); 
                }); 
 
                Console.WriteLine("Starting child task..."); 
                childTask.Start(); 
            }); 
 
            // start the parent task 
            parentTask.Start(); 
 
            // wait for the parent task 
            Console.WriteLine("Waiting for parent task"); 
            parentTask.Wait(); 
            Console.WriteLine("Parent task finished"); 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Attached child tasks are much more interesting and do have a special relationship with their 

parents. There are three parts to the relationship: 

• The parent Task waits for attached child Tasks to complete before it completes. 

• The parent Task throws any exceptions thrown by attached child Tasks. 

• The status of the parent Task depends on the status of attached child Tasks. 

You create an attached child by specifying the AttachedToParent value from the System.Threading. 
Tasks.TaskCreationOptions enumeration as a constructor argument. This establishes the relationship 
with the parent Task. Listing 4-11 demonstrates an attached child Task. 

Listing 4-11. An Attached Child Task 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_11 { 
 
    class Listing_11 { 
 
        static void Main(string[] args) { 
 
            // create the parent task 
            Task parentTask = new Task(() => { 
 
                // create the first child task 
                Task childTask = new Task(() => { 
                    // write out a message and wait 
                    Console.WriteLine("Child 1 running"); 
                    Thread.Sleep(1000); 
                    Console.WriteLine("Child 1 finished"); 
                    throw new Exception(); 
                }, TaskCreationOptions.AttachedToParent); 
 
                // create an attached continuation 
                childTask.ContinueWith(antecedent => { 
                    // write out a message and wait 
                    Console.WriteLine("Continuation running"); 
                    Thread.Sleep(1000); 
                    Console.WriteLine("Continuation finished"); 
                },  
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                TaskContinuationOptions.AttachedToParent  
                | TaskContinuationOptions.OnlyOnFaulted); 
 
                Console.WriteLine("Starting child task..."); 
                childTask.Start(); 
            }); 
 
            // start the parent task 
            parentTask.Start(); 
 
            try { 
                // wait for the parent task 
                Console.WriteLine("Waiting for parent task"); 
                parentTask.Wait(); 
                Console.WriteLine("Parent task finished"); 
            } catch (AggregateException ex) { 
                Console.WriteLine("Exception: {0}", ex.InnerException.GetType()); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The Wait() call on the parent Task will not return until the parent and all of its attached children 

have finished. You will see that the child Task throws an exception, which is packaged up by the parent 
Task and thrown again, allowing us to catch it when calling a trigger method on the parent. The 
exception will be a nested AggregateException; in other words, the original exception will have been 
packaged into an AggregateException by the child, and that will be packaged again into another 
AggregateException by the parent. The third part of the relationship relates to Task status. When a parent 
Task has finished executing and is waiting for its attached children to finish, its status will be 
TaskStatus.WaitingForChildrenToComplete. 

You can extend the scope of the attached child relationship to Task continuations by using the 
TaskContinuationOptions.AttachedToParent value as an argument when calling the ContinueWith() 
method on an attached child Task. Listing 4-11 demonstrates how this done and shows how you can 
combine values from the TaskContinuationOptions enumeration to create continuations that are both 
selective and attached. 

Using Synchronization to Coordinate Tasks  
In this section, we revisit the topic of synchronization primitives, this time using them to coordinate 
activity between and amongst groups of Tasks.  

We want one group of Tasks (called the supervisors) to exert some direction over another group of 
Tasks (called the workers). A synchronization primitive is used to mediate between the two groups and 
allows them to communicate. The communication between the supervisors and the workers is limited to 
two messages—go and wait. 
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The synchronization primitive keeps track of a condition. Worker Tasks check with the primitive to 
see if the condition has been satisfied. If it has, they are told to go and will continue their work. If the 
condition has not been satisfied, they are made to wait until it is.  

The details of the condition vary from one type of primitive to another, but what they all share in 
common is that they are satisfied by when the supervisors signal the primitive 

In effect, the workers are waiting for signals from the supervisors channeled through the 
synchronization primitive. Worker Tasks wait for the signals by calling the primitive’s Wait() method (or 
WaitOne() for classic primitives). the Wait() method blocks (does not return) until the expected signals 
have been received and the primitive condition has been satisfied. When a primitive tells a worker Task 
that has been waiting that it may now proceed because the condition has been satisfied, the primitive is 
said to wake, notify, or release the waiting Task. 

You could write your own code to allow supervisors to signal workers, but I recommend that you 
don’t. First, writing synchronization primitives correctly is very hard , and the odds are that you will 
make mistakes unless you are very experienced in parallel programming. Second, the primitives 
included in the .NET class library cover the vast majority of situations that parallel programmers 
encounter and are implemented using a broadly consistent interface. If the type of condition you need 
your primitive to manage should change, it is a relatively simple thing to switch from one standard 
primitive to another. Table 4-5 summarizes the main uses for the most commonly used primitives. 

Table 4-5. Coordinating Tasks 

Problem Solution Listing 

Implement a cooperative multi-phase 
algorithm. 

Use the System.Threading.Barrier class. 4-12, 4-13, 
and 4-14 

Coordinate Tasks so that multiple 
supervisors signal the primitive 
before the workers are released 

Use the System.Threading.CountDownEvent class. 4-15 

Coordinate Tasks so that one signal 
releases all workers. 

Use the System.Threading.ManualResetEventSlim 
class. 

4-16 

Coordinate Tasks so that one signal 
releases one worker. 

Use the System.Threading.AutoResetEvent class. 4-17 

Coordinate Tasks so that one signal 
releases a specified number of 
workers. 

Use the System.Threading.SemaphoreSlim class. 4-18 

 
For some primitives, both classic and lightweight versions are available. The lightweight versions 

have names that end with “slim,” such as ManualResetEventSlim. The lightweight versions have better 
performance characteristics for most uses when compared with the classic versions, because a call to 
Wait() on a lightweight primitive is initially handled by spinning, which is ideally suited to short waiting 
periods. See Chapter 2 for a description of spinning. The lightweight versions also support waiting using 
a CancellationToken, which is something that I find endlessly useful. I use the lightweight 
implementations for preference and recommend that you do the same. 
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Barrier 
When using the System.Threading.Barrier primitive, the supervisors and the workers are the same 
Tasks, making Barrier useful for coordinating Tasks performing a multiphase parallel algorithm. 
Multiphase algorithms are broken down into several stages (called phases), where all of the Tasks 
participating in the work must reach the end of one phase before the next one can begin. This behavior 
is useful if the results produced in one phase are required as inputs for the next. 

When a Task calls the SignalAndWait() method, the primitive is signaled (as though the Task were a 
supervisor), and the condition is checked (as though the Task were a worker). The condition for the 
Barrier class is satisfied when all of the Tasks participating in the algorithm have called the 
SignalAndWait() method. If a Task calls the method before the required number of calls has been made, 
it is made to wait. The number of calls is specified in the class constructor and can be altered using the 
AddParticipant() and RemoveParticipant() methods. 

The Tasks performing the algorithm call the SignalAndWait() method when they reach the end of a 
phase. Not only does the Barrier release any waiting Tasks when the current phase ends, but it resets 
automatically, meaning that subsequent calls to SignalAndWait() will make Tasks wait until the counter 
reaches 0 again and another phase is complete. 

When creating a new instance of Barrier, you can specify a System.Action that will be performed at 
the end of each phase and before the Tasks are notified that they should start the next one. you can see 
an example of this in the listing below. Table 4-6 summarizes key members of the Barrier class. 

Table 4-6. Selected Members of the System.Threading.Barrier Class 

Member Description 

AddParticipant() 
AddParticipants(int) 

Increment the number of calls that must be made to 
SignalAndWait() before a phase completes. 

RemoveParticpant() 
RemoveParticpants(int) 

Decrement the number of calls that must be made to 
SignalAndWait() before a phase completes. 

SignalAndWait() Signal the primitive that the current Task has 
completed the current phase, and wait indefinitely 
for the other Tasks to do the same. 

SignalAndWait(CancellationToken) 
SignalAndWait(Int32) 
SignalAndWait(TimeSpan) 
SignalAndWait(Int32, CancellationToken) 
SignalAndWait(TimeSpan, CancellationToken) 

Function like SignalAndWait(), but give up waiting 
for the other Tasks if they have not all signaled the 
primitive before the specified time has passed or the 
specified cancellation token is cancelled. 

CurrentPhaseNumber Report the current phase number, incremented each 
time the SignalAndWait() method has been called the 
number of times specified in the constructor. 
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Continued 

Member Description 

ParticipantCount Return the number of calls to the SignalAndWait() 
method that will mark the end of a phase and release 
any waiting Tasks. 

ParticipantsRemaining Return the number of participants that have yet to 
signal the end of the current phase. 

 
Listing 4-12 demonstrates how to create and use the Barrier class. When the Barrier instance is 

created, two constructor arguments are supplied: the number of Tasks that must call SignalAndWait() 
before the primitive condition is met and a System.Action(Barrier) that will be called each time the 
condition is met (the listing uses a lambda expression to define System.Action).  

In the example, we create an array of BankAccounts and a set of Tasks that perform a simple 
multiphase algorithm against using the accounts. In the first phase, the Tasks enter a loop to add 
random amounts to the account they are working with and then signal the Barrier to indicate they have 
reached the end of the current phase. 

The Barrier then executes the constructor Action, which sums the individual balances into the 
totalBalance variable. The second phase of the algorithm begins, where each Task reduces the balance 
of its account by 10 percent of the difference between the current balance and the total balance, a 
procedure that would not have been possible prior to all Tasks completing the first phase. At the end of 
the phase, the Tasks signal the Barrier again, which marks the end of the second phase and triggers the 
constructor action again. 

Listing 4-12. Using the Barrier Class 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_12 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Listing_12 { 
 
        static void Main(string[] args) { 
 



CHAPTER 4 ■ COORDINATING TASKS 

 

133 

            // create the array of bank accounts 
            BankAccount[] accounts = new BankAccount[5]; 
            for (int i = 0; i < accounts.Length; i++) { 
                accounts[i] = new BankAccount(); 
            } 
 
            // create the total balance counter 
            int totalBalance = 0; 
 
            // create the barrier 
            Barrier barrier = new Barrier(5, (myBarrier) => { 
                // zero the balance 
                totalBalance = 0; 
                // sum the account totals 
                foreach (BankAccount account in accounts) { 
                    totalBalance += account.Balance; 
                } 
                // write out the balance 
                Console.WriteLine("Total balance: {0}", totalBalance); 
            }); 
 
            // define the tasks array 
            Task[] tasks = new Task[5]; 
 
            // loop to create the tasks 
            for (int i = 0; i < tasks.Length; i++) { 
                tasks[i] = new Task((stateObj) => { 
 
                    // create a typed reference to the account 
                    BankAccount account = (BankAccount)stateObj; 
 
                    // start of phase 
                    Random rnd = new Random(); 
                    for (int j = 0; j < 1000; j++) { 
                        account.Balance += rnd.Next(1, 100); 
                    } 
                    // end of phase 
 
                    // tell the user that this task has has completed the phase 
                    Console.WriteLine("Task {0}, phase {1} ended", 
                        Task.CurrentId, barrier.CurrentPhaseNumber); 
 
                    // signal the barrier 
                    barrier.SignalAndWait(); 
 
                    // start of phase 
                    // alter the balance of this Task's account using the total balance  
                    // deduct 10% of the difference from the total balance 
                    account.Balance -= (totalBalance - account.Balance) / 10; 
                    // end of phase 
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                    // tell the user that this task has has completed the phase 
                    Console.WriteLine("Task {0}, phase {1} ended", 
                        Task.CurrentId, barrier.CurrentPhaseNumber); 
 
                    // signal the barrier 
                    barrier.SignalAndWait(); 
                }, 
                accounts[i]); 
            } 
 
            // start the task 
            foreach (Task t in tasks) { 
                t.Start(); 
            } 
 
            // wait for all of the tasks to complete 
            Task.WaitAll(tasks); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Signaling the Barrier at the end of the final phase is not essential; in Listing 4-12, I wanted to 

calculate the final total balance. Listing 4-12 shows you how to make use of the Barrier class, but omits 
one major hazard. There is a deadlock if a Task doesn’t signal the Barrier, because it throws an 
exception. The current phase will never end, and the waiting Tasks will never be released. 

There are two ways to deal with exceptions in this situation. The first is to abandon the Task that has 
thrown the exception but carry on with the other Tasks. You can do this by creating a selective 
continuation with the OnlyOnFaulted value and calling the RemoveParticipant() method, which 
decreases the number of calls to SignalAndWait() that Barrier requires to mark the end of a phase. This 
approach works as long as you can continue without the result that the abandoned Task would have 
otherwise provided. Listing 4-13 demonstrates this technique. 

Listing 4-13. Dealing with Exceptions by Reducing Participation 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_13 { 
 
    class Listing_13 { 
 
        static void Main(string[] args) { 
 
            // create a barrier 
            Barrier barrier = new Barrier(2); 
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            // create a task that will complete 
            Task.Factory.StartNew(() => { 
                Console.WriteLine("Good task starting phase 0"); 
                barrier.SignalAndWait(); 
                Console.WriteLine("Good task starting phase 1"); 
                barrier.SignalAndWait(); 
                Console.WriteLine("Good task completed"); 
            }); 
 
            // create a task that will throw an exception 
            // with a selective continuation that will reduce the  
            // particpant count in the barrier 
            Task.Factory.StartNew(() => { 
                Console.WriteLine("Bad task 1 throwing exception"); 
                throw new Exception(); 
 
            }).ContinueWith(antecedent => { 
                // reduce the particpant count 
                Console.WriteLine("Reducing the barrier participant count"); 
                barrier.RemoveParticipant(); 
            }, TaskContinuationOptions.OnlyOnFaulted); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The second technique is to use a CancellationToken when creating the Tasks and use a version of 

the Barrier.SignalAndWait() method that takes a CancellationToken as an argument. A selective 
continuation Task cancels the token, which causes calls to SignalAndWait() to throw an 
OperationCancelledException, stopping all of the Tasks from continuing. This technique works if you 
don’t want any of the Tasks to continue if any of them throw an exception. Listing 4-14 demonstrates this 
technique. Remember that the exception that was thrown in the first place is unhandled and will have to 
be dealt with using one of the techniques described in Chapter 2. 

Listing 4-14. Dealing with Exceptions Using Cancellation 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_14 { 
 
    class Listing_14 { 
 
        static void Main(string[] args) { 
 
            // create a barrier 
            Barrier barrier = new Barrier(2); 
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            // create a cancellation token source 
            CancellationTokenSource tokenSource 
                = new CancellationTokenSource(); 
 
            // create a task that will complete 
            Task.Factory.StartNew(() => { 
                Console.WriteLine("Good task starting phase 0"); 
                barrier.SignalAndWait(tokenSource.Token); 
                Console.WriteLine("Good task starting phase 1"); 
                barrier.SignalAndWait(tokenSource.Token); 
            }, tokenSource.Token); 
 
            // create a task that will throw an exception 
            // with a selective continuation that will reduce the  
            // particpant count in the barrier 
            Task.Factory.StartNew(() => { 
                Console.WriteLine("Bad task 1 throwing exception"); 
                throw new Exception(); 
 
            }, tokenSource.Token).ContinueWith(antecedent => { 
                // reduce the particpant count 
                Console.WriteLine("Cancelling the token"); 
                tokenSource.Cancel(); 
            }, TaskContinuationOptions.OnlyOnFaulted); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

CountDownEvent 
The System.Threading.CountDownEvent is similar to Barrier in that it requires a number of calls to a 
method to satisfy the primitive condition. But unlike Barrier, CountDownEvent separates signaling from 
waiting. 

Calls to the CountDownEvent.Wait() method block until the Signal() method has been called the 
number of times specified in the constructor; each call to Signal() decrements a counter. Once the 
counter reaches zero, any waiting Tasks are released. At this point, the event represented by the 
CountDownEventClass is said to be signaled or set. 

Once the event is set, calls to the Wait() method will not cause the Task to wait. CountDownEvent 
must be manually reset, by calling the Reset() method. Once the event has been reset, we start over 
again. Calls to Wait() will block until the Signal() method has been called the required number of times. 
This is in contrast to the Barrier class, which resets automatically. 

You can call the AddCount() or TryAddCount() methods to increment the counter but only if the 
event is not set. If you call AddCount() after the event has set without first calling Reset(),an exception 
will be thrown. Table 4-7 details the key members of the CountDownEvent class. 
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Table 4-7. Selected Members of the System.Threading.CountDownEvent Class 

Member Description 

AddCount() 
AddCount(int) 

Increment the condition counter. 

Reset() 
Reset(int) 

Reset the event using the original counter value or the value 
specified. 

Signal() 
Signal(int) 

Decrement the condition counter by one or by the amount 
specified. 

TryAddCount() 
TryAddCount(int) 

Try to increment the condition counter, and return true if the 
counter is incremented. 

Wait() Wait indefinitely for the event to be set. 

Wait(CancellationToken) 
Wait(int) 
Wait(TimeSpan) 
Wait(int, CancellationToken) 
Wait(TimeSpan, CancellationToken) 

Wait for the event to be set, for a period of time to pass, or for a 
cancellation token to be cancelled. 

CurrentCount Return the number of times that Signal() must be called before 
the event is set. 

InitialCount Return the initial value of the condition counter. 

IsSet 
Return true if the event is set; false otherwise. 

 
Listing 4-15 demonstrates using CountDownEvent. A set of five supervisor Tasks is created, each of 

which sleeps for a random amount of time and then calls Signal(). The sixth Task, a worker, calls the 
CountDownEvent.Wait() method, which blocks until each of the Tasks have signaled the CountDownEvent, 
setting the event. 

Listing 4-15. Using the CountDownEvent Primitive 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_15 { 
 
    class Listing_15 { 
 
        static void Main(string[] args) { 
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            // create a CountDownEvent with a condition 
            // counter of 5 
            CountdownEvent cdevent = new CountdownEvent(5); 
 
            // create a Random that we will use to generate 
            // sleep intervals 
            Random rnd = new Random(); 
 
            // create 5 tasks, each of which will wait for 
            // a random period and then signal the event 
            Task[] tasks = new Task[6]; 
            for (int i = 0; i < tasks.Length; i++) { 
                // create the new task 
                tasks[i] = new Task(() => { 
                    // put the task to sleep for a random period 
                    // up to one second 
                    Thread.Sleep(rnd.Next(500, 1000)); 
                    // signal the event 
                    Console.WriteLine("Task {0} signalling event", Task.CurrentId); 
                    cdevent.Signal(); 
                }); 
            }; 
 
            // create the final task, which will rendezous with the other 5 
            // using the count down event 
            tasks[5] = new Task(() => { 
                // wait on the event 
                Console.WriteLine("Rendezvous task waiting"); 
                cdevent.Wait(); 
                Console.WriteLine("Event has been set"); 
 
            }); 
 
            // start the tasks 
            foreach (Task t in tasks) { 
                t.Start(); 
            } 
 
            Task.WaitAll(tasks); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The example shows how one group (the five supervisors) directs the behavior of another group (the 

single worker). The worker is made to wait until the supervisors have all reached a given state and have 
signaled the primitive. It is important to note that although we created five supervisors, we could have 
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achieved the same effect by having one supervisor call Signal() five times. Synchronization primitives 
care about which methods are called, not how they are called. 

ManualResetEventSlim 
The System.Threading.ManualResetEventSlim class provides a simpler approach than CountDownEvent. A 
single call to Set() signals the event, and any waiting Tasks are released. New calls to Wait() don’t block 
until the Reset() method is called. Table 4-8 summarizes the key members of this primitive. 

Table 4-8. Key Members of the System.Threading.ManualResetEvent Class 

Member Description 

Set() Set the event, releasing any waiting Tasks. While the event is set, 
calls to Wait() do not block until the Reset() method is called. 

Reset() Reset the event. 

Wait() 
Wait(CancellationToken) 
Wait(int) 
Wait(TimeSpan) 
Wait(int, CancellationToken) 
Wait(TimeSpan, CancellationToken) 

Calls to this method block until the event is set, the specified 
time period has passed, or the specified token is cancelled. 

IsSet 
Return true if the event is set and false otherwise. 

SpinCount 
Get and set the number of spins that a call to Wait() will result 
in before a normal wait occurs. See Chapter 2 for more 
information about spinning. 

■ Note The ManualResetEventSlim class is the lightweight equivalent to 
System.Threading.ManualResetEvent.  

Listing 4-16 demonstrates the use of the ManualResetEventSlim class. Two Tasks are created: one 
worker that repeatedly waits on the event and one supervisor that sets and unsets the event. While the 
event is set, calls to the Wait() method do not block, and the worker Task proceeds without waiting. 
When the event is reset, calls to Wait() block until the supervisor sets the event once again. 

■ Tip The default constructor creates an instance of ManualResetEventSlim with the event initially unset, but you 
can explicitly specify the initial state of the event by using the overloaded version of the constructor. 
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Listing 4-16. Using the ManualResetEventSlim Class 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_16 { 
 
    class Listing_16 { 
 
        static void Main(string[] args) { 
 
            // create the primtive 
            ManualResetEventSlim manualResetEvent 
                = new ManualResetEventSlim(); 
 
            // create the cancellation token source 
            CancellationTokenSource tokenSource 
                = new CancellationTokenSource(); 
 
            // create and start the task that will wait on the event 
            Task waitingTask =  Task.Factory.StartNew(() => { 
                while (true) { 
                    // wait on the primitive 
                    manualResetEvent.Wait(tokenSource.Token); 
                    // print out a message 
                    Console.WriteLine("Waiting task active"); 
                } 
            }, tokenSource.Token); 
 
            // create and start the signalling task 
            Task signallingTask = Task.Factory.StartNew(() => { 
                // create a random generator for sleep periods 
                Random rnd = new Random(); 
                // loop while the task has not been cancelled 
                while (!tokenSource.Token.IsCancellationRequested) { 
                    // go to sleep for a random period 
                    tokenSource.Token.WaitHandle.WaitOne(rnd.Next(500, 2000)); 
                    // set the event 
                    manualResetEvent.Set(); 
                    Console.WriteLine("Event set"); 
                    // go to sleep again 
                    tokenSource.Token.WaitHandle.WaitOne(rnd.Next(500, 2000)); 
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                    // reset the event 
                    manualResetEvent.Reset(); 
                    Console.WriteLine("Event reset"); 
                } 
                // if we reach this point, we know the task has been cancelled 
                tokenSource.Token.ThrowIfCancellationRequested(); 
            }, tokenSource.Token); 
 
            // ask the user to press return before we cancel  
            // the token and bring the tasks to an end 
            Console.WriteLine("Press enter to cancel tasks"); 
            Console.ReadLine(); 
 
            // cancel the token source and wait for the tasks 
            tokenSource.Cancel(); 
            try { 
                Task.WaitAll(waitingTask, signallingTask); 
            } catch (AggregateException) { 
                // discard exceptions 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

AutoResetEvent 
AutoResetEvent is similar to ManualResetEventSlim, but the event is reset automatically after each call to 
the Set() method, and only one waiting worker Task is released each time the event is set. There is no 
lightweight alternative to AutoResetEvent, and being a classic primitive, it has no method that allows 
waiting using a CancellationToken. Table 4-9 describes the key members of the AutoResetEvent class. 

Table 4-9. Key Members of the System.Threading.AutoResetEvent Class 

Member Description 

Set() Set the event, releasing one waiting Task. 

WaitOne() 
WaitOne(int) 
WaitOne(TimeSpan) 

Wait until the event is signaled or the specified time period has passed. 
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Listing 4-17 demonstrates the use of the AutoResetEvent class. The constructor requires you to 
specify whether the event is initially set. We create three worker Tasks, each of which calls the WaitOne() 
method of the AutoResetEvent. A fourth Task, the supervisor, sets the event every 500 milliseconds. Each 
time the event is set, one waiting worker Task is released. If you run the program, you will see long 
sequences where a given worker Task is never released, or seems to be the one constantly being 
released—the AutoResetEvent class makes no guarantees about which waiting Task will be released 
when the event is set, and you should be careful not to make assumptions about the order in which 
workers are released when using this class. 

Listing 4-17. Using the AutoResetEvent Class 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_17 { 
 
    class Listing_17 { 
 
        static void Main(string[] args) { 
 
            // create the primtive 
            AutoResetEvent arEvent = new AutoResetEvent(false); 
 
            // create the cancellation token source 
            CancellationTokenSource tokenSource 
                = new CancellationTokenSource(); 
 
            // create and start the task that will wait on the event 
            for (int i = 0; i < 3; i++) { 
                Task.Factory.StartNew(() => { 
                    while (!tokenSource.Token.IsCancellationRequested) { 
                        // wait on the primtive 
                        arEvent.WaitOne(); 
                        // print out a message when we are released 
                        Console.WriteLine("Task {0} released", Task.CurrentId); 
                         
                    } 
                    // if we reach this point, we know the task has been cancelled 
                    tokenSource.Token.ThrowIfCancellationRequested(); 
                }, tokenSource.Token); 
            } 
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            // create and start the signalling task 
            Task signallingTask = Task.Factory.StartNew(() => { 
                // loop while the task has not been cancelled 
                while (!tokenSource.Token.IsCancellationRequested) { 
                    // go to sleep for a random period 
                    tokenSource.Token.WaitHandle.WaitOne(500); 
                    // set the event 
                    arEvent.Set(); 
                    Console.WriteLine("Event set"); 
                } 
                // if we reach this point, we know the task has been cancelled 
                tokenSource.Token.ThrowIfCancellationRequested(); 
            }, tokenSource.Token); 
 
            // ask the user to press return before we cancel  
            // the token and bring the tasks to an end 
            Console.WriteLine("Press enter to cancel tasks"); 
            Console.ReadLine(); 
 
            // cancel the token source and wait for the tasks 
            tokenSource.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

SemaphoreSlim 
The System.Threading.SemaphoreSlim class allows you to specify how many waiting worker Tasks are 
released when the event is set, which is useful when you want to restrict the degree of concurrency 
among a group of Tasks. The supervisor releases workers by calling the Release() method. The default 
version releases one Task, and you can specify how many Tasks are released by providing an integer 
argument. The constructor requires that you specify how many calls to the Wait() method can be made 
before the event is reset for the first time. Specifying 0 resets the event immediately, and any other value 
sets the event initially and then allows the specified number of calls to the Wait() method to be made 
without blocking before the event is reset. 

■ Note The SemaphoreSlim class is the lightweight equivalent to System.Threading.Semaphore 

Table 4-10 describes the key members of SemaphoreSlim. 
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Table 4-10. Key Members of the System.Threading.SemaphoreSlim Class 

Member Description 

Release() 
Release(int) 

Release one or a specified number of Tasks. 

Wait() 
Wait(CancellationToken) 
Wait(int) 
Wait(TimeSpan) 
Wait(int, CancellationToken) 
Wait(TimeSpan, CancellationToken) 

Calls to this method block until the event is set, the specified 
time period has passed, or the specified token is cancelled. 

CurrentCount 
Return the number of Tasks that will be released or the number 
of times that Wait() can be called without blocking if there are 
no waiting Tasks. 

 
Listing 4-18 demonstrates the use of this class. Ten worker Tasks are created and call the 

SemaphoreSlim.Wait() method. A supervisor Task periodically releases two threads by signaling the 
primitive by calling SemaphoreSlim.Release(2). 

Listing 4-18. Using the SemaphoreSlim Class 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_18 { 
 
    class Listing_18 { 
 
        static void Main(string[] args) { 
 
            // create the primtive 
            SemaphoreSlim semaphore = new SemaphoreSlim(2); 
 
            // create the cancellation token source 
            CancellationTokenSource tokenSource 
                = new CancellationTokenSource(); 
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            // create and start the task that will wait on the event 
            for (int i = 0; i < 10; i++) { 
                Task.Factory.StartNew(() => { 
                    while (true) { 
                        semaphore.Wait(tokenSource.Token); 
                        // print out a message when we are released 
                        Console.WriteLine("Task {0} released", Task.CurrentId); 
                    } 
                }, tokenSource.Token); 
            } 
 
            // create and start the signalling task 
            Task signallingTask = Task.Factory.StartNew(() => { 
                // loop while the task has not been cancelled 
                while (!tokenSource.Token.IsCancellationRequested) { 
                    // go to sleep for a random period 
                    tokenSource.Token.WaitHandle.WaitOne(500); 
                    // signal the semaphore 
                    semaphore.Release(2); 
                    Console.WriteLine("Semaphore released"); 
                } 
                // if we reach this point, we know the task has been cancelled 
                tokenSource.Token.ThrowIfCancellationRequested(); 
            }, tokenSource.Token); 
 
            // ask the user to press return before we cancel  
            // the token and bring the tasks to an end 
            Console.WriteLine("Press enter to cancel tasks"); 
            Console.ReadLine(); 
 
            // cancel the token source and wait for the tasks 
            tokenSource.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
There are no guarantees about which of the waiting Tasks will be released when the Release() 

method is called. If you compile and run the listing, you will see something similar to the following 
output, which illustrates that the order in which Tasks call the Wait() method has no relationship to the 
order in which they are released: 
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... 

Semaphore released 

Task 4 released 

Task 3 released 

Semaphore released 

Task 6 released 

Task 9 released 

Semaphore released 

Task 10 released 

Task 7 released 

Semaphore released 

Task 2 released 

Task 4 released 

... 

If there are no Tasks waiting when you call Release(),the event remains set until the Wait() method 
has been called. If you specified a number to release by providing an integer argument, the event 
remains set until the Wait() method has been called the number of times you specified. 

Using the Parallel Producer/Consumer Pattern 
One of the most common coordination techniques is called the Producer/Consumer pattern. One group 
of Tasks (the producers) creates data items that are processed by another group of Tasks (the consumers).  

The flow of work from the producers to the consumers is mediated by a collection, typically a queue: 
producers place work items in the collection so that the consumers can remove and process them. At 
any given moment, the content of the collection represents the outstanding work items (i.e., those which 
have been produced, but have yet to be consumed) is the content. A synchronization primitive is used so 
that the producers can signal the consumers when work items are available to be processed. 

The collection and primitive combination is valuable because it allows us to decouple the 
production from the consumption of items. We can vary the ratio of producer and consumer Tasks 
based on the relative time taken to produce or consume an item. We can use the number of outstanding 
items to regulate production if consumption gets backed up. We can use the collection to smooth out 
the effects of peaks and troughs on one side of the equation or the other. 
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System.Collections.Concurrent.BlockingCollection combines the collection and the 
synchronization primitive into one class, which makes it ideal for implementing the producer/consumer 
pattern.  

Creating the Pattern 
We need three things to create the basic producer/consumer implementation: producer and consumer 
Tasks and an instance of BlockingCollection to handle the coordination. Listing 4-19 illustrates how to 
create and use all three. 

Listing 4-19. Creating a Producer/Consumer Implementation 

using System; 
using System.Collections.Concurrent; 
using System.Threading.Tasks; 
 
namespace Listing_19 { 
 
    class BankAccount { 
        public int Balance { 
            get; 
            set; 
        } 
    } 
 
    class Deposit { 
        public int Amount { 
            get; 
            set; 
        } 
    } 
 
    class Listing_19 { 
 
        static void Main(string[] args) { 
 
 
            // create the blocking collection 
            BlockingCollection<Deposit> blockingCollection 
                = new BlockingCollection<Deposit>(); 
 
            // create and start the producers, which will generate 
            // deposits and place them into the collection 
            Task[] producers = new Task[3]; 
            for (int i = 0; i < 3; i++) { 
                producers[i] = Task.Factory.StartNew(() => { 
                    // create a series of deposits 
                    for (int j = 0; j < 20; j++) { 
                        // create the transfer 
                        Deposit deposit = new Deposit { Amount = 100 }; 
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                        // place the transfer in the collection 
                        blockingCollection.Add(deposit); 
                    } 
                }); 
            }; 
 
            // create a many to one continuation that will signal 
            // the end of production to the consumer 
            Task.Factory.ContinueWhenAll(producers, antecedents => { 
                // signal that production has ended 
                Console.WriteLine("Signalling production end"); 
                blockingCollection.CompleteAdding(); 
            }); 
 
            // create a bank account 
            BankAccount account = new BankAccount(); 
 
            // create the consumer, which will update 
            // the balance based on the deposits 
            Task consumer = Task.Factory.StartNew(() => { 
                while (!blockingCollection.IsCompleted) { 
                    Deposit deposit; 
                    // try to take the next item  
                    if (blockingCollection.TryTake(out deposit)) { 
                        // update the balance with the transfer amount 
                        account.Balance += deposit.Amount; 
                    } 
                } 
                // print out the final balance 
                Console.WriteLine("Final Balance: {0}", account.Balance); 
            }); 
 
            // wait for the consumer to finish 
            consumer.Wait(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Creating a BlockingCollection instance 
The first step in the listing is creating the BlockingCollection, which I have done using the default 
constructor. The class is strongly typed, so I have had to declare the type that will be in the collection, in 
this case Deposit. 

 
// create the blocking collection 
BlockingCollection<Deposit> blockingCollection = new BlockingCollection<Deposit>(); 
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The default constructor creates unbounded collections, which means that there is no limit to the 
number of outstanding work items in the collection. The producers can put items in the collection at a 
much faster rate than the consumers are taking them out again, but the collection will continue to 
accept new items and let the backlog grow. 

You create a bounded collection by using a constructor version that takes an int argument, as in the 
following statement: 

 
BlockingCollection<Deposit> blockingCollection = new BlockingCollection<Deposit>(5); 

 
This creates an instance of BlockingCollection that allows up to five items to be in the collection at 

any given time. If a producer tries to add an item when there are more than five items, the Add() method 
will block until a consumer has removed an item using the Take() mTake() method. 

Selecting the Collection Type 
BlockingCollection acts as a wrapper around one of the concurrent collection classes described in the 
previous chapter. The default constructor causes BlockingCollection to use the ConcurrentQueue class, 
but you can use ConcurrentBag, ConcurrentStack, or any class that implements the 
System.Collections.Concurrent.IProducerConsumerCollection interface.  

Changing the underlying collection type that BlockingCollection uses will change the order in 
which the consumers receive items. Using a queue implementation, for example, means that the 
consumers take the items in the order that the producers added them, while a stack ensures that the 
most recently added item is consumed first. The following fragment creates a stack-based 
BlockingCollection bounded to five items. 

 
ConcurrentStack<Deposit> stack = new ConcurrentStack<Deposit>(); 
BlockingCollection<Deposit> blockingCollection = new BlockingCollection<Deposit>(stack, 5); 

Creating the Producers 
The next step is to create the producers. In this example, we create three Tasks to produce instances of 
Deposit and add them to the collection: 

 
// create and start the producers, which will generate 
// deposits and place them into the collection 
Task[] producers = new Task[3]; 
for (int i = 0; i < 3; i++) { 
    producers[i] = Task.Factory.StartNew(() => { 
        // create a series of deposits 
        for (int j = 0; j < 20; j++) { 
            // create the transfer 
            Deposit deposit = new Deposit { Amount = 100 }; 
            // place the transfer in the collection 
            blockingCollection.Add(deposit); 
        } 
    }); 
}; 
 

The producers are very straightforward. Each of the three producer Tasks creates twenty deposits 
and calls the Add() method to add them to the BlockingCollection. 
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The Add() method will block until BlockingCollection accepts the new data item. If another Task is 
trying to add or take an item from the collection, your call to Add() will block until the other operation 
has finished, because all operations on BlockingCollection are synchronized. If you have created a 
bounded collection, this can mean that your producer Task will not be able to add a new item until the 
consumers have cleared the backlog.  

The BlockingCollection class has a number of methods to add items to the collection, including 
ones which will block until an item is accepted by the collection or a CancellationToken is cancelled. All 
of the methods are described in Table 4-11. 

Table 4-11. Members for Adding Items to BlockingCollection. 

Member Description 

Add(T) 
Add(T, CancellationToken) 

Add an item of type T, blocking until the item is added or the 
CancellationToken is cancelled. Throw an exception if 
CompleteAdding() has been called.  

TryAdd(T) 
TryAdd(T, int) 
TryAdd(T, TimeSpan) 
TryAdd(T, int, CancellationToken) 

Try to add an item of type T, blocking until the item is added or 
the specified time period has elapsed or the CancellationToken 
is cancelled. Return true if the item was added or false if the 
time expired, the token was cancelled, or CompleteAdding() has 
been called.  

Creating the Consumer 
The producer/consumer model allows for asymmetry between the number of producers and the 
number of consumers. This can be useful if it takes a different amount of time to create an item than to 
consume it, for example. Listing 4-19 created a single consumer, as follows: 

 
Task consumer = Task.Factory.StartNew(() => { 
    while (!blockingCollection.IsCompleted) { 
        Deposit deposit; 
        // try to take the next item  
        if (blockingCollection.TryTake(out deposit)) { 
            // update the balance with the transfer amount 
            account.Balance += deposit.Amount; 
        } 
    } 
    // print out the final balance 
    Console.WriteLine("Final Balance: {0}", account.Balance); 
}); 

 
The consumer Task enters a loop while the BlockingCollection.IsCompleted property returns false. 

You’ll notice that I created a continuation Task for the producers in Listing 4-19. The continuation 
contains one statement of code, as follows: 

 
blockingCollection.CompleteAdding(); 
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The CompleteAdding() method tells BlockingCollection that we won’t be adding any more items. 
The producers in Listing 4-19 create a finite number of items, in this case, 60 instances of Deposit. When 
all of the items have been created and added to the BlockingCollection, the producer Tasks finish, and 
the continuation Task is scheduled.  

The IsCompleted property returns true when CompleteAdding() has been called and no items are in 
the collection, meaning that production and consumption have both been completed. This mechanism 
is a useful means of allowing the production side of the pattern to signal the consumer side when 
production ends without having to couple the Tasks together directly. Table 4-12 summarizes the three 
members available for signaling in this way. 

Table 4-12. Members for Signalling the End of Production to BlockingCollection 

Member Description 

CompleteAdding() Signal that production has ended. 

IsAddingComplete 
Return true if the CompleteAdding() method has been called. 

IsCompleted 
Return true if CompleteAdding() has been called and there are no items in the 
collection 

 
While in the loop, the consumer calls TryTake() to retrieve an item from the collection. This method 

returns true if an item was taken successfully and assigns the item to the out parameter.  
We could have used the Take() method, which blocks until an item is available for consumption in 

the collection. However, there is a race condition when calling Take() on a BlockingCollection if you use 
the CompleteAdding() method to signal that production has ended. See the “Common Problems and 
Their Causes” section at the end of this chapter for an example of this. 

■ Caution Once you have called CompleteAdding(), further calls to Add() or TryAdd() will throw an exception. 
Equally, once IsCompleted returns true, calls to Take() or TryTake() will also throw an exception.  

The BlockingCollection<T>.GetConsumingEnumerable() method returns an IEnumerable<T> 
instance that blocks until an item is available and allows the BlockingCollection instance to be used as 
the source in a foreach loop. You can see an example of this in Listing 4-21 in the following section. 
Table 4-13 summarizes the methods available to take items from BlockingCollection. 
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Table 4-13. Members for Taking an Item from BlockingCollection 

Member Description 

Take() 
Take(CancellationToken) 

Take an item from the collection, blocking until one 
becomes available or the CancellationToken is 
cancelled. Throw an exception if CompleteAdding() has 
been called and there are no items in the collection. 

TryTake(out T) 
TryTake(out T, int) 
TryTake(out T, TimeSpan) 
TryTake(out T, int, CancellationToken) 

Try to take an item from the collection; assign it to the 
out parameter, and block until one becomes available, 
the specified time elapses, or the CancellationToken is 
cancelled. Return true if an item was taken or false if 
the time period elapsed, the token was cancelled or 
CompleteAdding() has been called and are no items are 
in the collection. 

GetConsumingEnumerable() 
GetConsumingEnumerable(CancellationToken) Return IEnumerable<T> for the items in the collection 

that will block until an item is available to be taken, 
the collection is complete (i.e., CompleteAdding() has 
been called and there are no items in the collection), 
or the token has been cancelled. 

Combining Multiple Collections 
Listing 4-19 used a single instance of BlockingCollection to mediate between the producer and 
consumer Tasks, but BlockingCollection also contains members that allow multiple instances to be 
used together seamlessly as a single entity. Table 4-14 describes the members of BlockingCollection<T> 
that enable combined collections. 

Table 4-14. Members for Combining BlockingCollections 

Member Description 

AddToAny(BlockingCollection<T>[], T) 
AddToAny(BlockingCollection<T>[], T, 
CancellationToken) 

Add an item of type T to any one of the 
BlockingCollection<T>s specified, blocking 
until the item has been added to a collection 
or the CancellationToken has been 
cancelled. Return an int representing the 
array index of the BlockingCollection to 
which the item was added. Throw an 
exception if the item cannot be added to 
any of the collections. 
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Member Description 

TryAddToAny(BlockingCollection<T>[], T) 
TryAddToAny(BlockingCollection<T>[], T, int) 
TryAddToAny(BlockingCollection<T>[], T, Timespan) 
TryAddToAny(BlockingCollection<T>[], T, int, 
CancellationToken) 

Add an item of type T to any one of the 
BlockingCollection<T> instances specified, 
blocking until the item has been added to a 
collection, the specified time period has 
elapsed, or the CancellationToken has been 
cancelled. Return an int representing the 
array index of the BlockingCollection to 
which the item was added, or return -1 if the 
item could not be added to any of the 
collections. 

TakeFromAny(BlockingCollection<T>[], out T) 
TakeFromAny(BlockingCollection<T>[], out T, 
CancellationToken) 

Take an item from any one of the 
BlockingCollection<T>s specified, and 
assign it to the out parameter. Block until 
the item is taken and assigned or until the 
token is cancelled. Return an int 
representing the array index of the 
BlockingCollection from which the item 
was taken. Throw an exception if an item 
cannot be taken from any of the collections. 

TryTakeFromAny(BlockingCollection<T>[], out T) 
TryTakeFromAny(BlockingCollection<T>[], out T, 
int) 
TryTakeFromAny(BlockingCollection<T>[], out T, 
Timespam) 
TryTakeFromAny(BlockingCollection<T>[], out T, 
CancellationToken) 

Take an item from any one of the 
BlockingCollection<T> instances specified, 
and assign it to the out parameter. Block 
until the item is taken and assigned, the 
time period elapses, or until the token is 
cancelled. Return an int representing the 
array index of the BlockingCollection from 
which the item was taken or -1 if an item 
could not be taken. 

 
There are two common uses for collections combined in this way. The first is when you have a large 

number of Tasks or a high item-production rate. Adding and taking from the collection involves 
synchronization, and you may see performance problems if you have a lots of calls being made to Add() 
or Take(). The second use is when you want to keep items from different producers separate but have 
them processed by a single set of consumers. Listing 4-20 demonstrates both approaches. 

Listing 4-20. Using Multiple BlockingCollection Instances 

using System; 
using System.Collections.Concurrent; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_20 { 
 
    class Listing_20 { 



CHAPTER 4 ■ COORDINATING TASKS 

 

154  

        static void Main(string[] args) { 
 
            // create a pair of blocking collections 
            // that will be used to pass strings 
            BlockingCollection<string> bc1 = new BlockingCollection<string>(); 
            BlockingCollection<string> bc2 = new BlockingCollection<string>(); 
 
            // create another blocking collection  
            // that will be used to pass ints 
            BlockingCollection<string> bc3 = new BlockingCollection<string>(); 
 
            // create two arrays of the blocking collections 
            BlockingCollection<string>[] bc1and2 = {bc1, bc2}; 
            BlockingCollection<string>[] bcAll   = {bc1, bc2, bc3}; 
 
            // create a cancellation token source  
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
 
 
            // create the first set of producers 
            for (int i = 0; i < 5; i++) { 
                Task.Factory.StartNew(() => { 
                    while (!tokenSource.IsCancellationRequested) { 
                        // compose the message 
                        string message  
                            = String.Format("Message from task {0}", Task.CurrentId); 
                        // add the message to either collection 
                        BlockingCollection<string>.AddToAny(bc1and2,  
                            message, tokenSource.Token); 
                        // put the task to sleep  
                        tokenSource.Token.WaitHandle.WaitOne(1000); 
                    } 
                }, tokenSource.Token); 
            } 
 
            // create the second set of producers 
            for (int i = 0; i < 3; i++) { 
                Task.Factory.StartNew(() => { 
                    while (!tokenSource.IsCancellationRequested) { 
                        // compose the message 
                        string warning  
                            = String.Format("Warning from task {0}", Task.CurrentId); 
                        // add the message to either collection 
                        bc3.Add(warning, tokenSource.Token); 
                        // put the task to sleep for 500ms 
                        tokenSource.Token.WaitHandle.WaitOne(500); 
                    } 
                }, tokenSource.Token); 
            } 
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            // create the consumers 
            for (int i = 0; i < 2; i++) { 
                Task consumer = Task.Factory.StartNew(() => { 
                    string item; 
                    while (!tokenSource.IsCancellationRequested) { 
                        // take an item from any collection 
                        int bcid = BlockingCollection<string>.TakeFromAny(bcAll,  
                            out item, tokenSource.Token); 
                        // write out the item to the console 
                        Console.WriteLine("From collection {0}: {1}", bcid, item); 
                    } 
                }, tokenSource.Token); 
            } 
 
            // prompt the user to press enter 
            Console.WriteLine("Press enter to cancel tasks"); 
            Console.ReadLine(); 
            // cancel the token 
            tokenSource.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Three BlockingCollections are used in this example: two are use by one set of producers 

(simulating messages being sent) and the third by a different set of producers (simulating warnings 
being sent).  

The first two BlockingCollections are used as a single entity by the message producers. Items are 
added using the static BlockingCollection<string>.AddToAny() method. This method takes an array of 
BlockingCollections and checks them in turn to see which will accept an item immediately. Note that 
the AddToAny() method is only available on strongly typed instances of BlockingCollection. Therefore, 
you must call BlockingCollection<T>.AddtoAny() and not BlockingCollection.AddToAny(), and you 
can’t treat differently typed instances of BlockingCollection as a single entity. 

The consumer treats all three BlockingCollections as a single entity by calling the static method 
BlockingCollection<string>.TakeFromAny(), which returns an item from the first collection that has one 
available. In this way, the consumer is able to receive items from both groups of producers as they 
become available.  

■ Note There are no guarantees about the order in which items are taken from BlockingCollections when they 
are being treated as a single entity. 
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Using a Custom Task Scheduler 
The task scheduler is the point at which tasks and threads meet, and it is responsible for assigning 
threads to execute your Tasks and deciding how many Tasks will be executed in parallel and in which 
order. 

As Chapter 1 explained, the TPL is built on the foundation of the classic threading features, and you 
have to understand these to build a custom scheduler. I am not going to explain the classic features in 
this book, but I will show you how to use them to create a custom scheduler. 

This is an advanced topic, and you don’t need to worry if you don’t know how to use the classic 
threads or can’t follow the explanation in this section. You can skip this section and still write effective 
parallel programs, because the .NET Framework’s default scheduler is exceptionally sophisticated. In 
fact, my advice is to use the default scheduler and not implement a custom replacement. It is possible 
that you will be able to squeeze a little more performance out of your program with a custom scheduler, 
but the default scheduler is very competent, and any performance gain is likely to be marginal and offset 
by the need to test and maintain it for every platform to which your application is deployed. 

Creating a Custom Scheduler 
Custom task schedulers derive from the System.Threading.Tasks.TaskScheduler class. Table 4-15 
describes the key members of the TaskScheduler class, but the most important members are the 
QueueTask() and the TryExecuteTask() methods.  

Table 4-15. Key Members of the TaskScheduler Class 

Member Description 

QueueTask() This method is called by the TPL when a Task has been created and 
requires execution. 

TryExecuteTask() This one is called by the scheduler to (synchronously) execute a Task that 
has been previously passed to the scheduler via the QueueTask() method. 
The Task will not be executed if it is already executing or has already 
been executed. It returns true if the task was executed. 

TryExecuteTaskInLine() This is called by the TPL to request that a Task be executed inline, and 
returns true if your scheduler executes the Task or false otherwise. 

GetScheduledTasks() This method returns an enumeration of Tasks that are waiting to be 
executed. 

TryDequeue() Try to remove a Task from the queue with this method, which returns 
true if the Task was removed. 

Current Static property that returns the TaskScheduler for the current Task. 
Returns the value from the Default property if called outside of a Task. 

Default This static property returns the default TPL TaskScheduler. 
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Member Description 

MaximumConcurrencyLevel This method returns the maximum number of Tasks that the scheduler 
will execute in parallel. 

Id Returns a unique int identifier for the scheduler with this method. 

UnobservedTaskException This static event \can be used to create a custom exception escalation 
policy; see Chapter 1 for details. 

 
The QueueTask() method is called by the TPL when a new Task has been created and is ready to be 

executed. You call the TryExecuteTask() method when your custom scheduler is ready to execute a Task. 
The purpose of the task scheduler is to implement some kind of policy that determines what happens 
between the time a Task arrives via QueueTask() and the time it’s executed via TryExecuteTask(). 

Task schedulers use a collection to store Tasks as they arrive from the TPL via the QueueTask() 
method. One or more System.Threading.Threads polls the collection looking for Tasks,  and if one is 
waiting, the thread takes the Task from the collection and executes it using the TryExecuteTask() 
method. 

The implementation design of the task scheduler determines how many threads are available to 
execute queued Tasks, and the type of collection determines the order in which the Tasks are executed. 
For example, a using queue would mean that the tasks are executed in the order in which they arrive, 
while using a stack would mean that the most recently arrived Task would be executed first. 

You don’t have to worry about the detail of executing Tasks, handling exceptions or cancellations, 
looking for continuation or child Tasks, and so on—all of this is taken care of by the TryExecuteTask() 
method. You just write the code that maps Tasks to the Threads that will call TryExecuteTask().  

Listing 4-21 demonstrates a simple custom task scheduler, imaginatively called CustomScheduler. A 
BlockingCollection stores the queued Tasks, and the default constructor is called, which creates an 
unbounded BlockingCollection instance that uses a ConcurrentQueue to store items. The 
CustomScheduler constructor takes an int parameter, which defines how many Tasks the task scheduler 
will execute at once—the maximum concurrency of our scheduler.  

We create a number of Threads equal to the maximum concurrency. The Threads call the 
GetConsumingEnumerable() method of BlockingCollection and use the resulting IEnumerable as the basis 
for a foreach loop. The GetConsumingEnumerable() method returns an IEnumerable that blocks until there 
is an item available to be taken from the BlockingCollection or until the collection is complete (the 
CompleteAdding() method has been called, and no items are in the collection). When a Task is taken from 
the BlockingCollection, the Thread calls the TryExecuteTask() method.  

Since TryExecuteTask() blocks while the Task is executed, the number of Threads  limits how many 
Tasks can be performed simultaneously. A Thread  is either free (waiting for a new Task to arrive in the 
queue) or busy (executing a Task). When all of the Threads  are busy, new Tasks remain in the 
BlockingCollection until one of the Threads  becomes free again. The Threads are created and started 
when the CustomScheduler instance is created but do nothing until Tasks are scheduled using the 
QueueTask() method. 

Our implementation of QueueTask() checks to see if the Task passed, because the method parameter 
has been created using TaskCreationOptions.LongRunning enumeration value. You may recall from 
Chapter 2 that this value indicates a Task that is expected to run for a long time to complete (or may 
never complete). Using the creation values is optional, but it makes the life of the task scheduler simpler. 

A long-running Task would tie up one of my execution Threads, effectively reducing the maximum 
concurrency of our scheduler. If we have carefully worked out that we need, say, four Threads to get the 
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best performance for our program and we end up with three Threads because one has been tied up by a 
long running Task, we won’t get the behavior we had hoped for. 

To avoid this problem, we look for the LongRunning value, and if it has been used, we create a 
dedicated Thread to execute the Task. If the LongRunning value has not been used, we add the Task to the 
BlockingCollection so that it can be picked up and processed by one of our regular Threads. 

■ Note The code in Listing 4-21 cannot be executed on its own. See Listing 4-22 for an example of how to use 
the customer scheduler in Listing 4-21. 

Listing 4-21. A Custom Task Scheduler 

using System; 
using System.Collections.Concurrent; 
using System.Collections.Generic; 
using System.Linq; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_21 { 
 
    public class CustomScheduler: TaskScheduler, IDisposable { 
        private BlockingCollection<Task> taskQueue; 
        private Thread[] threads; 
 
        public CustomScheduler(int concurrency) { 
            // initialize the collection and the thread array 
            taskQueue = new BlockingCollection<Task>(); 
            threads = new Thread[concurrency]; 
            // create and start the threads 
            for (int i = 0; i < threads.Length; i++) { 
                (threads[i] = new Thread(() => { 
                    // loop while the blocking collection is not 
                    // complete and try to execute the next task 
                    foreach (Task t in taskQueue.GetConsumingEnumerable()) { 
                        TryExecuteTask(t); 
                    } 
                })).Start(); 
            } 
        } 
 
        protected override void QueueTask(Task task) { 
            if (task.CreationOptions.HasFlag(TaskCreationOptions.LongRunning)) { 
                // create a dedicated thread to execute this task 
                new Thread(() => { 
                    TryExecuteTask(task); 
                }).Start(); 
            } else { 
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                // add the task to the queue 
                taskQueue.Add(task); 
            } 
        } 
 
        protected override bool TryExecuteTaskInline(Task task,  
            bool taskWasPreviouslyQueued) { 
            // only allow inline execution if the executing thread is one  
            // belonging to this scheduler 
            if (threads.Contains(Thread.CurrentThread)) { 
                return TryExecuteTask(task); 
            } else { 
                return false; 
            } 
        } 
 
        public override int MaximumConcurrencyLevel { 
            get { 
                return threads.Length; 
            } 
        } 
 
        protected override IEnumerable<Task> GetScheduledTasks() { 
            return taskQueue.ToArray(); 
        } 
 
        public void Dispose() { 
            // mark the collection as complete 
            taskQueue.CompleteAdding(); 
            // wait for each of the threads to finish 
            foreach (Thread t in threads) { 
                t.Join(); 
            } 
        } 
    } 
} 

 
The CustomScheduler constructor and QueueTask() method handle the bulk of the scheduling, but 

they are not the only members required to implement TaskScheduler. 
The TryExecuteTaskInline() method is called by the TPL if a Task that is being executed calls Wait() 

on another Task. Rather than wait until the second Task reaches the head of the queue and is executed 
(which could take a while), the TPL asks the scheduler if it is willing to let the second Task jump the 
queue and execute it straight away. This is called inline execution, and a Task executed in this way is said 
to have been implicitly inlined. TryExecuteTaskInline() is also called if one Task calls 
RunSynchronously() on another Task. The second task is said to be explicitly inlined. 

The arguments to the TryExecuteTaskInline() are the Task that the TPL wants to jump the queue 
and a bool indicating if the Task has already been passed to the QueueTask() method. The Boolean value 
will be true for implicitly inlined Tasks and false for explicitly inlined Tasks. The scheduler is not 
required to execute the Task, but doing so can improve performance by altering the order in which Tasks 
are executed so that they are performed in the order they are required, rather than the order in which 
they were created. 
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In Listing 4-21, we allow inline execution when the request comes from one of our scheduler 
Threads, but not otherwise. For example, when the main application thread calls Task.Wait(), the Task 
will not be inlined; instead, it will be put in the queue and dealt with in the usual order. 

You don’t need to remove a Task from your scheduler queue if it has been passed to the QueueTask() 
method and later requested for inline execution. The TryExecuteTask() method will only execute a Task 
if it is not already running or has not already been run, so the Task will be performed only once. 

■ Tip Aside from improving performance, inline execution can be used to avoid a common problem with task 
schedulers. See the “Common Problems and Their Causes” section at the end of this chapter for details. 

The MaximumConcurrencyLevel property reports the maximum number of Tasks that will be executed 
in parallel. In our example, this is the number of Threads that were created. The GetScheduledTasks() 
method returns a list of pending Tasks in the queue, which we deal with in Listing 4-21 by calling the 
BlockingCollection.ToArray() method. 

The final method in Listing 4-21 is Dispose(). It’s used to finish the collection by calling 
CompleteAdding(), which causes the Threads to finish when all of the Tasks in the queue have been 
executed. We wait for each of the Threads using the Join() method. 

The scheduler in Listing 4-21 is useful for demonstrating how to write a custom scheduler but not 
much else. You certainly shouldn’t use it for your parallel programs. While useable, CustomScheduler 
doesn’t have any of the sophisticated features that are required to get the best performance possible; in 
particular, it doesn’t pay any attention to the relationship between Tasks and doesn’t vary the effective 
concurrency when all of the Threads are busy.  

Using a Custom Scheduler 
When you schedule a Task, either explicitly by calling the Start() method or implicitly when calling 
Task.Factory.StartNew(), the TPL will pass the Task to the scheduler returned by the static 
TaskScheduler.Current property. 

TaskScheduler.Current returns the default TPL scheduler if called outside of a Task. If the property is 
called within a Task, it returns the scheduler of the Task in which the call was made. This means that 
once you have scheduled a Task using a custom scheduler, any new Tasks you create in the task body will 
be scheduled using that same custom scheduler. 

You can specify the scheduler the TPL should use for a Task. All of the methods that allow you to 
schedule a Task (Task.Start(), Task.Factory.StartNew(), Task.ContinueWith(), 
Task.Factory.ContinueWhenAll(), etc.) have a version that lets you specify a scheduler, which can be a 
custom scheduler or the TPL default. Listing 4-22 demonstrates how to control which scheduler is used 
for some of these methods. 

Listing 4-22. Using a Custom Scheduler 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
using Listing_21; 
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namespace Listing_22 { 
 
    class Listing_22 { 
 
        static void Main(string[] args) { 
 
            // get the processor count for the system 
            int procCount = System.Environment.ProcessorCount; 
 
            // create a custom scheduler 
            CustomScheduler scheduler = new CustomScheduler(procCount); 
 
            Console.WriteLine("Custom scheduler ID: {0}", scheduler.Id); 
            Console.WriteLine("Default scheduler ID: {0}", TaskScheduler.Default.Id); 
 
            // create a cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
 
            // create a task 
            Task task1 = new Task(() => { 
 
                Console.WriteLine("Task {0} executed by scheduler {1}",  
                        Task.CurrentId, TaskScheduler.Current.Id); 
 
                // create a child task - this will use the same 
                // scheduler as its parent 
                Task.Factory.StartNew(() => { 
                    Console.WriteLine("Task {0} executed by scheduler {1}",  
                        Task.CurrentId, TaskScheduler.Current.Id); 
                }); 
 
                // create a child and specify the default scheduler 
                Task.Factory.StartNew(() => { 
                    Console.WriteLine("Task {0} executed by scheduler {1}",  
                        Task.CurrentId, TaskScheduler.Current.Id); 
                }, tokenSource.Token, TaskCreationOptions.None, TaskScheduler.Default); 
 
            }); 
 
            // start the task using the custom scheduler 
            task1.Start(scheduler); 
 
            // create a continuation - this will use the default scheduler 
            task1.ContinueWith(antecedent => { 
                Console.WriteLine("Task {0} executed by scheduler {1}",  
                    Task.CurrentId, TaskScheduler.Current.Id); 
            }); 
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            // create a continuation using the custom scheduler 
            task1.ContinueWith(antecedent => { 
                Console.WriteLine("Task {0} executed by scheduler {1}", 
                    Task.CurrentId, TaskScheduler.Current.Id); 
            }, scheduler); 
        } 
    } 
} 

Common Problems and Their Causes 
Successfully coordinating Tasks requires thought and care and mistakes are common. This section 
describes and demonstrate some of the most common problems in the hope that you will be able to 
more quickly determine the cause of a problem when it arises. 

Inconsistent/Unchecked Cancellation 
Cancellation tokens are used to create antecedent Tasks but not continuations. The continuations are 
still scheduled, which causes unexpected results and usually leads to unhandled exceptions. 

Solution 
Either check the status of the antecedent using the Task.Status property, or create antecedents using 
tokens from the same CancellationTokenSource as the antecedent (in which case the continuation is not 
performed). 

Example 
The following example creates a Task that waits until the CancellationToken it has been created with is 
cancelled. Three continuations are created. The first indicates the problem of not using a cancellation 
token and not checking the antecedent status; the Result property of the antecedent is read, which 
cause the continuation Task to throw an unhandled exception. The second continuation uses the same 
cancellation token source as its antecedent, so it isn’t executed when the antecedent is cancelled. The 
third continuation checks the status of the antecedent and reads the Result property only if the 
antecedent has not been cancelled. 

 
using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Inconsistent_Cancellation { 
    class Inconsistent_Cancellation { 
 
        static void Main(string[] args) { 
 
            // create a token source 
            CancellationTokenSource tokenSource  
                = new CancellationTokenSource(); 
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            // create the antecedent task 
            Task<int> task1 = new Task<int>(() => { 
                // wait for the token to be cancelled 
                tokenSource.Token.WaitHandle.WaitOne(); 
                // throw the cancellation exception 
                tokenSource.Token.ThrowIfCancellationRequested(); 
                // return the result - this code will 
                // never be reached but is required to  
                // satisfy the compiler 
                return 100; 
            }, tokenSource.Token); 
 
            // create a continuation 
            // *** BAD CODE *** 
            Task task2 = task1.ContinueWith((Task<int> antecedent) => { 
                // read the antecedent result without checking 
                // the status of the task 
                Console.WriteLine("Antecedent result: {0}", antecedent.Result); 
            }); 
 
            // create a continuation, but use a token 
            Task task3 = task1.ContinueWith((Task<int> antecedent) => { 
                // this task will never be executed  
            }, tokenSource.Token); 
 
            // create a continuation that checks the status 
            // of the antecedent 
            Task task4 = task1.ContinueWith((Task<int> antecedent) => { 
                if (antecedent.Status == TaskStatus.Canceled) { 
                    Console.WriteLine("Antecedent cancelled"); 
                } else { 
                    Console.WriteLine("Antecedent Result: {0}", antecedent.Result); 
                } 
            }); 
 
            // prompt the user and cancel the token 
            Console.WriteLine("Press enter to cancel token"); 
            Console.ReadLine(); 
            tokenSource.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 
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Assuming Status on Any-To-One Continuations 
The Task.WaitAny() method triggers the continuation Task when one of the antecedents completes, but 
completion can include cancellation or an exception being thrown. A common problem arises when a 
continuation Task doesn’t check the state of the antecedent. 

Solution 
This problem is a variation on the previous one, and the solution is similar. Check to see if the 
antecedent that has triggered the continuation has completed properly, and use common cancellation 
token sources. 

Example 
The following example ensures that a cancelled Task is the antecedent to a many-to-one continuation 
that reads the Result property without checking the antecedent status. This results in an unhandled 
exception. 

 
using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Assuming_WaitAny_Status { 
    class Assuming_WaitAny_Status { 
        static void Main(string[] args) { 
 
            // create a cancellation token source 
            CancellationTokenSource tokenSource 
                = new CancellationTokenSource(); 
 
            Task<int>[] tasks = new Task<int>[2]; 
 
            tasks[0] = new Task<int>(() => { 
                while (true) { 
                    // sleep  
                    Thread.Sleep(100000); 
                } 
            }); 
 
            tasks[1] = new Task<int>(() => { 
                // wait for the token to be cancelled 
                tokenSource.Token.WaitHandle.WaitOne(); 
                // throw a cancellation exceptioon 
                tokenSource.Token.ThrowIfCancellationRequested(); 
                // return a result to satisfy the compiler 
                return 200; 
            }, tokenSource.Token); 
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            Task.Factory.ContinueWhenAny(tasks, (Task<int> antecedent) => { 
                Console.WriteLine("Result of antecedent is {0}",  
                    antecedent.Result); 
            }); 
 
            // start the tasks 
            tasks[1].Start(); 
            tasks[0].Start(); 
 
            // prompt the user and cancel the token 
            Console.WriteLine("Press enter to cancel token"); 
            Console.ReadLine(); 
            tokenSource.Cancel(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Trying to Take Concurrently 
A common problem when consuming items from a BlockingCollection is to enter a loop while the 
IsCompleted property returns false and call the blocking Take() method to remove items from the 
collection. This creates a potential race condition, such that: 

• No items waiting to be processed. 

• The consumer checks the IsCompleted property and gets false. 

• The producer calls the CompleteAdding() method. 

• The consumer calls Take(). 

This sequence causes an exception to be thrown. Between the call to IsCompleted and Take(), the 
producer has completed the collection and attempts to Take() from a completed collection result in an 
exception. 

Solution 
Use the TryTake() method. See Listing 4-19 for an example. 

Example 
The following example demonstrates the race condition: 

 
using System; 
using System.Collections.Concurrent; 
using System.Threading.Tasks; 
 
namespace Trying_To_Take_Concurrently { 
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    class Trying_To_Take_Concurrently { 
        static void Main(string[] args) { 
 
            // create a blocking collection 
            BlockingCollection<int> blockingCollection 
                = new BlockingCollection<int>(); 
 
            // create and start a producer 
            Task.Factory.StartNew(() => { 
                // put items into the collectioon 
                for (int i = 0; i < 1000; i++) { 
                    blockingCollection.Add(i); 
                } 
                // mark the collection as complete 
                blockingCollection.CompleteAdding(); 
            }); 
 
            // create and start a producer 
            Task.Factory.StartNew(() => { 
                while (!blockingCollection.IsCompleted) { 
                    // take an item from the collection 
                    int item = blockingCollection.Take(); 
                    // print out the item 
                    Console.WriteLine("Item {0}", item); 
                } 
            }); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Reusing Objects in Producers 
A frequently used optimization in C# is to reuse objects. This is done to avoid the overhead of creating 
and subsequently disposing of new instances. No issues arise when this technique is applied to a 
consumer taking items from a BlockingCollection, but it cannot be safely applied to a producer. Doing 
so adds the same instance to the collection again and again, and each time the producer changes the 
fields of the object, the change applies to every reference currently unprocessed in the collection. 

Solution 
Don’t reuse objects in a producer. 

Example 
The following example shows how reusing objects in the producer causes odd behavior in the consumer: 
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using System; 
using System.Collections.Concurrent; 
using System.Threading.Tasks; 
 
namespace Reusing_Objects_in_Producers { 
 
    class DataItem { 
 
        public int Counter { 
            get; 
            set; 
        } 
    } 
 
    class Reusing_Objects_in_Producers { 
        static void Main(string[] args) { 
 
            // create a blocking collection 
            BlockingCollection<DataItem> blockingCollection 
                = new BlockingCollection<DataItem>(); 
 
            // create and start a consumer 
            Task consumer = Task.Factory.StartNew(() => { 
                // define a data item to use in the loop 
                DataItem item; 
                while (!blockingCollection.IsCompleted) { 
                    if (blockingCollection.TryTake(out item)) { 
                        Console.WriteLine("Item counter {0}", item.Counter); 
                    } 
                } 
            }); 
 
            // create and start a producer 
            Task.Factory.StartNew(() => { 
                // create a data item to use in the loop 
                DataItem item = new DataItem(); 
                for (int i = 0; i < 100; i++) { 
                    // set the numeric value 
                    item.Counter = i; 
                    // add the item to the collection 
                    blockingCollection.Add(item); 
                } 
                // mark the collection as finished 
                blockingCollection.CompleteAdding(); 
            }); 
 
            // wait for the consumer to finish 
            consumer.Wait(); 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Using BlockingCollection as IEnumerable 
The BlockingCollection class can be used with foreach loops to allow consumers to safely take items 
from the collection. However, the input to the loop must be the result of the 
BlockingCollection.GetConsumingEnumerable method and not the collection itself. 

If the collection is used, the foreach loop will immediately exit if it is executed before the first item 
has been added to the collection by the producer. The BlockingCollection class implements the 
IEnumerable<> interface, so the compiler will not generate an error for this problem. 

Solution 
Either use the IsComplete and TryTake() members, or ensure that the enumeration for foreach loops 
always comes from the GetConsumingEnumerable() method. 

Example 
The following example delays the production of items by 500 milliseconds to ensure that the consumer 
calls foreach before the first item is added to the collection. The loop in the consumer Task body returns, 
and the consumer does not process any of the items that are subsequently added to the collection. 

 
using System; 
using System.Collections.Concurrent; 
using System.Threading.Tasks; 
 
namespace Using_BlockingCollection_as_IEnum { 
    class Using_BlockingCollection_as_IEnum { 
        static void Main(string[] args) { 
 
            // create a blocking collection 
            BlockingCollection<int> blockingCollection 
                = new BlockingCollection<int>(); 
 
            // create and start a producer 
            Task.Factory.StartNew(() => { 
                // put the producer to sleep 
                System.Threading.Thread.Sleep(500); 
                for (int i = 0; i < 100; i++) { 
                    // add the item to the collection 
                    blockingCollection.Add(i); 
                } 
                // mark the collection as finished 
                blockingCollection.CompleteAdding(); 
            }); 
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            // create and start a consumer 
            Task consumer = Task.Factory.StartNew(() => { 
                // use a foreach loop to consume the blocking collection 
                foreach (int i in blockingCollection) { 
                    Console.WriteLine("Item {0}", i); 
                } 
                Console.WriteLine("Collection is fully consumed"); 
            }); 
 
 
            // wait for the consumer to finish 
            consumer.Wait(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
 
        } 
    } 
} 

Deadlocked Task Scheduler 
Custom task schedulers are often written with no means of expanding the number of threads available. 
This causes deadlock when there are more Task dependencies than free threads.  

Solution 
Task schedulers should either allow inline execution or be able to add to the set of regular execution 
threads to cope with complex waiting relationships. 

Example 
The following demonstrates a custom task scheduler that maintains a fixed number of threads and does 
not allow inline execution. The code that tests the scheduler will cause a deadlock, because there are 
more waiting Tasks than there are working threads. 

 
using System; 
using System.Collections.Concurrent; 
using System.Collections.Generic; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Deadlocked_Task_Scheduler { 
 
    class Deadlocked_Task_Scheduler: TaskScheduler, IDisposable { 
        private BlockingCollection<Task> taskQueue; 
        private Thread[] threads; 
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        public Deadlocked_Task_Scheduler(int concurrency) { 
            // initialize the collection and the thread array 
            taskQueue = new BlockingCollection<Task>(); 
            threads = new Thread[concurrency]; 
            // create and start the threads 
            for (int i = 0; i < threads.Length; i++) { 
                (threads[i] = new Thread(() => { 
                    // loop while the blocking collection is not 
                    // complete and try to execute the next task 
                    foreach (Task t in taskQueue.GetConsumingEnumerable()) { 
                        TryExecuteTask(t); 
                    } 
                })).Start(); 
            } 
        } 
 
        protected override void QueueTask(Task task) { 
            if (task.CreationOptions.HasFlag(TaskCreationOptions.LongRunning)) { 
                // create a dedicated thread to execute this task 
                new Thread(() => { 
                    TryExecuteTask(task); 
                }).Start(); 
            } else { 
                // add the task to the queue 
                taskQueue.Add(task); 
            } 
        } 
 
        protected override bool TryExecuteTaskInline(Task task,  
            bool taskWasPreviouslyQueued) { 
     
            // disallow all inline execution 
            return false; 
        } 
 
        public override int MaximumConcurrencyLevel { 
            get { 
                return threads.Length; 
            } 
        } 
 
        protected override IEnumerable<Task> GetScheduledTasks() { 
            return taskQueue.ToArray(); 
        } 
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        public void Dispose() { 
            // mark the collection as complete 
            taskQueue.CompleteAdding(); 
            // wait for each of the threads to finish 
            foreach (Thread t in threads) { 
                t.Join(); 
            } 
        } 
    } 
 
 
    class Test_Deadlocked_Task_Scheduler { 
        static void Main(string[] args) { 
 
            // create the scheduler 
            Deadlocked_Task_Scheduler scheduler  
                = new Deadlocked_Task_Scheduler(5); 
 
            // create a token source 
            CancellationTokenSource tokenSource =  
                new CancellationTokenSource(); 
 
            Task[] tasks = new Task[6]; 
 
            for (int i = 0; i < tasks.Length; i++) { 
                tasks[i] = Task.Factory.StartNew((object stateObj) => { 
                    int index = (int)stateObj; 
                    if (index < tasks.Length - 1) { 
                        Console.WriteLine("Task {0} waiting for {1}", index, index + 1); 
                        tasks[index + 1].Wait(); 
                    } 
                    Console.WriteLine("Task {0} complete", index); 
                }, i, tokenSource.Token, TaskCreationOptions.None, scheduler); 
            } 
 
            Task.WaitAll(tasks); 
            Console.WriteLine("All tasks complete"); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 
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Summary 
In this chapter, we have seen how the basic building blocks of the TPL can be used to create 
sophisticated parallel programs. Continuations and child tasks allow you to connect together pieces of 
work that are performed only when your criteria are met. We also looked at some of the more advanced 
synchronization techniques. These are tools that you will use again and again to ensure predictable 
execution of your code. 

This chapter also introduced the parallel consumer/producer pattern, which is one of the most 
useful and flexible techniques available in parallel programming and mastering its use will help you 
build more reliable and better performing applications. It can take a while to get your head around this 
pattern, but it is time well spent. 

We finished up by looking at how to write a customer scheduler. I included this because it gives a 
good demonstration of how the TPL is built on top of the legacy threading support. If you didn’t 
understand how the scheduler worked, or just weren’t that interested, and don’t worry. You are 
extremely unlikely to need to write your own scheduler for most projects. 

The theme of building complex functionality out of basic building blocks continues in the next 
chapter when we turn our attention to parallel loops. These are implemented using the classes and 
techniques you have seen in this and previous chapters and can be extremely useful. 
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Parallel Loops 

Listing 5-1. A Parallel For Loop 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_01 { 
 
    class Listing_01 { 
 
        static void Main(string[] args) { 
 
            // create the arrays to hold the data and the results 
            int[] dataItems = new int[100]; 
            double[] resultItems = new double[100]; 
 
            // create the data items 
            for (int i = 0; i < dataItems.Length; i++) { 
                dataItems[i] = i; 
            } 
 
            // process the data in a parallel for loop 
            Parallel.For(0, dataItems.Length, (index) => { 
                resultItems[index] =  Math.Pow(dataItems[index],2); 
            }); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Parallel vs. Sequential Loops 
For and foreach loops are cornerstones of C# development, and it doesn’t take long for a new 
programmer to reach the point where they become a frequently used (and sometimes abused!) tool. The 
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for and foreach keywords create sequential loops, so called because an iteration isn’t started until the 
previous iteration has completed. 

The TPL contains support for parallel loops; that is to say, loops in which the iterations are 
performed with some degree of concurrency. You can see a simple example in Listing 5-1, which 
calculates the squares of 100 integer values. Because this is a parallel loop, some of the calculations will 
be performed in parallel. 

In this chapter, I’ll show you how to create and use parallel loops, starting with basic loops like the 
one in Listing 5-1 and working up to more complex permutations. This topic is a strange, because 
parallel loops are a convenience abstraction, built out of the features we have explored in the previous 
chapters. Once you have mastered them, you will find parallel loops convenient, easy to use, and often 
simpler than Tasks for some types of programming problem. But in order to attain that simplicity, there 
is a lot of information to take in. Table 5-1 summarizes the key sections of this chapter. 

Table 5-1. Parallel Loops and Actions 

Problem Solution Listing 

Perform actions concurrently. Use the Parallel.Invoke() method. 5-2 

Concurrently iterate over a series 
of integer values. 

Use the Parallel.For() method. 5-1 and  
5- 3 

Concurrently process a series of 
items in an array or collection. 

Use the Parallel.ForEach() method. 5-4 

Iterate over a series of stepped 
integer values. 

Use the yield keyword to create a custom 
IEnumerable<> that produced stepped integer results. 
Use with the Parallel.ForEach() method. 

5-5 

Limit concurrency for parallel 
loops or specify a custom task 
scheduler. 

Create an instance of ParallelOptions, set the 
appropriate properties, and pass it as an argument to 
Parallel.For() or Parallel.ForEach(). 

5-6 

Break out of a parallel loop. Create an instance of ParallelLoopState, pass it as an 
argument to Parallel.For() or Parallel.ForEach(), 
and call either the Break() or Stop() methods. 

5-7 and  
5-8 

Check loop status. Check the properties of the ParallelLoopResult 
instance returned as the result from the 
Parallel.For() and Parallel.ForEach() methods. 

5-9 

Cancel a parallel loop. Create an instance of ParallelOptions, and set the 
CacellationToken property. Pass the options as an 
argument to Parallel.For() or Parallel.ForEach(), 
and cancel the token. 

5-10 
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Problem Solution Listing 

Use thread-local storage in a 
parallel loop. 

Use the versions of Parallel.For() or 
Parallel.Foreach(),  which allow a thread-local 
variable to be initialized and processed with each 
iteration of the loop. 

5-11 and 
5-12 

Performing loops with chain 
dependencies. 

Use a combination of sequential and parallel loops. 5-13 

Partition data into chunks. Use the static Partition.Create() method. 5-15 and 
5-16 

Partition data using a custom 
strategy. 

Derive from the Partition or OrderablePartition 
classes. 

5-17 to  
5-26 

The Parallel Class 
Parallel loops are made possible through the System.Threading.Tasks.Parallel class, which will be the 
focus for much of this chapter. There are no parallel equivalents to the for and foreach keywords, so 
parallel loops are performed using methods of the Parallel class. 

Parallel loops create and manage Tasks on your behalf. Knowing how to create and coordinate 
Tasks, you could create your own parallel loops to process data. But you don’t need to; the 
System.Threading.Tasks.Parallel class provides some very useful convenience methods that take care 
of this for you. In this section, I’ll take you through how to use this class to achieve useful and effective 
parallel loops.  

Invoking Actions 
The most basic feature of the Parallel class is the ability to perform actions concurrently via the 
Invoke() method; this feature forms the basis for the parallel for and foreach loops that we cover in the 
“Using Parallel Loops” section. Listing 5-2 demonstrates the use of the Invoke() method, which takes an 
array of System.Actions to execute. The listing demonstrates Actions that are defined anonymously 
inline and explicitly in an array; it also demonstrates the equivalent statements using the Task class 
explicitly. 

Listing 5-2. Performing Actions Using the Parallel.Invoke() Method 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_02 { 
 
    class Listing_02 { 
 
        static void Main(string[] args) { 
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            // invoke actions described by lambda expressions 
            Parallel.Invoke( 
                () => Console.WriteLine("Action 1"), 
                () => Console.WriteLine("Action 2"), 
                () => Console.WriteLine("Action 3")); 
 
            // explicitly create an array of actions 
            Action[] actions = new Action[3]; 
            actions[0] = new Action(() => Console.WriteLine("Action 4")); 
            actions[1] = new Action(() => Console.WriteLine("Action 5")); 
            actions[2] = new Action(() => Console.WriteLine("Action 6")); 
 
            // invoke the actions array 
            Parallel.Invoke(actions); 
 
            // create the same effect using tasks explicitly 
            Task parent = Task.Factory.StartNew(() => { 
                foreach (Action action in actions) { 
                    Task.Factory.StartNew(action, TaskCreationOptions.AttachedToParent); 
                } 
            }); 
            // wait for the task to finish 
            parent.Wait(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The Invoke() method blocks until all of the Actions have been performed, which is equivalent to 

creating attached child Tasks. Any exceptions thrown by the Actions are packaged up into a 
System.AggregateException, which is thrown by the Invoke() method (see Chapter 2 for details of how to 
handle AggregateExceptions). Given that you have mastered the use of Tasks in the previous chapters, 
you won’t use Parallel.Invoke() very often—if at all—but, this method does provide the backbone of 
the much more useful feature of the Parallel class, parallel loops. 

■ Tip You can specify options to control the execution of the Actions using the ParallelOptions class; see the 
“Setting Parallel Loop Options” section of this chapter for details. 

Using Parallel Loops 
If you have done any programming, you will have encountered for and foreach loops, such as the 
following. 
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for (int i = 0; i < 100; i++) { 
    // ... loop body... 
    // do the ith item of work 
} 
 
int[] dataItems = new int[100]; 
foreach (int i in dataItems) { 
    // ... loop body... 
    // process the ith data item 
} 

 
The for loop executes a set of code statements (the loop body) a specified number of times; the loop 

body can determine which iteration is being performed by using the loop counter, which is the variable i 
in the code fragment. 

The foreach loop executes the statements in the loop body for each item in a type that implements 
the System.Collection.IEnumerable or System.Collections.Generic.IEnumerable<T> interfaces. There 
are lots of types that implement these interfaces, including collection classes and arrays. In the code 
fragment, the loop body will be executed for each element in the int array, and the loop body is passed 
each item from the array in turn via the variable i. 

Both of these loops are sequential, which is to say that one execution of the loop body finishes 
before the next one is started. The Parallel class provides features that let us create parallel loops, where 
the loop body is executed concurrently so that different values can be processed simultaneously. 

Creating a Basic Parallel For Loop 
Creating a basic parallel for loop is a simply a matter of calling the Parallel.For() method, and 
supplying three arguments. The first argument is the start index, the second argument is the end index 
and the third item is the System.Action<int>, representing the loop body that should be executed for 
each index value. The int passed to the Action is the index value for the current iteration. Listing 5-3 
demonstrates a basic parallel for loop. 

Listing 5-3. A Basic Parallel for Loop 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_03 { 
 
    class Listing_03 { 
 
        static void Main(string[] args) { 
 
            Parallel.For(0, 10, index => { 
                Console.WriteLine("Task ID {0} processing index: {1}", 
                    Task.CurrentId, index); 
            }); 
 

Boykma
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The loop body prints out the ID of the Task performing the Action and the index of the current 

iteration. Running Listing 5-3 produces the following output, although you may see slight variations: 

Task ID 1 processing index: 0 

Task ID 4 processing index: 6 

Task ID 3 processing index: 4 

Task ID 3 processing index: 5 

Task ID 3 processing index: 9 

Task ID 3 processing index: 3 

Task ID 1 processing index: 1 

Task ID 5 processing index: 8 

Task ID 2 processing index: 2 

Task ID 4 processing index: 7 

Press any key to continue . . . 

There are some points to note. The start index value is inclusive, meaning that the value you specify 
for this argument will be processed using the loop body. The end index is exclusive, meaning that the 
value you specify for this argument will not be processed using the loop body. That means that start and 
end indexes used in the listing (0 and 10, respectively) are equivalent to a sequential loop such as the 
following: 

 
for (int i = 0; i < 10; i++) { 
    //...loop body... 
} 

 
You can see from the results that Tasks are used to process more than one index value. For example, 

the Task with the ID of three processed index values 4, 5, 9, and 3. You will also see that the index values 
were not processed in order. As is the case with much of the TPL, you cannot rely on a specific 
processing order. 
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Creating a Basic Parallel ForEach Loop 
Parallel for loops can be useful, but they are somewhat limited by the fact that the loop body receives 
only the index from the Parallel class. That’s super if you need to do something with the actual numeric 
values, but otherwise, you need to read some external data to which the index value is the key, as in 
Listing 5-1 at the start of this chapter—the index value is used to get some source data from one array 
and put the processed value into a another. 

The parallel foreach loop is more flexible. It will process any set of items that are available through 
an IEnumerable. You create a parallel foreach loop by using the Parallel.ForEach() method, and the 
basic form takes an IEnumerable<T> implementation and an Action<T> which is used to process each 
item. The obvious application of this feature is to parallel process the elements in a collection, as 
illustrated by Listing 5-4. 

Listing 5-4. Processing a Collection Using Parallel.ForEach() 

using System; 
using System.Collections.Generic; 
using System.Threading.Tasks; 
 
namespace Listing_04 { 
 
    class Listing_04 { 
 
        static void Main(string[] args) { 
 
            // create a collection of strings 
            List<string> dataList = new List<string> { 
                "the", "quick", "brown", "fox", "jumps", "etc" 
            }; 
 
            // process the elements of the collection 
            // using a parallel foreach loop 
            Parallel.ForEach(dataList, item => { 
                Console.WriteLine("Item {0} has {1} characters", 
                    item, item.Length); 
            }); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 



CHAPTER 5 ■ PARALLEL LOOPS 

 

180  

One of the limitations of Parallel.For is that all index values are processed, making it impossible to 
create a parallel equivalent of a sequential loop such as this one, which increments the loop counter by 
two per iteration to create a stepped index: 

 
for (int i = 0; i < 10; i +=2) { 
    //...loop body... 
} 

 
Fortunately, we can achieve the same effect by using Parallel.ForEach() and creating an 

IEnumerable that contains only the stepped values, as illustrated by Listing 5-5. 

Listing 5-5. Creating a Stepped Loop 

using System; 
using System.Collections.Generic; 
using System.Threading.Tasks; 
 
namespace Listing_05 { 
    class Listing_05 { 
 
        static IEnumerable<int> SteppedIterator(int startIndex, 
            int endEndex, int stepSize) { 
            for (int i = startIndex; i < endEndex; i += stepSize) { 
                yield return i; 
            } 
        } 
 
        static void Main(string[] args) { 
 
            Parallel.ForEach(SteppedIterator(0, 10, 2), index => { 
                Console.WriteLine("Index value: {0}", index); 
            }); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The static SteppedIterator() method creates an IEnumerable<int> that contains the values between 

startIndex and endIndex with a step of stepSize. This is then used as the input to the 
Parallel.ForEach() method, which executes the Action for each value in the enumeration. Running 
Listing 5-5 produces the following results: 
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Index value: 0 

Index value: 4 

Index value: 8 

Index value: 2 

Index value: 6 

Press enter to finish 

Setting Parallel Loop Options 
You can influence the behavior of parallel loops by supplying an instance of the ParallelOptions class as 
an argument to Parallel.For() or Parallel.ForEach(). There are three properties in ParallelOptions, 
and they are described in Table 5-2. 

Table 5-2. Properties of the System.Threading.Tasks.ParallelOptions class 

Property Description 

CancellationToken Get or set a CancellationToken  (see the “Canceling Parallel Loops” section 
later in this chapter). 

MaxDegreeOfParallelism Get or set the maximum concurrency for a parallel loop. Setting this 
property to -1 means no concurrency limit is set. 

TaskScheduler Get or set the scheduler that will be used for the Tasks created in a parallel 
loop. Setting this property to null will cause the default scheduler to be 
used. 

 
The three properties in Table 5-2 are the only members of the ParallelOptions class. The 

CancellationToken property is discussed later in this chapter. The TaskScheduler property lets you 
specify a custom task scheduler that will be applied to the Tasks created by the parallel loop; we covered 
creating and using custom schedulers in the previous chapter.  

The remaining property, MaxDegreeOfParallelism, allows you to limit the number of Tasks that are 
executed concurrently to perform a parallel loop. Setting a high limit does not increase the degree of 
parallelism; all you can do with this property is set a limit for the concurrency. Specifying a value of 0 
(i.e., no concurrency at all) will cause Parallel.For() and Parallel.ForEach() to throw an exception. 

Both Parallel.For and Parallel.ForEach have overloaded versions that take an instance of 
ParallelOptions as an argument. Listing 5-6 shows both methods being used with a ParallelOptions 
instance that limits concurrency to one Task—effectively sequential execution. 
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Listing 5-6. Setting Options for a Parallel Loop 

using System; 
using System.Collections.Generic; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_06 { 
 
    class Listing_06 { 
 
        static void Main(string[] args) { 
 
            // create a ParallelOptions instance 
            // and set the max concurrency to 1 
            ParallelOptions options  
                = new ParallelOptions() { MaxDegreeOfParallelism = 1 }; 
 
            // perform a parallel for loop 
            Parallel.For(0, 10, options, index => { 
                Console.WriteLine("For Index {0} started", index); 
                Thread.Sleep(500); 
                Console.WriteLine("For Index {0} finished", index); 
            }); 
 
            // create an array of ints to process 
            int[] dataElements = new int[] { 0, 2, 4, 6, 8 }; 
 
            // perform a parallel foreach loop 
            Parallel.ForEach(dataElements, options, index => { 
                Console.WriteLine("ForEach Index {0} started", index); 
                Thread.Sleep(500); 
                Console.WriteLine("ForEach Index {0} finished", index); 
            }); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 
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Breaking and Stopping Parallel Loops 
Sequential loops don’t always run to completion, and the same holds true for parallel loops. Imagine 
that we have a collection of strings, and we want to find one that contains the letter k. We might write a 
sequential loop as follows: 

 
List<string> dataItems  
    = new List<string>() { "an", "apple", "a", "day",  
        "keeps", "the", "doctor", "away" }; 
 
foreach (string item in dataItems) { 
    if (item.Contains("k")) { 
        Console.WriteLine("Hit: {0}", item); 
        break; 
    } else { 
        Console.WriteLine("Miss: {0}", item); 
    } 
} 

 
This loop works through the collection item by item until it reaches the word keeps, at which point 

the break keyword terminates the loop. You can’t use break with parallel loops, but you can get the same 
effect using the ParallelLoopState class. 

The Parallel.For() and Parallel.ForEach() methods have overloaded versions where the Action 
parameter is Action(int, ParalllelLoopState) (for Parallel.For()) and Action(T, 
ParallelLoopState) where T is the type of the IEnumerable used with Parallel.ForEach(). The following 
fragment demonstrates both forms: 

 
Parallel.For(0, 100, (int index, ParallelLoopState loopState) => { 
    // ...loop body... 
}); 
 
string[] dataItems = new string[] { "an", "apple", "a" }; 
 
Parallel.ForEach(dataItems, (string item, ParallelLoopState loopState) => { 
    // ...loop body... 
} 

 
The instance of ParallelLoopState is created automatically by the Parallel class and passed to your 

Action. I find it easier to declare the type of the variable in the lambda expression so that Visual Studio 
IntelliSense works properly, because Visual Studio doesn’t know what type the argument is otherwise. 
The ParallelLoopState class contains the Stop() and Break() methods, which can be used to stop a 
parallel loop from completing. These methods and the other members of the ParallelLoopState class 
are summarized in Table 5-3. 
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Table 5-3. Members of the  System.Threading.Tasks.ParallelLoopStateclass 

Member Description 

Stop() Request that the loop stop execution as possible. 

Break() Request that loop stop execution of iterations beyond the current 
iteration as soon as possible. 

IsExceptional Return true if any iteration of the loop has thrown an exception. 

IsStopped Return true if any iteration has called Stop(). 

LowestBreakIteration Return the index of the lowest iteration in which Break() was called. 

ShouldExitCurrentIteration Return true if this iteration should exit. 

 
The Stop() method is useful when you are looking for a specific result, as in the sequential loop 

where we looked for a word containing the letter k. When you call Stop(), the Parallel class doesn’t stop 
any new iterations. However, iterations that are already running may continue to be performed, and as 
you saw earlier, Tasks are used to process more than one iteration value, so some of your data items may 
continue to be processed even after you have called Stop(). 

The Break() method is slightly different . If you call Break() in the tenth iteration, no further 
iterations will be started except those that are required to process the first to ninth items. Other 
iterations may be already running (including those that are processing later items) and will complete, 
which means that you are guaranteed to get at least the first ten items processed but may end up with 
more. 

If Stop() and Break() seem a bit woolly, it is because the items in a parallel loop are not processed in 
sequence. This statement may seem obvious, but the trade-off inherent in a parallel loop is that the 
concurrent performance improvement comes at a cost of a lack of precision when you want to terminate 
the loop early. Listing 5-7 demonstrates a parallel loop that uses Stop(); this is the parallel 
implementation of looking for a word with the letter k. 

Listing 5-7. Using Stop() in a Parallel Loop 

using System; 
using System.Collections.Generic; 
using System.Threading.Tasks; 
 
namespace Listing_07 { 
    class Program { 
        static void Main(string[] args) { 
 
            List<string> dataItems 
                = new List<string>() { "an", "apple", "a", "day",  
                    "keeps", "the", "doctor", "away" }; 
 
            Parallel.ForEach(dataItems, (string item, ParallelLoopState state) => { 
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                if (item.Contains("k")) { 
                    Console.WriteLine("Hit: {0}", item); 
                    state.Stop(); 
                } else { 
                    Console.WriteLine("Miss: {0}", item); 
                } 
            }); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Running Listing 5-7 produces the following result: 

Miss: an 

Miss: day 

Miss: the 

Miss: apple 

Miss: doctor 

Miss: a 

Hit: keeps 

Miss: away 

Press enter to finish 

Notice that all of the items in the collection have been processed even through a match was found. 
This illustrates the slightly unpredictable nature of stopping a parallel loop. Listing 5-8 demonstrates  
a parallel loop that uses the Break() method, which is called when the square of the index is greater  
than 100.  

Listing 5-8. Using Break() in a Parallel Loop 

using System; 
using System.Collections.Generic; 
using System.Threading.Tasks; 
 
namespace Listing_08 { 
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    class Listing_08 { 
        static void Main(string[] args) { 
 
            ParallelLoopResult res = Parallel.For(0, 100,  
                (int index, ParallelLoopState loopState) => { 
 
                // calculate the square of the index 
                double sqr = Math.Pow(index, 2); 
                // if the square value is > 100 then break 
                if (sqr > 100) { 
                    Console.WriteLine("Breaking on index {0}", index); 
                    loopState.Break(); 
                } else { 
                    // write out the value 
                    Console.WriteLine("Square value of {0} is {1}", index, sqr); 
                } 
            }); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Running the listing produces the results that follow. See how the range of index values has been 

broken down so that Tasks can start processing at different points ? The values produced by squaring the 
index exceed our threshold, so those iterations terminated immediately.  

Square value of 0 is 0 

Breaking on index 25 

Square value of 2 is 4 

Square value of 3 is 9 

Square value of 4 is 16 

Square value of 5 is 25 

 

Square value of 6 is 36 

Square value of 7 is 49 

Square value of 8 is 64 
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Square value of 9 is 81 

Square value of 10 is 100 

Breaking on index 11 

Breaking on index 75 

Square value of 1 is 1 

Breaking on index 50 

Press enter to finish 

When, as in this example, Break() is called more than once, the Parallel class ensures that all of the 
items prior to the lowest index where Break() was called are processed. In Listing 5-8, Break() was called 
on indices 11, 25, 75, and 50. In this case, the lowest break occurred at index 11; therefore, all items prior 
to 11 will be processed. 

The three ParallelLoopState properties IsStopped, LowestBreakIteration, and 
ShouldExitCurrentIteration allow you to improve the responsiveness of a parallel loop by checking the 
overall state of the loop from within your iteration. Checking these values, especially in iterations that 
will take a long time to complete, will reduce the amount of unwanted processing after Break() or Stop() 
has been called. 

■ Tip See the “Getting Loop Results” section for details of how to determine if Break() or Stop() was called 
from outside of the Parallel.For() and Parallel.ForEach() methods. 

Handling Parallel Loop Exceptions 
If an exception is thrown in a sequential loop, the loop stops, and no further iterations are performed. If 
an exception is thrown in a parallel loop, no new iterations are started, but iterations that are already in 
progress are allowed to complete. 

You can detect if an exception has been thrown in another iteration by checking the IsExceptional 
property of the ParallelLoopState class (this class is described in the previous section).  

The exceptions thrown by iterations are gathered and packaged into a System.AggregateException, 
which is thrown by the Parallel.For() and Parallel.ForEach() methods. See Chapter 2 for details of 
how to process an AggregateException. 

■ Tip See the “Getting Loop Results” section for details of how to determine if an exception was thrown inside of 
the Parallel.For() and Parallel.ForEach() methods. 
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Getting Loop Results 
The result returned by the Parallel.For() and Parallel.ForEach() methods is an instance of the 
System.Threading.Tasks.ParallelLoopResult structure. ParallelLoopResult contains two properties 
that you can use to determine if Break() or Stop() was called. Table 5-4 summarizes the properties. 

Table 5-4. Properies of the System.Threading.Tasks.ParallelLoopResult structure 

Member Description 

IsCompleted Return true if all of the loop iterations were completed without Stop() and 
Break() being called. 

LowestBreakIteration Return the index of the lowest iteration in which the Break() method was 
called. 

 
Listing 5-9 shows the use of the ParallelLoopResult, produced by a loop in which one of the 

iterations calls the ParallelLoopState.Stop() method. 

Listing 5-9. Using the ParallelLoopResult Structure 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_09 { 
    class Listing_09 { 
        static void Main(string[] args) { 
 
            // run a parallel loop in which one of 
            // the iterations calls Stop() 
            ParallelLoopResult loopResult = 
                Parallel.For(0, 10, (int index, ParallelLoopState loopState) => { 
                    if (index == 2) { 
                        loopState.Stop(); 
                    } 
                }); 
 
            // get the details from the loop result 
            Console.WriteLine("Loop Result"); 
            Console.WriteLine("IsCompleted: {0}", loopResult.IsCompleted); 
            Console.WriteLine("BreakValue: {0}", loopResult.LowestBreakIteration.HasValue); 
  
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 
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If IsCompleted returns false and LowestBreakIteration.HasValue() also returns false, we know that 
the Stop() method has been called. Table 5-5 summarizes the permutations of the property results and 
what they mean. 

Table 5-5. Using the ParallelLoopResult structure to determine loop status 

IsCompleted LowestBreakIteration.HasValue() Description 

true false Neither Stop() nor Break() has been called. 

false false Stop() was called. 

false true Break() was called. 

Canceling Parallel Loops 
The Parallel.For() and Parallel.ForEach() methods will monitor a CancellationToken supplied 
through an instance of the ParallelOptions class. See the “Setting Parallel Loop Options” section earlier 
in the chapter for details, and see Chapter 2 for more generation information about the standardized 
cancellation mechanisms. 

When the CancellationTokenSource from which the token was obtained is cancelled, the Parallel 
class will not start any new loop iterations, but any that are running will be allowed to complete. When 
all of the running iterations have completed, the Parallel.For() or Parallel.ForEach() method will 
throw an OperationCancellationException.  

Listing 5-10 demonstrates how to cancel a parallel loop. Note that in the example, the cancellation is 
performed by a Task, because the Parallel.For() method blocks the main application thread. So either 
the parallel loop or the cancellation needs to be performed by a separate Task. 

Listing 5-10. Cancelling a Parallel Loop 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_10 { 
    class Listing_10 { 
        static void Main(string[] args) { 
 
            // create a cancellation token source 
            CancellationTokenSource tokenSource 
                = new CancellationTokenSource(); 
            // start a task that will cancel the token source 
            // after a few seconds sleep 
            Task.Factory.StartNew(() => { 
                // sleep for 5 seconds 
                Thread.Sleep(5000); 
                // cancel the token source 
                tokenSource.Cancel(); 
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                // let the user know 
                Console.WriteLine("Token cancelled"); 
            }); 
 
            // create loop options with a token 
            ParallelOptions loopOptions = 
                new ParallelOptions() {  
                    CancellationToken = tokenSource.Token  
                }; 
 
            try { 
                // perform a parallel loop specifying the options 
                // make this a loop that will take a while to complete 
                // so the user has time to cancel 
                Parallel.For(0, Int64.MaxValue, loopOptions, index => { 
                    // do something just to occupy the cpu for a little 
                    double result = Math.Pow(index, 3); 
                    // write out the current index 
                    Console.WriteLine("Index {0}, result {1}", index, result); 
                    // put the thread to sleep, just to slow things down 
                    Thread.Sleep(100); 
                }); 
            } catch (OperationCanceledException) { 
                Console.WriteLine("Caught cancellation exception..."); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
 
        } 
    } 
} 

Using Thread Local Storage in Parallel Loops 
Chapter 3 described thread local storage (TLS), where each thread has its own isolated version of a 
variable. The Parallel.For() and Parallel.ForEach() methods have versions that support TLS, which 
you can use to efficiently share data between parallel loop iterations and to get a single result value from 
a parallel loop. 

A simple parallel loop that requires synchronization follows. The total variable is shared between 
the iterations of the loop and, since the iterations may be performed concurrently, there is the potential 
for a data race. 

 
int total = 0; 
 
Parallel.For(0, 100, index => { 
    Interlocked.Add(ref total, index); 
}); 
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To avoid the data race, we use the System.Threading.Interlocked class to safely add the current 
iteration index to the total. Because there are 100 steps in the parallel loop, the Interlocked class will be 
called 100 times, and as you know, synchronization has an overhead—so we incur that overhead 100 
times.  

Listing 5-11 shows the preceding loop rewritten to use loop TLS. 

Listing 5-11. A Parallel for Loop with TLS 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_11 { 
    class Listing_11 { 
        static void Main(string[] args) { 
 
            int total = 0; 
 
            Parallel.For( 
                0, 
                100, 
                () => 0, 
                (int index, ParallelLoopState loopState, int tlsValue) => { 
                    tlsValue += index; 
                    return tlsValue; 
                }, 
                value => Interlocked.Add(ref total, value)); 
 
            Console.WriteLine("Total: {0}", total); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
In Listing 5-11, the first and second arguments to Parallel.For() are the start and end index values. 

The third argument is a delegate that initializes an instance of the thread-local type. In our example, this 
is an int with a value of 0.  

When you use a parallel loop, your data is broken down into a series of blocks (known as chunks or 
partitions), which are processed concurrently. The detail of how your data is partitioned depends on the 
partitioning strategy applied to your loop, and I explain how to select a strategy later in the chapter. The 
TLS initialization delegate is called once for each data partition. In our example, it creates an int with a 
value of 0. You don’t need to worry about the details of partitioning when using TLS, other than to know 
that the delegate may be called several times. 

The fourth argument is the loop body, an Action which has three arguments: the current iteration 
index, the ParallelLoopState for the loop, and the current value of the thread-local variable. This Action 
is called once per index value and must return a result that is the same type as the thread-local variable. 
In the example, we add the current index to the thread-local variable and return the result.  
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The final argument is an Action that is passed the TLS value and is called once per data partition. 
This action is the complement of the TLS initialization delegate. In the example, we use the Interlocked 
class to safely update the overall total.  

The benefit of using TLS in a loop is that you don’t need to synchronize access to the variable in 
your loop body. In Listing 5-11, the Interlocked class is only used once per data partition. On my test 
system, the default practitioner usually breaks up the data in Listing 5-11 into four partitions, resulting 
in 96 fewer calls to Interlocked than the original loop. The exact savings depends on the source data and 
the partition strategy used; the greater the number of iterations, the greater the savings in overhead. 

Listing 5-12 illustrates a Parallel.ForEach() loop with TLS and shows that you can use any of the 
synchronization techniques described in Chapter 3 to coordinate the TLS value with variables outside of 
the parallel loop. 

Listing 5-12. A Parallel foreach Loop with TLS 

using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_12 { 
    class Listing_12 { 
        static void Main(string[] args) { 
 
            // create a running total of matched words 
            int matchedWords = 0; 
 
            // create a lock object 
            object lockObj = new object(); 
 
            // define the source data 
            string[] dataItems  
                = new string[] { "an", "apple", "a", "day",  
                    "keeps", "the", "doctor", "away" }; 
 
            // perform a parallel foreach loop with TLS 
            Parallel.ForEach( 
                dataItems, 
                () => 0, 
                (string item, ParallelLoopState loopState, int tlsValue) => { 
                    // increment the tls value if the item 
                    // contains the letter 'a' 
                    if (item.Contains("a")) { 
                        tlsValue++; 
                    } 
                    return tlsValue; 
                }, 
                tlsValue => { 
                    lock (lockObj) { 
                        matchedWords += tlsValue; 
                    } 
                }); 
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            Console.WriteLine("Matches: {0}", matchedWords); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Performing Parallel Loops with Dependencies 
The parallel loops so far in this chapter have been examples of what is known as embarrassingly parallel 
problems. This is an unfortunate name, but it means that the work being done is extremely easy to 
parallelize, because each data element can be processed independently of every other element; that 
allows the items to be processes in any order and with any degree of concurrency. In other words, these 
problems are perfect for demonstrating the new .NET parallel programming features, and they appear at 
one end of a spectrum of dependency between items. 

At the other end of the spectrum are problems where there is a very high degree of dependency 
between data items, for example, generating Fibonacci numbers, where each item is the sum of the 
previous two items (with 0 and 1 as seed values),  a problem that is best solved sequentially. 

In the middle are problems where there is some degree of dependence between some items. 
Generally, such problems are best approached using the techniques from Chapters 3 and 4 to coordinate 
and synchronize a set of Tasks. There is one situation, however, where we can mix sequential and 
parallel loops to process data with a particular type of dependency. 

The dependency I have in mind is where the first value in a region of data depends on the last value 
of the previous region, as illustrated in Figure 5-1. The nth region of data cannot be completed until the 
(n – 1) region has been processed, but the items within the region can be processed in parallel. 

 

 

Figure 5-1. Chain dependency 

Listing 5-13 demonstrates this situation. A series of bank account transactions must be processed in 
order to determine the final balance for each month of the year, where each month contains 10,000 
transactions. To determine the balance for the end of one month, we need to know the balance of the 
previous month. Aside from that dependency, we are able to process a month’s transactions 
concurrently. 
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Listing 5-13 solves the dependency issue by mixing sequential and parallel loops. The outer loop is 
sequential and iterates through each monthly region in turn. The inner loop is parallel and sums the 
individual transactions. The result of the parallel loop for one month becomes the seed value for the 
following month. 

Listing 5-13. Mixing Synchronous and Parallel Loops 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_13 { 
 
    class Transaction { 
        public int Amount { 
            get; 
            set; 
        } 
    } 
 
    class Listing_13 { 
 
        static void Main(string[] args) { 
 
            // create a random number generator 
            Random rnd = new Random(); 
 
            // set the number of items created  
            int itemsPerMonth = 100000; 
 
            // create the source data 
            Transaction[] sourceData = new Transaction[12 * itemsPerMonth]; 
            for (int i = 0; i < 12 * itemsPerMonth; i++) { 
                sourceData[i] = new Transaction() { Amount = rnd.Next(-400, 500) }; 
            } 
 
            // create the results array 
            int[] monthlyBalances = new int[12]; 
 
            for (int currentMonth = 0; currentMonth < 12; currentMonth++) { 
                // perform the parallel loop on the current month's data 
                Parallel.For( 
                    currentMonth * itemsPerMonth,  
                    (currentMonth + 1) * itemsPerMonth,  
                    new ParallelOptions(),  
                    () => 0,  
                    (index, loopstate, tlsBalance) => { 
                        return tlsBalance += sourceData[index].Amount; 
                    },  
                    tlsBalance => monthlyBalances[currentMonth] += tlsBalance); 
                // end of parallel for 
                // add the previous month's balance 
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                if (currentMonth > 0) monthlyBalances[currentMonth]  
                    += monthlyBalances[currentMonth - 1]; 
            } 
 
            for (int i = 0; i < monthlyBalances.Length; i++) { 
                Console.WriteLine("Month {0} - Balance: {1}", i, monthlyBalances[i]); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
By mixing sequential and parallel loops in this way, we get a good degree of concurrency and still 

benefit from the simplicity of using a Parallel.For() loop. You may be tempted to replace the 
sequential loop with synchronization to achieve a similar effect; see the “Common Problems and Their 
Causes” section later in this chapter for an often-encountered pitfall. 

Selecting a Partitioning Strategy 
When you use a parallel loop, the data you supply is broken into partitions which are processed 
concurrently. Partitioning is a performance optimization – if the Tasks performing a parallel loop had to 
get each item individually from the data source, the synchronization required to avoid the same item 
being taken and processed by multiple Tasks would outweigh any parallel performance gains. Instead, 
partitioning means the Tasks go to the data source and ask for multiple items at once, reducing the 
amount of synchronization required. 

A partitioner breaks up a data source into partitions. There are lots of different ways to perform 
partitioning and the technique that is used can have an impact on the performance of your parallel 
loops. The TPL includes default partitioner strategies that offer good performance on a wide range of 
data sources and of hardware configurations. You may, however, find that you can get better 
performance from your parallel loop by using a partitioning strategy that is tailored to your data source.  

This section will explain how the default partitioner works, show you how to improve performance 
for small loop bodies using a technique called chunking, and how to create and use a custom partitioner.  

Partitions are passed to consumers, who take items from the partition and process them. In the case 
of parallel loops, the consumers are the Tasks: they request a partition from the partitioner, take items 
one by one from the partition, and invoke the loop body to process the items.  

There are two kinds of partitioner: static and dynamic. We’ll look at static partitioners when we 
investigate PLINQ in Chapter 6, so for now, we’ll focus on dynamic partitioners, which are what parallel 
loops use. A dynamic partitioner doesn’t know in advance how many partitions are going to be 
requested, so it needs to be able to divide up the data dynamically. A common approach to handling this 
is to break the data down into small blocks. 

When a dynamic partition is created, the partitioner gives it one block of data to begin servicing the 
consumer with. When the consumer has taken all of the items in the first block, the partitioner gives the 
partition another. This continues until all of the blocks have been used. 

If there is one consumer, and therefore one partition, all of the blocks will be passed to the same 
partition, and all of the items will be processed by the same consumer. If there is more than one 
consumer, there will be more than one partition, and the blocks will be shared out between them so that 
each consumer receives and processes a portion of the data items.  
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For example, the default TPL partitioner used in the Parallel.ForEach() method starts off by 
creating small blocks, which is to say blocks containing relatively few data items. Small blocks give the 
best performance for data sources with small numbers of items, because the items can be spread across 
the available cores or CPUs to increase concurrency. For example, if you have a collection of ten items 
and the partitioner created blocks of ten items in size, all of the items would go into one block, which 
would be consumed by one Task, and the work in your parallel loop would be bound to one CPU or core. 
By contrast, if each block contained, say, two items, up to five cores could be usefully engaged in 
processing items concurrently. 

The default ForEach() partitioner doubles the size of the block it gives to a partition every time it has 
given that partition three blocks; this means that the block size grows in relation to the number of items 
in the data source and that the largest block sizes will be reached when processing the largest amounts 
of data. Large blocks give the best performance for large data sources. 

The default partitioner used in the Parallel.For() method works in a different way. It breaks down 
the range of values that are to be iterated through into ranges, which can then be executed in parallel. 
This strategy is very similar to chunking, which I discuss in the following section. 

Using the Chunking Partitioning Strategy 
By starting with small blocks and increasing their size as the number of data items processed increases, 
the default partitioner tries to give balanced performance whatever size data source is used. As a general 
approach, the default partitioner is excellent, but there are times when a different approach can give 
better results, particularly when the performance problem isn’t with the data source at all. 

A problem with parallel for loops arises when the loop body is very small and doesn’t take much 
time to process a data element. In such situations, the amount of time required to invoke the 
System.Action for each element becomes a disproportionate overhead. Consider the first parallel loop in 
Listing 5-14, which has a very small loop body; it simply calculates the square of the index value and 
assigns the result to an array. 

Listing 5-14. A Parallel Loop with a Very Small Body 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_14 { 
    class Listing_14 { 
 
        delegate void ProcessValue(int value); 
        static double[] resultData = new double[10000000]; 
 
        static void Main(string[] args) { 
 
            // perform the parallel loop 
            Parallel.For(0, resultData.Length, (int index) => { 
                // compuute the result for the current index 
                resultData[index] = Math.Pow(index, 2); 
            }); 
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            // perform the loop again, but make the delegate explicit 
            Parallel.For(0, resultData.Length, delegate(int index) { 
                resultData[index] = Math.Pow((double)index, 2); 
            }); 
 
            // perform the loop once more, but this time using 
            // a declared delegate and action 
            ProcessValue pdel = new ProcessValue(computeResultValue); 
            Action<int> paction = new Action<int>(pdel); 
            Parallel.For(0, resultData.Length, paction); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
 
        static void computeResultValue(int indexValue) { 
            resultData[indexValue] = Math.Pow(indexValue, 2); 
        } 
    } 
} 

 
When using lambda expressions, it is easy to forget that the compiler is creating an anonymous 

delegate in which to wrap the code statements, and this delegate must be invoked to process every item 
in a parallel loop. In fact, the second loop in Listing 5-13 is what the C# compiler produces when it 
compiles the first loop.  

The final loop in Listing 5-13 uses an explicit delegate to call the computeResultValue() method. The 
point to note is that all three loops are identical, and the delegate is invoked 10,000,000 times. The work 
required by the runtime to invoke the delegate is huge in proportion to the work required to perform the 
trivial loop body. 

We can counter this problem through a partitioning technique called chunking. Rather than using a 
Parallel.For() loop that invokes the delegate for each index value, we transform the index range into a 
series of System.Tuple<int, int> instances, where each Tuple represents a chunk or range of index 
values. These ranges are then processed by a Parallel.ForEach() loop. Listing 5-15 shows this technique 
in action. 

Listing 5-15. Using a Chunking Partitioner 

using System; 
using System.Collections.Concurrent; 
using System.Threading.Tasks; 
 
namespace Listing_15 { 
 
    class Listing_15 { 
 
        static void Main(string[] args) { 
 
            // create the results array 
            double[] resultData = new double[10000000]; 
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            // created a partioner that will chunk the data 
            OrderedPartitioner<Tuple<int, int>> chunkPart  
                = Partitioner.Create(0, resultData.Length, 10000); 
 
            // perform the loop in chunks 
            Parallel.ForEach(chunkPart, chunkRange => { 
                // iterate through all of the values in the chunk range 
                for (int i = chunkRange.Item1; i < chunkRange.Item2; i++) { 
                    resultData[i] = Math.Pow(i, 2); 
                } 
            }); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
We can perform chunking using the static Create() method of the System.Collections.Concurrent. 

Partitioner class. This method takes a start index, an end index, and optionally the range of index 
values that each chunk should represent.  Table 5-6 summarizes the different method versions. 

Table 5-6. The Partitioner.Create() Method Versions 

Method Overload  Description 

Create(int, int) 
Create(long, long) 

Chunk a range of values using the default range size. 

Create(int, int, int) 
Create(long, long, long) 

Chunk a range of values using a specified range size. 

 
If you do not specify the size of each chunk, then the default will be used; this is currently the 

number of items divided by three times the number of processor cores available. For example, for 1,000 
index values on a four-way machine, each chunk will have a range of 1000 / (3 × 4) values, which rounds 
down to eight values per chunk. The default may be calculated differently in future releases, so you 
shouldn’t code in the expectation of this value. 

The Partitioner.Create() method returns an instance of System.Collections.Concurrent. 
OrderablePartitioner. I’ll explain the purpose of this class in the next section, but for now, it is enough 
to know that you can pass this as an argument to the Parallel.ForEach() method, along with a loop 
body that processes instances of Tuple<int, int>. The Tuple.Item1 value is the inclusive start index of 
the range, and the Tuple.Item2 value is the exclusive end index of the range. This means that, instead of 
the loop body processing individual items, we create a sequential loop in which a range of values are 
processed, like this: 
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// perform the loop in chunks 
Parallel.ForEach(chunkPart, chunkRange => { 
    // iterate through all of the values in the chunk range 
    for (int i = chunkRange.Item1; i < chunkRange.Item2; i++) { 
        resultData[i] = Math.Pow(i, 2); 
    } 
}); 

 
By breaking 10,000,000 index values into chunks of 10,000, we reduce the number of times that the 

delegate is invoked to 1,000 and improve the ratio of overhead versus index processing. 

Using the Ordered Default Partitioning Strategy 
When you use the Parallel.ForEach() method, the default partitioning strategy will be applied unless 
the first argument you provide is an instance of the Partitioner or OrderablePartitioner classes in the 
System.Collections.Concurrent namespace. In the previous example, we applied the chunking strategy 
by creating an instance of OrderablePartitioner and passing it to Parallel.ForEach(). But now, it is 
time for me to admit that I fudged things slightly to make the example simpler.  

The OrdereablePartitioner class extends Partitioner. When I called Parallel.ForEach() in the 
previous example, I used a version of the method that implicitly treated the argument as an instance of 
the base class, Partitioner. I did this because the feature that OrderablePartitioner adds over the base 
Partitioner doesn’t have any relevance when chunking. 

Any partitioner, be it implemented using Partitioner or OrderablePartitioner, is free to arrange 
the items in whatever order it wants to in each partition. This is fine when items are self-contained, such 
as Tuples representing index ranges. In such situations, you can use Partitioner either directly by 
extending the class or implicitly as I did in the previous example. But, if the data items have some kind of 
order, and you need to preserve that order, you need to use OrderablePartitioner instead. Listing 5-16 
demonstrates the difference. 

Listing 5-16. Using an Orderable Partitioner 

using System; 
using System.Collections.Concurrent; 
using System.Collections.Generic; 
using System.Threading.Tasks; 
 
namespace Listing_15 { 
    class Listing_15 { 
        static void Main(string[] args) { 
 
            // create the source data 
            IList<string> sourceData  
                = new List<string>() { "an", "apple", "a", "day",  
                    "keeps", "the", "doctor", "away" }; 
 
            // create an array to hold the results 
            string[] resultData = new string[sourceData.Count]; 
 
            // create an orderable partitioner 
            OrderablePartitioner<string> op = Partitioner.Create(sourceData); 
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            // perform the parallel loop 
            Parallel.ForEach(op, (string item, ParallelLoopState loopState, long index) => { 
                // process the item 
                if (item == "apple") item = "apricot"; 
                // use the index to set the result in the array 
                resultData[index] = item; 
            }); 
 
            // print out the contents of the result array 
            for (int i = 0; i < resultData.Length; i++) { 
                Console.WriteLine("Item {0} is {1}", i, resultData[i]); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The difference is that the loop body is passed an additional argument, which is the numeric key for 

the item being processed. If we use a version of Parallel.ForEach() that treats the partitioner as an 
instance of Partitioner rather than OrderablePartitioner, we lose that information and would not be 
able to reconstruct the order of the items after they have been processed. Table 5-7 shows the static 
methods of the Partitioner class that can be used to explicitly create instances of OrderablePartitioner 
using the default strategy. 

Table 5-7. The Partitioner.Create() Method Versions 

Method Overload  Description 

Create(IEnumerable<T>) Create an OrderablePartitioner using an IEnumerable<T> as the source. 

Create(T[], bool) Create an OrderablePartitioner using an array as the source. The bool 
argument determines if the partitioner will support dynamic partitions; 
this must always be true for use in parallel loops. 

Create(IList<T>, bool) Create an OrderablePartitioner using an IList<T> as the source. The bool 
argument determines if the partitioner will support dynamic partitions; 
this must always be true for use in parallel loops. 

Creating a Custom Partitioning Strategy 
If the default or chunking strategies don’t suit your needs, you can implement your own partitioning 
strategy. You do this by deriving from the Partitioner or OrderablePartitioner classes in the 
System.Collections.Concurrent namespace. 

Partitioner is the basic class, and subclasses can support either dynamic or static partitions. 
OrderablePartitioner extends Partitioner. The difference between them is that OrderablePartitioner 
provides the consumer with the data items and their index in the sequence of data items. Given that a 
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partitioner can reorder the data items in any way it wants, providing the index number along with each 
item can be useful if the order of the items needs to be restored later. 

I’ll show you how to implement custom partition strategies using both classes. 

Writing a Contextual Partitioner 
The default partitioner and the chunking partitioner both operate on any data type. One advantage of 
writing a customer partitioner is that you can tailor your strategy to the data type that you need to 
process. This section will demonstrate how to implement a contextual partitioner and, in doing so, 
explain how to extend the Partitioner class to implement a custom technique. 

To start our partitioner, we need a context—some data type with characteristics that we are going to 
specialize. I have defined the class WorkItem in Listing 5-17. 

■ Note Listings 5-17 through 5-25 contains fragments that won’t compile on their own; they need to be 
assembled together. If you have downloaded the source code from www.apress.com, you will find all of code 
fragments already assembled for you in the project called Listing_17-25. 

Listing 5-17. The WorkItem Class 

class WorkItem { 
 
    public int WorkDuration { 
        get; set; 
    } 
 
    public void performWork() { 
        // simulate work by sleeping 
        Thread.Sleep(WorkDuration); 
    } 
} 

 
The WorkItem has a property that reports how long processing an instance will take and a method 

that simulates the processing by sleeping. This is a conveniently simple example, but it is representative 
of many situations where you are able to make an estimate of how long it will take to process an instance 
based on some other characteristic, for example, encrypting a message based on the number of 
characters.  

The objective for our partitioner is to use the estimated duration of each item to create chunks of 
items that take the same amount of time to process. The result will be chunks with varying lengths. The 
effect of focusing on the amount of processing required will be to evenly distribute the workload across 
the cores in the system. 

Listing 5-18 shows how we will use our partitioner, called ContextualPartitioner. To create the 
source data for the parallel loop, we create an instance of System.Random and use it to generate pseudo-
random values between one and ten, which we use to set the WorkDuration property of 10,000 instances 
of WorkItem. 

http://www.apress.com
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Listing 5-18. Using the ContextPartitioner Class 

class ContextTest { 
    static void Main(string[] args) { 
 
    // create a random number source 
    Random rnd = new Random(); 
 
    // create the source data 
    WorkItem[] sourceData = new WorkItem[10000]; 
    for (int i = 0; i < sourceData.Length; i++) { 
        sourceData[i]  
        = new WorkItem() { WorkDuration = rnd.Next(1, 11) }; 
    } 
 
    // created the contextual partitioner 
    Partitioner<WorkItem> cPartitioner  
        = new ContexPartioner(sourceData, 100); 
 
    // create the parallel  
    Parallel.ForEach(cPartitioner, item => { 
        // perform the work item 
        item.performWork(); 
    }); 
 
    // wait for input before exiting 
    Console.WriteLine("Press enter to finish"); 
    Console.ReadLine(); 
 
    } 
} 

 
After creating the data source, we then create the partitioner, and the arguments passed to the 

constructor are the WorkItem array and the target total processing timer per chunk. The example 
specifies a target value of 100. The partitioner is passed as an argument to a Parallel.ForEach() loop, the 
body of which simply calls the performWork() method of each WorkItem instance that is processed.  

Now that you have seen the WorkItem definition and how the partitioner is used, we can turn our 
attention to the partitioner itself. To create a partitioner, you must override the members listed in  
Table 5-8. 

 
 
 
 
 
 
 
 
 
 



CHAPTER 5 ■ PARALLEL LOOPS 

 

203 

Table 5-8. Required Overrides of the Partitioner Class 

Member  Description 

SupportsDynamicPartitions Return true if the partitioner supports dynamic partitioning. Returning 
false from this property will cause an exception if the partitioner is 
used in a Parallel.ForEach() loop. 

GetPartitions(int) Break up the data into a fixed number of partitions. No further 
partitions will be requested; the partitioner is free to allocate data as it 
wishes to each partition. 

GetDynamicPartitions() Return an object which creates new partitions when its 
GetEnumerator() method is called. 

 
The complete partitioner class is shown in Listing 5-19. 

Listing 5-19. A Contextual Partitioner 

class ContextPartitioner : Partitioner<WorkItem> { 
    // the set of data items to partition 
    protected WorkItem[] dataItems; 
    // the target sum of values per chunk 
    protected int targetSum; 
    // the first unchunked item 
    private long sharedStartIndex = 0; 
    // lock object to avoid index data races 
    private object lockObj = new object(); 
    // the object used to create enumerators 
    private EnumerableSource enumSource; 
 
    public ContextPartitioner(WorkItem[] data, int target) { 
        // set the instance variables from the parameters 
        dataItems = data; 
        targetSum = target; 
        // create the enumerable source 
        enumSource = new EnumerableSource(this); 
    } 
 
    public override bool SupportsDynamicPartitions { 
        get { 
            // dynamic partitions are required for 
            // parallel foreach loops 
            return true; 
        } 
    } 
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    public override IList<IEnumerator<WorkItem>> GetPartitions(int partitionCount) { 
        // create the list which will be the result 
        IList<IEnumerator<WorkItem>> partitionsList = new List<IEnumerator<WorkItem>>(); 
        // get the IEnumerable that will generate dynamic partitions 
        IEnumerable<WorkItem> enumObj = GetDynamicPartitions(); 
        // create the required number of partitions 
        for (int i = 0; i < partitionCount; i++) { 
            partitionsList.Add(enumObj.GetEnumerator()); 
        } 
        // return the result 
        return partitionsList; 
    } 
 
    public override IEnumerable<WorkItem> GetDynamicPartitions() { 
        return enumSource; 
    } 
 
    private Tuple<long, long> getNextChunk() { 
        // create the result tuple 
        Tuple<long, long> result; 
        // get an exclusive lock as we perform this operation 
        lock (lockObj) { 
            // check that there is still data available 
            if (sharedStartIndex < dataItems.Length) { 
                int sum = 0; 
                long endIndex = sharedStartIndex; 
                while (endIndex < dataItems.Length && sum < targetSum) { 
                    sum += dataItems[endIndex].WorkDuration; 
                    endIndex++; 
                } 
                result = new Tuple<long, long>(sharedStartIndex, endIndex); 
                sharedStartIndex = endIndex; 
            } else { 
                // there is no data available 
                result = new Tuple<long, long>(-1, -1); 
            } 
        } 
        // end of locked region 
        // return the result 
        return result; 
    } 
 
    class EnumerableSource : IEnumerable<WorkItem> { 
        ContextPartitioner parentPartitioner; 
 
        public EnumerableSource(ContextPartitioner parent) { 
            parentPartitioner = parent; 
        } 
 
        IEnumerator IEnumerable.GetEnumerator() { 
            return ((IEnumerable<WorkItem>)this).GetEnumerator(); 
        } 
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        IEnumerator<WorkItem> IEnumerable<WorkItem>.GetEnumerator() { 
            return new ChunkEnumerator(parentPartitioner).GetEnumerator(); 
        } 
    } 
 
    class ChunkEnumerator { 
        private ContextPartitioner parentPartitioner; 
 
        public ChunkEnumerator(ContextPartitioner parent) { 
            parentPartitioner = parent; 
        } 
 
        public IEnumerator<WorkItem> GetEnumerator() { 
            while (true) { 
                // get the indices of the next chunk 
                Tuple<long, long> chunkIndices = parentPartitioner.getNextChunk(); 
                // check that we have data to deliver 
                if (chunkIndices.Item1 == -1 && chunkIndices.Item2 == -1) { 
                    // there is no more data 
                    break; 
                } else { 
                    // enter a loop to yield the data items 
                    for (long i = chunkIndices.Item1; i < chunkIndices.Item2; i++) { 
                        yield return parentPartitioner.dataItems[i]; 
                    } 
                } 
            } 
        } 
    } 
}  

 
Let’s go through the class in fragments so you can better understand how it fits together. The 

constructor, shown in Listing 5-20, takes the array of WorkItems and our chunk processing target and 
assigns them to the instance variables dataItems and targetSum respectively. It also creates an instance 
of EnumerableSource, which we’ll get to in due course. 

Listing 5-20. The Constructor and Property of the ContextPartitioner Class 

class ContextPartitioner : Partitioner<WorkItem> { 
    // the set of data items to partition 
    protected WorkItem[] dataItems; 
    // the target sum of values per chunk 
    protected int targetSum; 
    // the first unchunked item 
    private long sharedStartIndex = 0; 
    // lock object to avoid index data races 
    private object lockObj = new object(); 
    // the object used to create enumerators 
    private EnumerableSource enumSource; 
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    public ContextPartitioner(WorkItem[] data, int target) { 
        // set the instance variables from the parameters 
        dataItems = data; 
        targetSum = target; 
        // create the enumerable source 
        enumSource = new EnumerableSource(this); 
    } 
 
    public override bool SupportsDynamicPartitions { 
        get { 
            // dynamic partitions are required for 
            // parallel foreach loops 
            return true; 
        } 
    }  

 
The SupportsDynamicPartitions property must always return true for partitioners used in 

Parallel.For() loops. Static partitioners can be used with PLINQ however (see Chapter 6 for details). 
The GetDynamicPartitions() method returns an object that implements the IEnumerable<WorkItem> 
interface and will create a new partition each time that the GetEnumerator() call is made on it. In our 
case, shown in Listing 5-21, we return the instance of the EnumerableSource class we created in the 
constructor. 

Listing 5-21. The ContextPartitioner.GetDynamicPartitions() Method 

public override IEnumerable<WorkItem> GetDynamicPartitions() { 
    return enumSource; 
} 

 
The GetPartitions() method is used to generate static partitions; this task is easy for a dynamic 

partitioner, as you can simply create the required number of dynamic partitions. The result from the 
GetPartitions() method is an IList of IEnumerator<WorkItem>s ; each of these is a static partition. In our 
implementation, shown in Listing 5-22, you can see that we do this using the result from the 
GetDynamicPartitions() method. 

Listing 5-22. The ContextPartitioner.GetPartitions() Method 

public override IList<IEnumerator<WorkItem>> GetPartitions(int partitionCount) { 
    // create the list which will be the result 
    IList<IEnumerator<WorkItem>> partitionsList = new List<IEnumerator<WorkItem>>(); 
    // get the IEnumerable that will generate dynamic partitions 
    IEnumerable<WorkItem> enumObj = GetDynamicPartitions(); 
    // create the required number of partitions 
    for (int i = 0; i < partitionCount; i++) { 
        partitionsList.Add(enumObj.GetEnumerator()); 
    } 
    // return the result 
    return partitionsList; 
} 
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The most interesting method in the ContextPartitioner class is getNextChunk(), shown in Listing 5-
23. This is the method that implements our partitioning strategy, creating chunks that will take roughly 
the target amount of time to process. I say “roughly” because this method iterates through the data 
items until the target is exceeded, so the amount of processing time per chunk can be slightly more than 
the target. This variation is acceptable for our example, but you could be a lot more rigorous if required. 

There are a couple of key design decisions to note with this method. First, observe that the result 
from this method is a System.Tuple<long,long>. The Tuple values represent the inclusive start index and 
exclusive end index into the WorkItem array that the chunk represents. We don’t copy the data into a 
dedicated array, but rather share the main array between each of the partitions—you’ll see how this 
works shortly. 

Second, you’ll see that we used the sharedStartIndex variable to track the index of the first 
unchunked WorkItem in the data array. We use synchronization to protect this variable to ensure we 
don’t create multiple chunks with the same index values, leading to WorkItems being processed more 
than once (the lock keyword is used for simplicity, but any of the primitives discussed in Chapter 4 
would work). 

Listing 5-23. The ContextPartitioner.getNextChunk() Method 

private Tuple<long, long> getNextChunk() { 
    // create the result tuple 
    Tuple<long, long> result; 
    // get an exclusive lock as we perform this operation 
    lock (lockObj) { 
        // check that there is still data available 
        if (sharedStartIndex < dataItems.Length) { 
            int sum = 0; 
            long endIndex = sharedStartIndex; 
            while (endIndex < dataItems.Length && sum < targetSum) { 
                sum += dataItems[endIndex].WorkDuration; 
                endIndex++; 
            } 
            result = new Tuple<long, long>(sharedStartIndex, endIndex); 
            sharedStartIndex = endIndex; 
        } else { 
            // there is no data available 
            result = new Tuple<long, long>(-1, -1); 
        } 
    } 
    // end of locked region 
    // return the result 
    return result; 
} 

 
If there is no data left, we return a Tuple whose values are both -1, which signals the partition that 

requested the chunk that no more data will be forthcoming. You’ll see how this works when we get to the 
ChunkEnumerator class shortly. Before we get there, we have to cover the EnumerableSource class, as 
shown in Listing 5-24. 
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Listing 5-24. The ContextPartitioner.EnumerableSource Class 

class EnumerableSource : IEnumerable<WorkItem> { 
    ContextPartitioner parentPartitioner; 
 
    public EnumerableSource(ContextPartitioner parent) { 
        parentPartitioner = parent; 
    } 
 
    IEnumerator IEnumerable.GetEnumerator() { 
        return ((IEnumerable<WorkItem>)this).GetEnumerator(); 
    } 
 
    IEnumerator<WorkItem> IEnumerable<WorkItem>.GetEnumerator() { 
        return new ChunkEnumerator(parentPartitioner).GetEnumerator(); 
    } 
} 

 
This class doesn’t do very much other than act as a bridge between ContextPartitioner and 

ChunkEnumerator, but it exists for an important reason. If the ContextPartitioner class implements the 
IEnumerable<WorkItem> interface and returns an instance of itself when the GetDynamicPartitions() 
method is called, we create ambiguity with the Parallel.ForEach() method, which has separate versions 
that accept classes derived from Partitioner and that implement IEnumerable<>. The ambiguity requires 
that the user of ContextPartitioner cast instances of the class to Partitioner. If ContextPartitioner is 
cast to an implementation of IEnumerable<>, the default partitioner will be used to partition our 
partitioner, which is obviously not the effect we are striving for. To that end, EnumerableSource is the 
result from the ContextPartitioner.CreateDynamicPartitions() method to separate out the base class 
from the interface implementation. 

As described in Table 5-8, the object returned from the ContextPartitioner. 
CreateDynamicPartitions() must create new partitions when the GetEnumerator() method is called. 
EnumerableSource does this by creating a new instance of ChunkEnumerator and returning the result from 
its GetEnumerator() method. The ChunkEnumerator class is shown in Listing 5-25. 

Listing 5-25. The ContextPartitioner.ChunkEnumerator Class 

class ChunkEnumerator { 
    private ContextPartitioner parentPartitioner; 
 
    public ChunkEnumerator(ContextPartitioner parent) { 
        parentPartitioner = parent; 
    } 
 
    public IEnumerator<WorkItem> GetEnumerator() { 
        while (true) { 
            // get the indices of the next chunk 
            Tuple<long, long> chunkIndices = parentPartitioner.getNextChunk(); 
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            // check that we have data to deliver 
            if (chunkIndices.Item1 == -1 && chunkIndices.Item2 == -1) { 
                // there is no more data 
                break; 
            } else { 
                // enter a loop to yield the data items 
                for (long i = chunkIndices.Item1; i < chunkIndices.Item2; i++) { 
                    yield return parentPartitioner.dataItems[i]; 
                } 
            } 
        } 
    } 
} 

 
This class works in a very simple manner. The GetEnumerator() method enters a loop that requests 

chunks via the ContextPartitioner.getNextChunk() method. If it receives a Tuple with both items set to -
1, it breaks out of the loop. This happens when there is no unchunked data left. Otherwise, the yield 
keyword is used to return items from the main data array, using the index values of the Tuple returned 
from getNextChunk(),  

And that’s our contextual partitioner and an explanation of how to implement a custom partitioning 
strategy by extending the Partitioner class.  

Writing an Orderable Contextual Partitioner 
Having written a regular partitioner, it is a simple matter to create an orderable version. We won’t go 
through this example member by member, because it is so similar to the previous listings. In fact, only 
four key things need to change to make our Partioner into an OrderablePartitioner. 

The first thing we have to change is the return types. Instead of returning enumerations of WorkItem, 
we are required to operate around instances of KeyValuePair<long, WorkItem>, where the long value is 
the key associated with the WorkItem value. In our scenario, this key is the index into the source data 
array. 

The second change is in the set of methods that we have to override. We have to provide 
implementations of the members described in Table 5-9. These methods work in the same way as the 
required overrides in the base class, but they work on KeyValuePairs to include the index information. 
The OrderablePartition class provides default implementations for the GetPartitions() and 
GetDynamicPartitions() methods of the base Partition class; the implementations call 
GetOrderablePartitions() and GetOrderableDynamicPartitions() and strip out the index information to 
return the WorkItems. 
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Table 5-9. Required Overrides of the Partitioner Class 

Member  Description 

SupportsDynamicPartitions Return true if the partitioner supports dynamic partitioning. 
Returning false from this property will cause an exception if the 
partitioner is used in a Parallel.ForEach() loop. 

GetOrderablePartitions(int) Break up the data into a fixed number of partitions. No further 
partitions will be requested; the partitioner is free to allocate 
data as it wishes to each partition. 

GetOrderableDynamicPartitions() Return an object which creates new partitions when the 
GetEnumerator() method is called. 

 
The third change is to alter the base for our class from Partitioner to OrderablePartitioner. In 

doing this, we inherit a new constructor that requires us to provide three bool values when a new 
instance of our partitioner is created. These values relate to three properties in the OrderablePartitioner 
class, which are described in Table 5-10. 

Table 5-10. OrderablePartitioner Properties 

Property  Description 

KeysOrderedInEachPartition Return true if the elements within a partition are ordered in increasing 
key value. This is the first bool required by the base constructor. 

KeysOrderedAcrossPartitions Return true if the elements across partitions are ordered in increasing 
key value. This means that the keys in the nth partition are less than in 
the (n + 1) partition. This is the second bool required by the base 
constructor. 

KeysNormalized Return true if the key values are distinct integers. This is the third bool 
required by the base constructor. 

 
These properties can be used by the consumer of the partitions, but they don’t affect us directly 

when implementing our strategy. However, it is important to set the values correctly to reflect your 
strategy since your partitioner may be used in ways you did not originally expect. 

The final change is in the ChunkEnumerator class, where the change from working with WorkItems to 
working with KeyValuePair<long, WorkItem> takes real effect. Instead of yielding items, we must now 
yield items and their key, and we can do this easily because the key is simply the array index, as follows: 

 
yield return new KeyValuePair<long, WorkItem>(i, parentPartitioner.dataItems[i]); 

 
So we have easily transformed our Partitioner into an OrderablePartitioner. I tend to create 

OrderablePartitioners by default when I can easily determine the key values in a data source, and I 
recommend that you do the same. Listing 5-26 shows the transformed partitioner class. 
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Listing 5-26. An orderable (and Contextual) Partitioner 

using System; 
using System.Collections; 
using System.Collections.Concurrent; 
using System.Collections.Generic; 
using System.Threading; 
using System.Threading.Tasks; 
 
 
namespace Listing_26 { 
 
    class ContextPartitioner : OrderablePartitioner<WorkItem> { 
        // the set of data items to partition 
        protected WorkItem[] dataItems; 
        // the target sum of values per chunk 
        protected int targetSum; 
        // the first un-chunked item 
        private long sharedStartIndex = 0; 
        // lock object to avoid index data races 
        private object lockObj = new object(); 
        // the object used to create enumerators 
        private EnumerableSource enumSource; 
 
        public ContextPartitioner(WorkItem[] data, int target) : base(true, false, true) { 
            // set the instance variables from the parameters 
            dataItems = data; 
            targetSum = target; 
            // create the enumerable source 
            enumSource = new EnumerableSource(this); 
        } 
 
        public override bool SupportsDynamicPartitions { 
            get { 
                // dynamic partitions are required for 
                // parallel foreach loops 
                return true; 
            } 
        } 
 
        public override IList<IEnumerator<KeyValuePair<long, WorkItem>>>  
            GetOrderablePartitions(int partitionCount) { 
 
            // create the list which will be the result 
            IList<IEnumerator<KeyValuePair<long, WorkItem>>> partitionsList  
                = new List<IEnumerator<KeyValuePair<long, WorkItem>>>(); 
            // get the IEnumerable that will generate dynamic partitions 
            IEnumerable<KeyValuePair<long, WorkItem>> enumObj  
                = GetOrderableDynamicPartitions(); 
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            // create the required number of partitions 
            for (int i = 0; i < partitionCount; i++) { 
                partitionsList.Add(enumObj.GetEnumerator()); 
            } 
            // return the result 
            return partitionsList; 
        } 
 
        public override IEnumerable<KeyValuePair<long, WorkItem>>  
            GetOrderableDynamicPartitions() { 
 
            return enumSource; 
        } 
 
        private Tuple<long, long> getNextChunk() { 
            // create the result tuple 
            Tuple<long, long> result; 
            // get an exclusive lock as we perform this operation 
            lock (lockObj) { 
                // check that there is still data available 
                if (sharedStartIndex < dataItems.Length) { 
                    int sum = 0; 
                    long endIndex = sharedStartIndex; 
                    while (endIndex < dataItems.Length && sum < targetSum) { 
                        sum += dataItems[endIndex].WorkDuration; 
                        endIndex++; 
                    } 
                    result = new Tuple<long, long>(sharedStartIndex, endIndex); 
                    sharedStartIndex = endIndex; 
                } else { 
                    // there is no data available 
                    result = new Tuple<long, long>(-1, -1); 
                } 
            } 
            // end of locked region 
            // return the result 
            return result; 
        } 
 
        class EnumerableSource : IEnumerable<KeyValuePair<long, WorkItem>> { 
            ContextPartitioner parentPartitioner; 
 
            public EnumerableSource(ContextPartitioner parent) { 
                parentPartitioner = parent; 
            } 
 
            IEnumerator IEnumerable.GetEnumerator() { 
                return ((IEnumerable<WorkItem>)this).GetEnumerator(); 
            } 
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            IEnumerator<KeyValuePair<long, WorkItem>>  
                IEnumerable<KeyValuePair<long, WorkItem>>.GetEnumerator() { 
 
                return new ChunkEnumerator(parentPartitioner).GetEnumerator(); 
            } 
        } 
 
        class ChunkEnumerator { 
            private ContextPartitioner parentPartitioner; 
 
            public ChunkEnumerator(ContextPartitioner parent) { 
                parentPartitioner = parent; 
            } 
 
            public IEnumerator<KeyValuePair<long, WorkItem>> GetEnumerator() { 
                while (true) { 
                    // get the indices of the next chunk 
                    Tuple<long, long> chunkIndices = parentPartitioner.getNextChunk(); 
                    // check that we have data to deliver 
                    if (chunkIndices.Item1 == -1 && chunkIndices.Item2 == -1) { 
                        // there is no more data 
                        break; 
                    } else { 
                        // enter a loop to yield the data items 
                        for (long i = chunkIndices.Item1; i < chunkIndices.Item2; i++) { 
                            yield return new  
                                KeyValuePair<long, WorkItem>(i, 
                                parentPartitioner.dataItems[i]); 
                        } 
                    } 
                } 
            } 
        } 
    } 
 
    class ContextTest { 
        static void Main(string[] args) { 
 
            // create a random number source 
            Random rnd = new Random(); 
 
            // create the source data 
            WorkItem[] sourceData = new WorkItem[10000]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = new WorkItem() { WorkDuration = rnd.Next(1, 11) }; 
            } 
 
            // create the result data array 
            WorkItem[] resultData = new WorkItem[sourceData.Length]; 
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            // created the contextual partitioner 
            OrderablePartitioner<WorkItem> cPartitioner  
                = new ContextPartitioner(sourceData, 100); 
 
            // create the parallel  
            Parallel.ForEach(cPartitioner,  
                (WorkItem item, ParallelLoopState loopState, long index) => { 
 
                // perform the work item 
                item.performWork(); 
                // place the work item in the result array 
                resultData[index] = item; 
            }); 
 
            // compare the source items to the result items 
            for (int i = 0; i < sourceData.Length; i++) { 
                if (sourceData[i].WorkDuration != resultData[i].WorkDuration) { 
                    Console.WriteLine("Discrepancy at index {0}", i); 
                    break; 
                } 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
I have included some code to test the ordering of the partitioner items at the end of Listing 5-26 to 

demonstrate how to use the keys and confirms that the keys generated by the partitioner match the 
innate order of the data items in the source array. 

Common Problems and Their Causes 
Take a look at the following sections for the common problems with parallel loops and their solutions. 

Synchronization in Loop Bodies 
A synchronization primitive is used to coordinate access to a shared variable, typically a result. 
Performance is significantly reduced because the tasks performing the loop body must wait to acquire 
the primitive on each loop body iteration. 

Solution 
Use TLS instead of a synchronization primitive as shown in Listing 5-11. 
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Example 
The following example uses the lock keyword to synchronize access to a double value used to keep a 
running total shared between iterations of the loop body: 

 
using System; 
using System.Threading.Tasks; 
 
namespace Synchronization_in_Loop_Bodies { 
    class Synchronization_in_Loop_Bodies { 
        static void Main(string[] args) { 
 
            // create the shared data value 
            double total = 0; 
            // create a lock object 
            object lockObj = new object(); 
 
            // perform a parallel loop 
            Parallel.For( 
                0, 
                100000, 
                item => { 
                    // get the lock on the shared value 
                    lock (lockObj) { 
                        // add the square of the current  
                        // value to the running total 
                        total += Math.Pow(item, 2); 
                    } 
                }); 
        } 
    } 
} 

Loop Body Data Races 
A variation of the previous problem is to share data in the loop body without synchronization. This 
doesn’t have the performance impact of using synchronization but creates a data race instead. 

Solution 
Use TLS as shown in Listing 5-11. 

Example 
The following example shows a data race where an unexpected result is generated by sharing a data 
value across iterations of the loop body. 

 
using System; 
using System.Threading.Tasks; 
 
namespace Loop_Body_Data_Races { 
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    class Loop_Body_Data_Races { 
        static void Main(string[] args) { 
 
            // create the shared data value 
            double total = 0; 
 
            // perform a parallel loop 
            Parallel.For( 
                0, 
                100000, 
                item => { 
                    // add the square of the current  
                    // value to the running total 
                    total += Math.Pow(item, 2); 
                }); 
 
            Console.WriteLine("Expected result: 333328333350000"); 
            Console.WriteLine("Actual result: {0}", total); 
        } 
    } 
} 

Using Standard Collections 
Results generated from a parallel loop body are placed in a normal collection, as opposed to one from 
the System.Collections.Concurrent namespace. These collections are liable to suffer from data races 
when used in parallel programming and will either throw exceptions or contain unexpected results. 

Solution 
Always use collections from the System.Collections.Concurrent namespace. 

Example 
The following example illustrates this problem by using a loop body that adds items to an instance of 
System.Collections.Generic.List. Running the example will either result in an unexpected number of 
items in the result collection or an exception when the state of the list is modified by two Tasks at once. 

 
using System; 
using System.Collections.Generic; 
using System.Threading.Tasks; 
 
namespace Using_Standard_Collections { 
    class Using_Standard_Collections { 
        static void Main(string[] args) { 
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            // create some source data 
            int[] sourceData = new int[10000]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // create a list to hold the results 
            List<int> resultData = new List<int>(); 
 
            Parallel.ForEach(sourceData, item => { 
                resultData.Add(item); 
            }); 
 
            Console.WriteLine("Results {0}", resultData.Count); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Using Changing Data 
A parallel loop is used to consume data that is still being produced or modified. Unexpected results will 
occur because not all of the data items or unexpected values will be processed. 

Solution 
Avoid working with data that is being changed elsewhere. If you need to process data as it is being 
produced, you must implement a custom partitioner that will continue to push data to the parallel loop 
Tasks as it becomes available.  

Example 
The following example shows a Task that periodically adds an item to a List. A Parallel.ForEach loop 
processes the same List. However, because the contents are partitioned when the parallel loop starts, 
any items that the Task adds after that point are not processed. 

 
using System; 
using System.Collections.Generic; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Using_Changing_Data { 
    class Using_Changing_Data { 
        static void Main(string[] args) { 
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           // create some source data 
            List<int> sourceData = new List<int>(); 
            for (int i = 0; i < 10; i++) { 
                sourceData.Add(i); 
            } 
 
            // start a task that adds items to the list 
            Task.Factory.StartNew(() => { 
                int counter = 10; 
                while (true) { 
                    Thread.Sleep(250); 
                    Console.WriteLine("Adding item {0}", counter); 
                    sourceData.Add(counter++); 
                } 
            }); 
 
            // run a parallel loop on the list 
            Parallel.ForEach(sourceData, item => { 
                Console.WriteLine("Processing item {0}", item); 
            }); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Summary 
I hope that this chapter has shown you that parallel loops are a useful way to introduce parallelism into 
your programs. I also hope that you have seen the way that parallel loops use the TPL to build a set of 
features that are rich, flexible, robust, and easy to use.  

One of the things I like most about the new parallel programming features is that you can get a lot 
done without having to dig into the details. In the next chapter, you’ll see another excellent example of 
this philosophy—Parallel LINQ. 
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Parallel LINQ 

Listing 6-1. A Parallel LINQ Query 

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_01 { 
    class Listing_01 { 
        static void Main(string[] args) { 
 
            int[] sourceData = new int[100]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            IEnumerable<int> results = 
                from item in sourceData.AsParallel() 
                where item % 2 == 0 
                select item; 
 
            foreach (int item in results) { 
                Console.WriteLine("Item {0}", item); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

LINQ, But Parallel 
Language Integrated Query, or LINQ (pronounced “link”) adds native data querying features to .NET. 
Parallel LINQ, known as PLINQ, is a parallel implementation of LINQ to objects that allows the 
programmer to perform LINQ queries in parallel, so that multiple data items are processed concurrently.  
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This chapter assumes that you already know how to use LINQ, which is a topic worthy of a book by 
itself. In fact, if you are not familiar with LINQ, I gently point you in the direction of Pro LINQ: Language 
Integrated Query in C# 2010, which I coauthored with Joseph Rattz and which is also published by 
Apress. 

PLINQ works with the same data sources that LINQ to Objects does, namely IEnumerable<> and 
IEnumerable. PLINQ doesn’t work as a parallel equivalent with the other kinds of LINQ, such as LINQ to 
XML and LINQ to SQL. However, since the end result of most LINQ queries is an IEnumerable<>, then 
PLINQ can be used to parallel process the results from queries on those kinds of data. 

If you know how to perform a certain kind of query with LINQ to Objects, the chances are good that 
you will be able to implement a parallel version without too much difficulty or even too many changes to 
your code.  

As an example, take a look at Listing 6-1 at the start of this chapter, which shows a PLINQ query that 
selects even numbers from an array of integers. Aside from the call to AsParallel() on the data source, 
this could be a normal LINQ query. 

That similarity can be beguiling; it allows a programmer familiar with LINQ to make parallel queries 
quickly and easily. But there are pitfalls in the details, and care and consideration are required to make 
PLINQ queries perform and behave properly.  

This chapter will show you the different features of PLINQ, demonstrating how to make different 
kinds of queries and how to control and customize the way that a query is executed. Table 6-1 
summarizes the topics in this chapter. 

Table 6-1. PLINQ Tasks 

Problem Solution Listing 

Create a PLINQ query. Use the AsParallel() extension method to create a 
ParallelQuery instance and apply LINQ features. 

6-1 to 6-4 

Preserve the order of PLINQ 
results. 

Apply the AsOrdered() extension method to a 
ParallelQuery instance. 

6-5 and  
6-6 

Preserve or discard ordering 
for PLINQ subqueries. 

Apply the AsOrdered() and AsUnordered() extension 
methods to a ParallelQuery instance. 

6-7 

Perform a no-result query. Apply the ForAll() method to a ParallelQuery instance. 6-8 

Force immediate query 
execution. 

Use the ToArray(), ToDictionary(), or ToList() extension 
methods. 

6-9 and  
6-10 

Control query concurrency. Use the WithExecutionMode() method and/or the 
WithDegreeOfParallelism() method. 

6-11 and 
6-12 

Disable query concurrency. Use the AsSequential() extension method 6-13 

Handle PLINQ exceptions. Catch System.AggregateException instances in the code 
that causes the query to be executed 

6-14 

Cancel a PLINQ query. Use the WithCancellation() extension method 6-15 
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Problem Solution Listing 

Control the rate at which 
results are made available to 
the PLINQ consumer. 

Use the WithMergeOptions() extension method 6-16 

Use a custom data 
partitioner. 

Use the version of the AsParallel() method that takes an 
instance of System.Collections.Concurrent.Partitioner. 

6-17 and 
6-18 

Create a custom 
aggregation. 

Use the PLINQ-specific Aggregate() method. 6-19 

Create a parallel range or 
repeating sequence. 

Use the ParallelEnumeration.Range() or 
ParallelEnumeration.Repeat() method. 

6-20 

 
The public part of LINQ consists of two types in the System.Linq namespace: the Enumerable class, 

which contains extension methods that operate on the second type, and the IEnumerable interface. 
(There are a lot more LINQ classes, but they are hidden away behind the scenes and you won’t need to 
use them directly). If you are not familiar with extension methods, see the “Using Custom Aggregation” 
section in this chapter for a brief overview. 

C# contains some keywords that are specific to LINQ, such as from, where, and select. These 
keywords are mapped to extension methods in the Enumerable class, so that a query such as the 
following  

 
IEnumerable<int> result = 
    from item in sourceData 
    where (item % 2 == 0) 
    select item; 

 
is mapped to something like this, where the extension methods are called directly: 

 
IEnumerable<int> result =  
    sourceData 
    .Where(item => item % 2 == 0) 
    .Select(item => item) 

 
For more complex queries, using the extension methods instead of the keywords in your code can 

be handy, because you can use full lambda expressions. The extension methods are often referred to as 
the standard query operators and using them as applying the dot-notation. 

PLINQ also has two public classes: ParallelEnumerable and ParallelQuery. The ParallelEnumerable 
class contains extension methods that operate on the ParallelQuery type. ParallelEnumerable contains 
methods to match each of those in Enumerable, plus some others that allow you to create instances of 
ParallelQuery from IEnumerables.  

Because the methods in ParallelEnumerable are parallel implementations of those in Enumerable, 
once you have created a ParallelQuery, the magic of extension methods means that your LINQ query 
will use methods from ParallelEnumerable, rather than Enumerable, and you will be using PLINQ. 

This neat integration extends to the C# keywords. If you apply them to an instance of ParallelQuery, 
the query will be executed using PLINQ. I’ll show you how to do this in the next section. 
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Table 6-2 summarizes the key methods in ParallelEnumerable; these are the methods that you will 
use to convert between IEnumerable and ParallelQuery and to control the execution of a PLINQ query. 
All of the other methods in ParallelEnumerable are parallel implementations of LINQ features found in 
the Enumerable class. 

Table 6-2. Key members of the  System.Linq.ParallelEnumerable class 

Member Description 

AsParallel() Convert a ParallelQuery from an IEnumerable. 

AsSequential() Convert an IEnumerable from a ParallelQuery. 

AsOrdered() Modify a ParallelQuery to preserve item ordering. 

AsUnordered() Modify a ParallelQuery to discard item ordering. 

WithCancellation() Modify a ParallelQuery to monitor a cancellation token. 

WithDegreeOfParallelism() Modify a ParallelQuery to set an upper limit on the number of Tasks 
used to execute a the query. 

WithExecutionMode() Modify a ParallelQuery to specify either forced parallel execution or 
leaving the decision to PLINQ as to selecting parallel or sequential 
execution. 

WithMergeOptions() Modify a ParallelQuery to buffer the results produced by the parallel 
Tasks. 

 
The first method, AsParallel(), is, as you will see, the key to using PLINQ. AsSequential() is the 

counter to AsParallel() and lets us selectively apply parallelism in a complex query. The remaining 
methods configure instances of ParallelQuery produced by AsParallel() to change the way that a query 
is executed or behaves. The following sections show you how to use these methods and other techniques 
to take full control of PLINQ. 

Using PLINQ Queries 
To use PLINQ, we must create a ParallelQuery instance by calling the AsParallel() method on an 
instance of IEnumerable and use it as the basis for applying LINQ features. Listing 6-2 shows a LINQ 
query and its PLINQ alternative. The queries in Listing 6-2 are projections; each item in a collection is 
processed to produce a result, and there are as many result values as there are source data items. The 
results are available in the IEnumerable<double>s that the queries produce. 
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Listing 6-2. LINQ and PLINQ Queries 

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_02 { 
    class Listing_02 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[10]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // define a sequential linq query 
            IEnumerable<double> results1 = 
                from item in sourceData 
                select Math.Pow(item, 2); 
 
            // enumerate the results of the sequential query 
            foreach (double d in results1) { 
                Console.WriteLine("Sequential result: {0}", d); 
            } 
 
            // define a parallel linq query 
            IEnumerable<double> results2 = 
                from item in sourceData.AsParallel() 
                select Math.Pow(item, 2); 
 
            // enumerate the results of the parallel query 
            foreach (double d in results2) { 
                Console.WriteLine("Parallel result: {0}", d); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
You can see that one small change creates a PLINQ query from a LINQ query. By using the 

AsParallel() extension method, we have asked the PLINQ runtime to consider processing the data 
items concurrently.  

Notice that I said we asked PLINQ to consider concurrency. By design, LINQ and PLINQ hide a lot of 
complexity away from the programmer. When you write a PLINQ expression, you are specifying what 
you want to happen; the PLINQ engine analyzes your query and determines how to do it. In Listing 6-2, 
we have effectively added parallel execution to the range of options that PLINQ can consider when 
determining how to execute the query, but the query may still be performed sequentially if that’s what 
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the runtime decides is best. PLINQ will try to save you from situations where the cost of parallelization 
will create a parallel query that takes longer to perform than a sequential query. Later in the chapter, I’ll 
show you how to force parallel execution, even if it is likely to offer poorer performance.  

I mentioned that you can call the LINQ and PLINQ extension methods directly. This is how I tend to 
use LINQ and PLINQ when I write code. Listing 6-3 shows the queries from Listing 6-1 expressed using 
extension methods. I’ll switch between approaches freely in the examples in this chapter to make the 
listings as clear as possible.  

Listing 6-3. Creating Queries Using Extension Methods 

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_03 { 
    class Listing_03 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[10]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // define a sequential linq query 
            IEnumerable<double> results1 = 
                sourceData.Select(item => Math.Pow(item, 2)); 
 
            // enumerate the results of the sequential query 
            foreach (double d in results1) { 
                Console.WriteLine("Sequential result: {0}", d); 
            } 
 
            // define a parallel linq query 
            var results2 = sourceData.AsParallel() 
                    .Select(item => Math.Pow(item,2)); 
 
            // enumerate the results of the parallel query 
            foreach (var d in results2) { 
                Console.WriteLine("Parallel result: {0}", d); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 
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Listing 6-3 defines the result type of the PLINQ query to be var, meaning that we want the compiler 
to infer the type. This technique is commonly used with LINQ and is invaluable when generating types 
on the fly, as demonstrated in the “Ordering Query Results” section later in this chapter. I’ll explicitly 
type the results from PLINQ queries in this chapter for clarity. 

Using PLINQ Query Features 
You may have noticed that there is little difference between a PLINQ projection and a parallel loop—
each and every value in a data source is projected to a corresponding result. 

This is true, but the power of PLINQ is that it builds on the rich feature set of LINQ to allow you to 
do things that would be extremely cumbersome in parallel loops. A common example is filtering, where 
a subset of items from the source data are processed. Listing 6-4 demonstrates a simple PLINQ filtering 
query, which projects results for even numbers only. 

Listing 6-4. A PLINQ Filtering Query 

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_04 { 
    class Listing_04 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[100000]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // define a filtering query using keywords 
            IEnumerable<double> results1  
                = from item in sourceData.AsParallel() 
                  where item % 2 == 0 
                  select Math.Pow(item, 2); 
 
            // enumerate the results 
            foreach (var d in results1) { 
                Console.WriteLine("Result: {0}", d); 
            } 
 
            // define a filtering query using extension methods 
            IEnumerable<double> results2 
                = sourceData.AsParallel() 
                .Where(item => item % 2 == 0) 
                .Select(item => Math.Pow(item, 2)); 
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            // enumerate the results 
            foreach (var d in results2) { 
                Console.WriteLine("Result: {0}", d); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
PLINQ is not a solution to every parallel problem, but the breadth of features it inherits from LINQ 

puts it into consideration for many situations. Of special value is the ability to easily parallelize an 
existing LINQ query, a quick and easy way to introduce parallelism into existing .NET programs. 

Ordering Query Results 
If we run compile and run the code in Listing 6-2, we get the following results: 

Sequential result: 0 

Sequential result: 1 

Sequential result: 4 

Sequential result: 9 

Sequential result: 16 

Sequential result: 25 

Sequential result: 36 

Sequential result: 49 

Sequential result: 64 

Sequential result: 81 

Parallel result: 9 

Parallel result: 36 

Parallel result: 64 

Parallel result: 0 
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Parallel result: 16 

Parallel result: 49 

Parallel result: 81 

Parallel result: 1 

Parallel result: 25 

Parallel result: 4 

Press enter to finish 

You can see that the results produced by the parallel query are not in the same order as those of the 
sequential query. Much as with the parallel loops we covered in the previous chapter, PLINQ partitions 
source data to improve efficiency in the Tasks that are used behind the scenes to execute the query and 
this breaks up the natural order of items. 

You can preserve order in a PLINQ query by using the AsOrdered() extension method, which 
modifies the ParallelQuery instance that we get by calling the AsParallel() method. Listing 6-5 
demonstrates this feature. 

Listing 6-5. Preserving Order in a Parallel Query 

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_05 { 
    class Listing_05 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[10]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // preserve order with the AsOrdered() method 
            IEnumerable<double> results = 
                from item in sourceData.AsParallel().AsOrdered() 
                select Math.Pow(item, 2); 
 
            // enumerate the results of the parallel query 
            foreach (double d in results) { 
                Console.WriteLine("Parallel result: {0}", d); 
            }                 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Compiling and running the code in Listing 6-4 gives us the same results, in the same order as if we 

had performed a sequential query, but with the benefits of parallel execution. Well, almost.  
We lost ordering in the original PLINQ query because the data was partitioned to improve 

performance, so it follows that there is a performance cost to restore the order with the AsOrdered() 
method.  

You should only use the AsOrdered() method if the order of the results in relation to the source data 
is important (i.e., you need the nth result item to be the result of processing the nth source item). In such 
situations, creating a dynamic type that preserves this relationship is often more efficient. Listing 6-6 
shows the common misuse of AsOrdered() and a more efficient alternative. 

Listing 6-6. Misusing the AsOrdered() Extension Method 

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_06 { 
    class Listing_06 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[5]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // preserve order with the AsOrdered() method 
            IEnumerable<double> results1 = 
                from item in sourceData.AsParallel().AsOrdered() 
                select Math.Pow(item, 2); 
 
            // create an index into the source array 
            int index = 0; 
 
            // enumerate the results 
            foreach (double d in results1) { 
                Console.WriteLine("Bad result {0} from item {1}", d, index++); 
            } 
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            // perform the query without ordering the results 
            var results2 = 
                from item in sourceData.AsParallel() 
                select new { 
                    sourceValue = item, 
                    resultValue = Math.Pow(item, 2) 
                }; 
 
            // enumerate the results 
            foreach (var v in results2) { 
                Console.WriteLine("Better result {0} from item {1}",  
                    v.resultValue, v.sourceValue); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Compiling and running the code in Listing 6-6 gives us the following results. You can see that using 

dynamic types allows us to preserve the relationship between source and result data items without 
having to force ordering. 

Bad result 0 from item 0 

Bad result 1 from item 1 

Bad result 4 from item 2 

Bad result 9 from item 3 

Bad result 16 from item 4 

Better result 0 from item 0 

Better result 4 from item 2 

Better result 9 from item 3 

Better result 16 from item 4 

Better result 1 from item 1 

Press enter to finish 
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■ Tip One situation when you must be sure to use AsOrdered() is when you are modifying existing code to 
parallelize a LINQ query and the consumer of the results expects the results to be in order.  

Using Ordered Subqueries 
Once you have called AsOrdered(), each subsequent PLINQ operation that you perform preserves order, 
which means that order is lost and then reconstructed, with the associated performance hit, for each 
part of a multistep query. 

You can control ordering from one part of a query to the next by combing the AsOrdered() and 
AsUnordered() extension methods. The AsUnordered() method does the exact opposite to AsOrdered(), 
and tells PLINQ that order need not be preserved. 

Listing 6-7 shows you how to do so. In the example, the first ten items are taken from the data 
source after the AsParallel() method is called. For this part of the query, the items are ordered. The 
taken items are then used as the basis for a call to Select(), which can be performed without ordering, 
so we call the AsUnordered() method. 

Listing 6-7. Combining Ordered and Unordered Queries 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace Listing_07 { 
    class Listing_07 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[10000]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // define a query that has an ordered subquery 
            var result = 
                sourceData.AsParallel().AsOrdered() 
                .Take(10).AsUnordered() 
                .Select(item => new { 
                    sourceValue = item, 
                    resultValue = Math.Pow(item, 2) 
                }); 
 
            foreach (var v in result) { 
                Console.WriteLine("Source {0}, Result {1}", 
                    v.sourceValue, v.resultValue); 
            } 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
 
        } 
    } 
} 

 
The effect of calling AsOrdered() or AsUnordered() carries through into further subqueries, so in the 

case of Listing 6-6 any additional subqueries would be unordered. 

Performing a No-Result Query  
The ForAll() extension method performs a System.Action on each item in a ParallelQuery. This may 
seem oddly duplicative of a parallel loop, and it is. But this feature means that you can take advantage of 
other PLINQ features such as filtering. Listing 6-8 demonstrates using ForAll() to print even valued data 
items and their second power to the console. 

Listing 6-8. Using the ForAll() Extension Method 

using System; 
using System.Linq; 
 
namespace Listing_08 { 
    class Listing_08 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[50]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // filter the data and call ForAll() 
            sourceData.AsParallel() 
                .Where(item => item % 2 == 0) 
                .ForAll(item => Console.WriteLine("Item {0} Result {1}",  
                    item, Math.Pow(item, 2))); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The ForAll() method can be a surprisingly useful way to take advantage of the rich LINQ features in 

parallel code; the main limitation is that you can’t return a result from the Action which ForAll() 
invokes. 
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Managing Deferred Query Execution 
PLINQ queries are not executed until the results are required, which is known as deferred or lazy 
execution. This is the same model as for LINQ, and the idea is that you don’t incur the cost of performing 
a query if you don’t use the results. Listing 6-9 demonstrates how this works. 

Listing 6-9. Deferred PLINQ Execution 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Threading; 
 
namespace Listing_09 { 
    class Listing_09 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[10]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            Console.WriteLine("Defining PLINQ query"); 
            // define the query 
            IEnumerable<double> results = 
                sourceData.AsParallel().Select(item => { 
                    Console.WriteLine("Processing item {0}", item); 
                    return Math.Pow(item, 2); 
                }); 
 
            Console.WriteLine("Waiting..."); 
            Thread.Sleep(5000); 
 
            // sum the results - this will trigger 
            // execution of the query 
            Console.WriteLine("Accessing results"); 
            double total = 0; 
            foreach (double d in results) { 
                total += d; 
            } 
            Console.WriteLine("Total {0}", total); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
 
        } 
    } 
} 
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Compiling and running the code in the listing produces the results shown following. The query is 
defined but not executed until the foreach loop starts to read the results. 

Defining PLINQ query 

Waiting... 

Accessing results 

Processing item 0 

... 

Processing item 9 

Total 285 

Press enter to finish 

For most situations, deferred execution is fine, but sometimes, you want to ensure that a query is 
performed as soon as it is defined. In such cases, you can force immediate execution by calling the 
ToArray(), ToDictionary(), or ToList() extension methods as the last element in a PLINQ query. Listing 
6-10 demonstrates how this can be applied to our previous example. 

Listing 6-10. Forcing Immediate Query Execution 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Threading; 
 
namespace Listing_10 { 
    class Listing_10 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[10]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            Console.WriteLine("Defining PLINQ query"); 
            // define the query 
            IEnumerable<double> results = 
                sourceData.AsParallel().Select(item => { 
                    Console.WriteLine("Processing item {0}", item); 
                    return Math.Pow(item, 2); 
                }).ToArray(); 
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            Console.WriteLine("Waiting..."); 
            Thread.Sleep(5000); 
 
            // sum the results - this will trigger 
            // execution of the query 
            Console.WriteLine("Accessing results"); 
            double total = 0; 
            foreach (double d in results) { 
                total += d; 
            } 
            Console.WriteLine("Total {0}", total); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
 
        } 
    } 
} 

 
When we compile and run this code, we get the following results, which demonstrate that the query 

is executed immediately: 

Defining PLINQ query 

Processing item 0 

... 

Processing item 9 

Waiting... 

Accessing results 

Total 285 

Press enter to finish 

Controlling Concurrency 
I mentioned earlier in this chapter that PLINQ analyses your query to determine the best way to execute 
it and may, as a consequence, decide that sequential execution will offer better performance. As with all 
parallel programming features, there is an overhead associated with creating and managing the 
concurrent workload. 
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In general, you should leave PLINQ to determine the most effective strategy, but if you are not 
getting the performance you expect (or if you just can’t leave well alone), some options are available for 
controlling the concurrency used to perform your query. 

Forcing Parallelism 
You can request that a query be performed concurrently by using the WithExecutionMode() extension 
method, which takes a value from the ParallelExecutionMode enumeration as an argument. The values 
of the enumeration are shown in Table 6-3. 

Table 6-3. Values  of the  System.Linq.ParallelExecutionMode enumeration 

Enumeration Value Description 

Default The PLINQ runtime will determine whether to execute a query sequentially or 
in parallel. 

ForceParallelism The query will be parallelized, even if the overhead of parallel execution is 
likely to outweigh the benefit of concurrency.. 

 
The WithExecutionMode() method modifies an instance of ParallelQuery; Listing 6-11 demonstrates 

the use of this method. 

Listing 6-11. Forcing Parallel Execution of a Query 

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_11 { 
    class Listing_11 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[10]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // define the query and force parallelism 
            IEnumerable<double> results = 
                sourceData.AsParallel() 
                .WithExecutionMode(ParallelExecutionMode.ForceParallelism) 
                .Where(item => item % 2 == 0) 
                .Select(item => Math.Pow(item, 2)); 
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            // enumerate the results 
            foreach (double d in results) { 
                Console.WriteLine("Result {0}", d); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
 
        } 
    } 
} 

Limiting Parallelism 
You can request an upper limit to the number of Tasks that will be used to perform your LINQ query by 
using the WithDegreeOfParallelism() extension method. The PLINQ engine may choose to use fewer 
Tasks than you specify with this method. Listing 6-12 demonstrates the use of this method to specify a 
maximum of two Tasks. 

Listing 6-12. Limiting the Degree of Parallelism for a Query 

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_12 { 
    class Listing_12 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[10]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // define the query and force parallelism 
            IEnumerable<double> results = 
                sourceData.AsParallel() 
                .WithDegreeOfParallelism(2) 
                .Where(item => item % 2 == 0) 
                .Select(item => Math.Pow(item, 2)); 
 
            // enumerate the results 
            foreach (double d in results) { 
                Console.WriteLine("Result {0}", d); 
            } 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
 
        } 
    } 
} 

Forcing Sequential Execution 
The AsSequential() extension method takes a ParallelQuery and returns a regular, sequential 
IEnumerable. This method is the opposite of AsParallel(). You can use AsSequential() to enable and 
disable parallelism in subqueries, and this technique can be useful if you want to explicitly avoid the 
overhead of parallel execution for part of a multistep query, for example. Listing 6-13 demonstrates the 
use of this method. The first part of the query squares the source values in parallel, and the second part 
of the query, where the squared values are then doubled, is performed sequentially. 

Listing 6-13. Using the AsSequential() Extension Method 

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_13 { 
    class Listing_13 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[10]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // define the query and force parallelism 
            IEnumerable<double> results = 
                sourceData.AsParallel() 
                .WithDegreeOfParallelism(2) 
                .Where(item => item % 2 == 0) 
                .Select(item => Math.Pow(item, 2)) 
                .AsSequential() 
                .Select(item => item * 2); 
 
            // enumerate the results 
            foreach (double d in results) { 
                Console.WriteLine("Result {0}", d); 
            } 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Handling PLINQ Exceptions 
Any exceptions thrown in a PLINQ query will be packaged in a System.AggregateException. See Chapter 
2 for details of how to work with AggregateException instances. 

The AggregateException is thrown when the query is executed; this is usually when the results are 
enumerated because execution of the query is typically deferred until that happens. If you have forced 
immediate execution, or have used the ForAll() method, the exceptions will be thrown at those points 
in your code. 

Listing 6-14 demonstrates how to catch and process an exception that is thrown in a select clause 
of a PLINQ query when a specific source data value is encountered. 

Listing 6-14. Handling Exceptions in a PLINQ Query 

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_14 { 
    class Listing_14 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[100]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // define the query and force parallelism 
            IEnumerable<double> results = 
                sourceData.AsParallel() 
                .Select(item => { 
                    if (item == 45) { 
                        throw new Exception(); 
                    } 
                    return Math.Pow(item, 2); 
                }); 
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            // enumerate the results 
            try { 
                foreach (double d in results) { 
                    Console.WriteLine("Result {0}", d); 
                } 
            } catch (AggregateException aggException) { 
                aggException.Handle(exception => { 
                    Console.WriteLine("Handled exception of type: {0}", 
                        exception.GetType()); 
                    return true; 
                }); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
PLINQ may continue to process data after an exception has been thrown, which means that you 

should not use exceptions to manually terminate a PLINQ query. 

Cancelling PLINQ Queries 
PLINQ supports cancellation using the CancellationTokens you have seen throughout this book. You 
associate a token with a query using the WithCancellation() extension method. Listing 6-15 
demonstrates cancellation by using a token that is cancelled by a Task while the results of a query are 
being enumerated. 

Listing 6-15. Cancelling PLINQ Queries 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_15 { 
    class Listing_15 { 
        static void Main(string[] args) { 
 
            // create a cancellation token source 
            CancellationTokenSource tokenSource 
                = new CancellationTokenSource(); 
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            // create some source data 
            int[] sourceData = new int[1000000]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // define a query that supports cancellation 
            IEnumerable<double> results = sourceData 
                .AsParallel() 
                .WithCancellation(tokenSource.Token) 
                .Select(item => { 
                    // return the result value 
                    return Math.Pow(item, 2); 
                }); 
 
            // create a task that will wait for 5 seconds 
            // and then cancel the token 
            Task.Factory.StartNew(() => { 
                Thread.Sleep(5000); 
                tokenSource.Cancel(); 
                Console.WriteLine("Token source cancelled"); 
            }); 
 
            try { 
                // enumerate the query results 
                foreach (double d in results) { 
                    Console.WriteLine("Result: {0}", d); 
                } 
            } catch (OperationCanceledException) { 
                Console.WriteLine("Caught cancellation exception");                    
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
If a query is cancelled, a System.OperationCanceledException is thrown, and you should catch this in 

the code that has caused the query to be executed. It will usually be the statements in which you 
enumerate the results or in the ForAll() method. PLINQ may continue to process some items after a 
cancellation has been performed, so you must not assume that cancellation will terminate your query 
immediately. 

Setting Merge Options 
When you execute a PLINQ query, Tasks are assigned to process blocks of source data to produce a series 
of results, which are then consumed—typically by a sequential enumeration. You can control how the 
results are passed from the Tasks to the consumer by using the WithMergeOptions() method on an 
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instance of ParallelQuery. This method takes a value from the ParallelMergeOptions enumeration, 
which is summarized in Table 6-4. 

Table 6-4. Values  of the  System.Linq.ParallelMergeOptions Enumeration 

Enumeration Value Description 

Default 
AutoBuffered 

Use the default merge option, which is to buffer a number of results selected by 
the runtime. 

NotBuffered Each result is passed to the consumer as soon as it has been produced. 

FullyBuffered All of the results are produced before any of them are passed to the consumer. 

 
Specifying a merge option can be useful when you have a PLINQ query that takes a significant 

amount of time to generate each result item. With the default or fully buffered options, the consumer 
will not receive any results for an extended period of time. Listing 6-16 shows how to set the merge 
option. 

Listing 6-16. A Fully Buffered PLINQ Query 

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_16 { 
    class Listing_16 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[5]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // define a fully buffered query 
            IEnumerable<double> results = 
                sourceData.AsParallel() 
                .WithMergeOptions(ParallelMergeOptions.FullyBuffered) 
                .Select(item => { 
                    double resultItem = Math.Pow(item, 2); 
                    Console.WriteLine("Produced result {0}", resultItem); 
                    return resultItem; 
                }); 
 
            // enumerate the query results 
            foreach (double d in results) { 
                Console.WriteLine("Enumeration got result {0}", d); 
            } 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
Compiling and running the code in Listing 6-16 produces the output that follows. You can see that 

all of the results are generated before any of them are made available for enumeration by the foreach 
loop. 

Produced result 16 

Produced result 9 

Produced result 0 

Produced result 4 

Produced result 1 

Enumeration got result 0 

Enumeration got result 1 

Enumeration got result 4 

Enumeration got result 9 

Enumeration got result 16 

Press enter to finish 

Using Custom Partitioning 
PLINQ uses the same partitioning approach that you saw in the previous chapter. You can specify a 
customer partitioner for your PLINQ query by using the version of the AsParallel() method that takes 
an instance of the System.Collections.Concurrent.Partitioner class as an argument. The previous 
chapter showed you how to create a custom dynamic partitioner, where the number of partitions is not 
known in advance. Parallel loops support only dynamic partitioners. PLINQ supports the simpler static 
partitioners, which are much easier to write, since you can simply break up the data into blocks. Listing 
6-17 shows a simple static partitioner that works on arrays; see the previous chapter for details of the 
methods that are required to implement a partitioner. 
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Listing 6-17. A Simple Static Partitioner 

using System; 
using System.Collections; 
using System.Collections.Concurrent; 
using System.Collections.Generic; 
 
namespace Listing_17 { 
 
    public class StaticPartitioner<T> : Partitioner<T> { 
        private T[] Data; 
 
        public StaticPartitioner(T[] data) { 
            Data = data; 
        } 
 
        public override bool SupportsDynamicPartitions { 
            get { 
                return false; 
            } 
        } 
 
        public override IList<IEnumerator<T>> GetPartitions(int partitionCount) { 
            // create the list to hold the enumerators 
            IList<IEnumerator<T>> list = new List<IEnumerator<T>>(); 
            // determine how many items per enumerator 
            int itemsPerEnum = Data.Length / partitionCount; 
            // process all but the last partition 
            for (int i = 0; i < partitionCount - 1; i++) { 
                list.Add(CreateEnum(i * itemsPerEnum, (i + 1) * itemsPerEnum)); 
            } 
            // handle the last, potentially irregularly sized, partition 
            list.Add(CreateEnum((partitionCount - 1) * itemsPerEnum, 
                Data.Length)); 
            // return the list as the result 
            return list; 
        } 
 
        IEnumerator<T> CreateEnum(int startIndex, int endIndex) { 
            int index = startIndex; 
            while (index < endIndex) { 
                yield return Data[index++]; 
            } 
        } 
    } 
} 

 
The StaticPartitioner class in Listing 6-17 breaks up the array of objects into partitions that are 

roughly the same size to ensure that each Task that PLINQ assigns to process data receives about the 
same amount of data to work on. Listing 6-18 demonstrates how to use a custom partitioner with PLINQ. 
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Rather than call AsParallel() on the source data, we call it on an instance of the partitioner, in this case, 
the StaticPartitioner class from the Listing 6-17. 

Listing 6-18. Using a Custom Partitioner 

using System; 
using System.Collections; 
using System.Collections.Concurrent; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_18 { 
    class Listing_18 { 
        static void Main(string[] args) { 
 
 
            // create some source data 
            int[] sourceData = new int[10]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // create the partitioner 
            StaticPartitioner<int> partitioner = new StaticPartitioner<int>(sourceData); 
 
            // define a query 
            IEnumerable<double> results = 
                partitioner.AsParallel() 
                .Select(item => Math.Pow(item, 2)); 
 
            // enumerate the query results 
            foreach (double d in results) { 
                Console.WriteLine("Enumeration got result {0}", d); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
 
        } 
    } 
} 

 
If you wish to preserve order in PLINQ results with a custom partitioner, your class must derive from 

OrderablePartitioner; see the previous chapter for details of this class and how it differs from 
Partitioner.  
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Using Custom Aggregation 
Aggregation is where many data items are processed to produce a single result. Some aggregations are 
used so frequently that there are dedicated LINQ/PLINQ methods to support them—Sum(), Average(), 
Count(), and so on.  

The ParallelEnumerable class supports a version of the Aggregate() extension method that is 
unique to PLINQ and provides support for custom parallel aggregation. The PLINQ Aggregate() method 
version takes four functions or lambda expressions as arguments. Here’s what these functions do: 

• Define the initial value for the result: this is executed once for the aggregation. 

• Process each data value: When the data value is processed, the function takes the 
subtotal for the current Task and the present data item as arguments. This is 
executed for each data value. 

• Process each per-Task subtotal: When the data value is processed, take the subtotal 
and the overall total as arguments. This is executed for each Task assigned to 
perform the aggregation. 

• Process the final result: This is executed once for the aggregation. 

The best way of understanding the Aggregation() is with an example. Listing 6-19 demonstrates a 
simple aggregation, which calculates half the sum of the squares of the first 10,000 integer values.  

Listing 6-19. PLINQ Custom Aggregation 

using System; 
using System.Linq; 
 
namespace Listing_19 { 
    class Listing_19 { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[10000]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // perform a custom aggregation 
            double aggregateResult = sourceData.AsParallel().Aggregate( 
                // 1st function - initialize the result 
                0.0, 
                // 2nd function - process each item and the per-Task subtotal 
                (subtotal, item) => subtotal += Math.Pow(item, 2), 
                // 3rd function - process the overall total and the per-Task total 
                (total, subtotal) => total + subtotal, 
                // 4th function - perform final processing 
                total => total/2); 
 
            // write out the result 
            Console.WriteLine("Total: {0}", aggregateResult); 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
For the first function, we initialize the result, which is a double. We use lambda expressions in the 

listing, so to create a new double with a value of 0, we simply call this: 
 

// 1st function - initialize the result 
0.0, 

 
The second function allows me to process each data value and add it to the running total for the 

current Task. If we want to add the square of the current data value to the total, we call the following: 
 

// 2nd function - process each item and the per-Task subtotal 
(subtotal, item) => subtotal += Math.Pow(item, 2), 

 
The subtotal is a double (the type of the result), and the item is an int (the type of the source data 

array). The third function is called when each Task finishes processing data; it allows us to combine the 
result value generated by each Task with the overall result. We want to sum the per-Task results together, 
so we call the following function: 

 
// 3rd function - process the overall total and the per-Task total 
(total, subtotal) => total + subtotal, 

 
The arguments total and subtotal are both doubles. Finally, we have the chance to do any final 

processing of the overall result before it is returned as the aggregated result. In the case of the example, 
we want to return only half of the total, so we call this: 

 
// 4th function - perform final processing 
total => total/2 

 
If you read the example again, you will see that it shares some characteristics with the use of TLS in 

parallel loops; see the previous chapter for details. Although creating custom parallel aggregations can 
be confusing at first glance, the ability to do so can be a useful and powerful tool—much like PLINQ 
overall. 

Generating Parallel Ranges 
Although the most common way of creating instances of ParallelQuery is through the AsParallel() 
extension method, two other means are available: the ParallelEnumerable.Range() and 
ParallelEnumerable.Repeat() methods. The Range() method generates a sequence of stepped integer 
values, whereas the Repeat() method generates a sequence that contains the same value repeated over 
and over. These methods do the same thing as the equivalent methods in the Enumerable class, but since 
they return ParallelQuery instances as their results, any processing that you do on them will be handled 
using PLINQ. Listing 6-20 demonstrates PLINQ queries using these methods. 
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Listing 6-20. Using Parallel Ranges and Repeating Sequences 

using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Listing_20 { 
    class Listing_20 { 
        static void Main(string[] args) { 
 
            // use PLINQ to process a parallel range 
            IEnumerable<double> result1 = 
                from e in ParallelEnumerable.Range(0, 10) 
                where e % 2 == 0 
                select Math.Pow(e, 2); 
                 
            // use PLINQ to process a parallel repeating sequence 
            IEnumerable<double> result2 = 
                ParallelEnumerable.Repeat(10, 100) 
                .Select(item => Math.Pow(item, 2)); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Common Problems and Their Causes 
Take a look at the following sections for common PLINQ problems and their solutions. 

Forgetting the PLINQ Basics 
Two related items are not calling AsParallel() on the source data to switch from LINQ to PLINQ and 
defining the PLINQ query without enumerating the results, which means that the query is never 
executed. I have grouped these two together into one problem because I fall foul of them often. I have 
lost count of the number of times just in writing this chapter that I have not gotten the result or 
performance that I was expecting, and the problem turned out to be a lack of parallelism or, worse, a 
lack of any data being processed. 

Solution 
I find that a daily multivitamin supplement seems to help me maintain attention when writing code for 
long periods. Otherwise, I think the best hope is for some kind of cure for aging and the forgetfulness 
that comes with it. 
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Creating Race Conditions 
A common trick with LINQ is to use the where clause to filter items from the source data while some 
external value has a specified value and is modified inside the where clause itself. This presents a data 
race with PLINQ because multiple Tasks can be reading and modifying the value at once. 

Solution 
Perform the filter sequentially before processing the data in parallel. Or find a PLINQ method that will 
work safely with multiple threads (e.g., the Take() method would be a suitable alternative to the example 
code for this problem). As a last resort, use a synchronization primitive to control access to the shared 
value. 

Example 
The following example uses a shared value to limit the number of items that the where clause filters for 
processing and so suffers from a race condition: 

 
using System; 
using System.Linq; 
 
namespace Creating_Race_Conditions { 
    class Creating_Race_Conditions { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] sourceData = new int[10000]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = i; 
            } 
 
            // create a counter - this will be shared 
            int counter = 1000; 
 
            // create a plinq query that uses the shared value 
            var result = from e in sourceData.AsParallel() 
                         where (counter-- > 0) 
                         select e; 
 
            Console.WriteLine("Expected {0} items", counter); 
            Console.WriteLine("Got {0} items", result.ToArray().Length); 
        } 
    } 
} 

Confusing Ordering 
A common problem is confusing the use of the AsOrderable() and OrderBy() methods. AsOrderable() 
preserves the order of the query results so that the nth result is the result of processing the nth item in 
the source data. The OrderBy() method sorts the items rather than preserve their natural order. 
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Solution 
Pay close attention to how you order the source data. 

Example 
The following example demonstrates the two different ordering techniques: 

 
using System; 
using System.Linq; 
 
namespace Confusing_Ordering { 
    class Confusing_Ordering { 
        static void Main(string[] args) { 
 
            string[] sourceData = new string[] { 
                "an", "apple", "a", "day", "keeps", 
                "the", "doctor", "away"}; 
 
            // create an AsOrdered() query  
            var result1 = sourceData.AsParallel() 
                .AsOrdered() 
                .Select(item => item); 
 
            // enumerate the results 
            foreach (var v in result1) { 
                Console.WriteLine("AsOrdered() - {0}", v); 
            } 
 
            // create an OrderBy() query  
            var result2 = sourceData.AsParallel() 
                .OrderBy(item => item) 
                .Select(item => item); 
 
            // enumerate the results 
            foreach (var v in result2) { 
                Console.WriteLine("OrderBy() - {0}", v); 
            } 
        } 
    } 
} 

Sequential Filtering 
When adapting exiting LINQ filtering queries to PLINQ, a common error is to apply the AsParallel() 
method to the results of the filtering expression rather than to the source data. This means that the 
filtering is performed sequentially, and the remainder of the query performed in parallel, as opposed to 
the entire query being performed in parallel.  
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Solution 
Apply the AsParallel() method to the source data.  

Example 
The following example demonstrates inadvertent sequential filtering in an otherwise parallel query: 

 
using System; 
using System.Linq; 
 
namespace Sequential_Filtering { 
    class Sequential_Filtering { 
        static void Main(string[] args) { 
 
            // create some source data 
            int[] source1 = new int[100]; 
            for (int i = 0; i < source1.Length; i++) { 
                source1[i] = i; 
            } 
 
            // perform the query - but note  
            // where the AsParallel call is 
            var result = source1 
                .Where(item => item % 2 == 0) 
                .AsParallel() 
                .Select(item => item); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Summary 
PLINQ, like parallel loops, lets you take advantage of parallel programming with minimum changes to 
your program design. There are pitfalls, of course, as you learned in this chapter, but the ease with which 
you can parallelize LINQ to Objects queries is something to behold. I already liked LINQ enough to write 
a book about it, and seeing the new parallel execution support in PLINQ was like receiving a gift.  

If you already use LINQ, you will find PLINQ creeping into your projects pretty quickly. And, if you 
don’t use LINQ, I strongly encourage you to look closely at the examples in this chapter and give some 
thought as to how you might apply this feature to simplify and parallelize data-centric applications. 
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Testing and Debugging 

Listing 7-1. A Simple Deadlock 

using System; 
using System.Threading.Tasks; 
using System.Diagnostics; 
 
namespace Listing_01 { 
    class Listing_01 { 
        static void Main(string[] args) { 
 
            Task[] tasks = new Task[2]; 
 
            tasks[0] = Task.Factory.StartNew(() => { 
                tasks[1].Wait(); 
            }); 
 
            tasks[1] = Task.Factory.StartNew(() => { 
                tasks[0].Wait(); 
            }); 
 
            Console.WriteLine("Waiting for tasks to complete."); 
            Task.WaitAll(tasks); 
        } 
    } 
} 

Making Things Better When Everything Goes Wrong 
Parallel programming can create complex problems. Sometimes, the problems relate to performance 
(“that’s too slow”) and sometimes to correctness (“that’s the wrong answer”). This chapter gives you a 
brief overview of the tools available to help you understand the performance and the behavior of your 
application. 

I say a “brief” overview, because fixing performance and correctness problems depends very much 
on the nature of the problem and the design of the parallel application. One of the biggest aids to solving 
problems is, inconveniently, prior experience in solving similar problems; it can be hard to understand 
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what is going wrong, until you have reached a critical mass of time spent debugging. You should be able 
to recognize the problem in Listing 7-1, but it is rare that problems are so easy to spot in real projects. 
But debugging does get easier, an, while you will never stop creating bugs, you will get better at finding 
them and fixing them. 

Measuring Parallel Performance 
The very point of parallel programming is to improve performance. Why else would we be trying to 
distribute work across multiple cores and processors? One of the questions you will ask yourself again 
and again as you write parallel programs is, “Can I make it faster?” 

The answer to that question depends on the problem you are solving and the way you have written 
your code, but the first step in any optimization process is measurement. Unless you know what you are 
starting with, you have no means of assessing the impact of any changes you make. 

Using Good Coding Strategies 
In general, there are some basic tips that will help you get good performance from your parallel code. 

Using Synchronization Sparingly 
Every synchronization primitive is effectively a bottleneck; multiple Tasks will have to wait while they 
acquire the lock on a primitive. As the ratio of Tasks to synchronization primitives increases, the more 
waiting there will be. Each time you add synchronization to your program, you will reduce the 
performance, so you should use synchronization as little as possible. 

Using Synchronization Readily 
Of course, if you don’t use synchronization at all, you will cause data races, and we know where that 
leads. So, the goal is to use just enough synchronization to ensure the correct behavior of your program 
without having an unnecessary impact on overall performance. Don’t avoid using synchronization 
where you really need it—just don’t use it as a belt-and-braces solution because you don’t want to work 
out where the data races arise in your code. 

Partitioning Work Evenly 
As a rule of thumb, the more evenly you are able to spread you work across Tasks, the more evenly work 
will be assigned to cores and better the performance of your parallel program will be. If one Task has to 
perform 90 percent of the work, for example, the opportunities for other cores or processors to speed up 
execution are limited to the remaining 10 percent of the work. 

When using parallel loop or PLINQ, you can control how work is divided up by selecting a specific 
partitioning strategy or providing your own custom partitioner. See Chapters 5 and 6 for details and 
examples. 

Avoiding Parallelizing Small Work Loads 
Setting up and managing Tasks, PLINQ queries or a parallel loop incurs a degree of overhead. For small 
workloads, that overhead outweighs the performance gains that parallel execution can deliver. Don’t 
automatically parallelize everything in your program; sequential execution can sometimes offer the best 
performance. 
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Measure Different Degrees of Concurrency 
Performance can change drastically with different degrees of concurrency—not just in the obvious way 
of having more or fewer cores available. The effects (or lack of effect) of synchronization can become 
apparent, different kinds of data race can appear, and assumptions made about program structure and 
execution can be easily undermined. 

Always measure the effect of changing concurrency, especially if your target platform is configured 
differently from your development platform. You can alter concurrency by configuring the task 
scheduler (see Chapter 4) or by setting options for parallel loops and PLINQ (see chapters 5 and 6). 

Making Simple Performance Comparisons 
You will often want to compare different approaches to solving a problem. For example, you might want 
to see how using a different synchronization primitive changes performance, compare PLINQ to a 
parallel loop, or alter the degree of concurrency of your parallel program. In such cases, the 
System.Diagnostics.Stopwatch class is your friend.   

Stopwatch is a very accurate timer that you can use to measure performance. Table 7-1 summarizes 
the key methods of the Stopwatch class. 

Table 7-1. Key Members  of the  System.Diagnostics.Stopwatch Class 

Member Description 

Start() Start timing. 

StartNew() This static convenience method returns a new instance of Stopwatch on which 
the Start() method has been called. 

Stop() Stop timing. 

Reset() Stop timing, and reset the elapsed time. 

Restart() Reset the elapsed time, and start timing. 

IsRunning Return true if the Stopwatch is currently timing. 

Elapsed Return a TimeSpan representing the elapsed time recorded by the Stopwatch. 

ElapsedMilliseconds Return the number of elapsed milliseconds recorded by the Stopwatch. 

ElapsedTicks Return the number of timer ticks recorded by the Stopwatch. 

 
The Stopwatch class is easy to use and can give a good indication as to the relative performance of 

different techniques. However, you must make sure that you repeat the work you are measuring several 
times. If you measure the work only once, you run the risk of including overhead associated with the 
.NET runtime, such as just-in-time compilation. Listing 7-2 demonstrates how to use the Stopwatch class 
to measure different degrees of concurrency in a parallel loop. 
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Listing 7-2. Using Stopwatch to Measure Parallel Loop Concurrency 

using System; 
using System.Diagnostics; 
using System.Threading.Tasks; 
 
namespace Listing_02 { 
    class Listing_02 { 
        static void Main(string[] args) { 
 
            // create some source data 
            Random rnd = new Random(); 
            int[] sourceData = new int[100000000]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = rnd.Next(0, int.MaxValue); 
            } 
 
            // define the measurement variables 
            int numberOfIterations = 10; 
            int maxDegreeOfConcurrency = 16; 
 
            // define the lock object for updating the shared result 
            object lockObj = new object(); 
 
            // outer loop is degree of concurrency 
            for (int concurrency = 1;  
                concurrency <= maxDegreeOfConcurrency;  
                concurrency++) { 
 
                // reset the stopwatch for this concurrency degree 
                Stopwatch stopWatch = Stopwatch.StartNew(); 
 
                // create the loop options for this degree 
                ParallelOptions options = new ParallelOptions()  
                    { MaxDegreeOfParallelism = concurrency }; 
 
                // inner loop is repeated iterations with same concurrency 
                for (int iteration = 0;  
                    iteration < numberOfIterations;  
                    iteration++) { 
 
                    // define the (shared) result 
                    double result = 0; 
 
                    // perform the work 
                    Parallel.ForEach( 
                        sourceData, 
                        options, 
                        () => 0.0, 
                        (int value,  
                            ParallelLoopState loopState,  
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                            long index,  
                            double localTotal) => { 
                                return localTotal + Math.Pow(value, 2); 
                            }, 
                        localTotal => { 
                            lock (lockObj) { 
                                result += localTotal; 
                            } 
                        }); 
                } 
                // stop the stopwatch 
                stopWatch.Stop(); 
 
                // write out the per-iteration time for this degree of concurrency 
                Console.WriteLine("Concurrency {0}: Per-iteration time is {1} ms",  
                    concurrency,  
                    stopWatch.ElapsedMilliseconds/numberOfIterations); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

 
The loop is performed ten times for each degree of concurrency in order to smooth out the results. 

Figure 7-1 shows the results that were obtained from my development machine. 
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Figure 7-1. Varying concurrency in a parallel loop 
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You can see that performance increases as the degree of concurrency increases, until we reach a 
limit of four concurrent Tasks. By this stage, it will be no surprise to you that my development machine 
has four cores. Increasing the degree of concurrency beyond this level for the parallel loop in Listing 7-2 
offers no additional performance gain. 

Performing Parallel Analysis with Visual Studio 
Visual Studio 2010 includes the Concurrency Visualizer, which allows you to examine the behavior of 
your parallel program, albeit it with some significant limitations and frustrations. 

To use the Concurrency Visualizer, Visual Studio must be started with Administrator privileges. To 
do this, find Visual Studio in your Start menu, right-click it, and select “Run as administrator”. Load your 
project, and select Start Performance Analysis from the Debug menu. 

■ Note If you are running Windows 64-bit, you will be prompted to disable executive paging and reboot before 
you can use the Concurrency Visualizer. 

When the Performance Wizard appears, select the Concurrency option, and ensure that the two 
boxes underneath are checked, as shown in Figure 7-2. 

 

 

Figure 7-2. Selecting the concurrent options in the profiler 
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Click the Next button; select the project you wish to profile, and click Next again. Ensure that the 
option to profile immediately after the wizard closes is checked, and click Finish. Visual Studio will run 
and profile your application and then generate a report and display it to you.  

At this point, you will encounter the first frustrating aspect of the profiler. It is slow—slow to start, 
slow to execute your program, and slow to analyze the results. However, to be fair, it is doing a lot of 
work. The Concurrency Visualizer is not a tool you use lightly; I tend to start it and then go make some 
coffee. By the time that I have ground the beans, boiled the water, and let the coffee percolate, the 
Concurrency Visualizer has usually finished—usually; sometimes, I get to drink the coffee, read a book, 
and perform small errands as well. 

Listing 7-3 shows a simple parallel program that has some problems. We’ll use this as the basis to 
explore the views that the Concurrency Visualizer can produce. 

Listing 7-3. A Problematic Parallel Program 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_03 { 
    class Listing_03 { 
 
        static void Main(string[] args) { 
 
            // create a lock object 
            object lockObj = new object(); 
 
            // create a sequence of tasks that acquire  
            // the lock in order to perform a 
            // time-expensive function over and over 
            Task[] tasks = new Task[10]; 
            for (int i = 0; i < tasks.Length; i++) { 
                tasks[i] = Task.Factory.StartNew(() => { 
                    // acquire the lock 
                    lock (lockObj) { 
                        // perform some work 
                        for (int index = 0; index < 50000000; index++) { 
                            Math.Pow(index, 2); 
                        } 
                    } 
                }); 
            } 
 
            // wait for the tasks to complete 
            Task.WaitAll(tasks); 
        } 
    } 
} 

 
In the listing, ten Tasks are created to perform a body that contains a critical region, and this region 

performs a series of calculations. Since the calculations are performed inside the critical region, only one 
Task can be performing work at any given time. If we run the Concurrency Visualizer on Listing 7-3, we 
get the report summary show in Figure 7-3. 
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Figure 7-3. Report summary for visualizing Listing 7-3 

We are interested in three detailed reports, and they are accessible by clicking the CPU Utilization, 
Threads, and Cores buttons on the report summary screen. Let’s start with CPU Utilization, which is 
shown in Figure 7-4. 

 

 

Figure 7-4. The CPU Utilization report for Listing 7-3 
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The chart might be hard to make out on the printed page, but the striped area that fills the bottom 
quarter of the plot is the CPU consumed executing Listing 7-3. The other areas represent CPU consumed 
by the system and other running processes (including Visual Studio). The bulk of the chart shows idle 
CPU time. This chart shows the problem with Listing 7-3—we are not taking advantage of the cores 
available, because the poor use of synchronization has created a sequential application. 

Parallel programs should be using more than one core, and, in general, the more cores, the better. 
The most common limitation on using cores is the need to coordinate Tasks using synchronization. Even 
a well-designed and well-written parallel application will struggle to use all of the capacity of all of the 
available cores if synchronization is required, and it will be required in most real-world applications. So, 
use this report view with caution, and don’t expect 100 percent CPU utilization.  

If you click the Threads button at the top of the graph window, you see a detailed breakdown of 
what each classic thread did during the profiling section, as shown in Figure 7-5. This is the second area 
of frustration with the Concurrency Visualizer—this report view is not Task-centric, and threads that are 
not directly related to executing your code will be displayed. Further, given that a thread can be used to 
execute multiple Tasks, getting a detailed understanding of what is happening can be a painful process. 
For a broad overview, however, this view can be quite handy, once you have excluded all of the threads 
that .NET has created in order to load and execute your classes. In the report shown in Figure 7-5, I have 
filtered out everything but the threads used to perform the Tasks in Listing 7-3. You can see the stack 
trace for a given thread at a given moment by clicking n a horizontal bar and looking at the “Current 
stack” tab. You can hide a thread by right-clicking the name of the thread and selecting Hide. 

 

 

Figure 7-5. Thread analysis for Listing 7-3 

The large dark blocks in Figure 7-5 show synchronization, and the smaller areas show execution. 
You can see that at most one thread is executing at a given moment—another signifier that we have 
created a program in Listing 7-3 that is effectively sequential. 
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The Cores report view shows how threads were executed by each available core, as shown in Figure 
7-6. This view can be useful to ensure that work is being divided up evenly, when writing a custom 
partitioner, for example.  

 

 

Figure 7-6. Core analysis for Listing 7-3 

While the Concurrency Visualizer can be useful, it has some major limitations when you’re trying to 
dig into the performance of a TPL program. It is a general Windows concurrency tool and not really 
tailored for task-oriented .NET programming. Still, with some care and effort, it can be used to give an 
overview of how your program is executed. 

Finding Parallel Bugs 
The problem with debugging parallel programs is that changes you make to figure out the problem can 
change the way the problem occurs, and this makes many of the tricks you have learned to debug 
sequential applications less useful. 

For example, printing out messages with Console.WriteLine() is a very common way to figure out 
what is happening; I do it all the time. The problem is that the code that the WriteLine() method calls is 
synchronized to prevent strings from being written at the same time and becoming garbled. So, by using 
Console.WriteLine() for debugging, you inadvertently introduce a synchronization primitive, which 
changes the way that your Tasks interact and which can change or hide the problem you are looking 
for—this is especially true for race conditions. 

A slightly better solution is to use a decoupled console, such as the example shown in the next 
chapter. This allows you to write debug messages but reduces the impact that doing so has on the 
behavior of your application by using the Parallel Producer/Consumer pattern. This solution is still not 
ideal, but it is useable for finding simple problems. 



CHAPTER 7 ■ TESTING AND DEBUGGING 

 

261 

Debugging Program State 
The best approach is to use the Visual Studio debugger, which contains some very useful new parallel 
features to support parallel programming. 

To look at these features, we are going to use the code in Listing 7-4. This program has no useful 
value other than it causes a number of Tasks to call a number of methods to demonstrate the debugger 
features. The CountDownEvent is used so that the main application thread can wait until all of the Tasks 
have been created and scheduled. The SemaphoreSlims are included so that two Tasks can gain access to 
the critical regions in TerminalMethodA() and TerminalMethodB(). 

Listing 7-4 throws an exception, because I want to be able to include code for you to download or 
reproduce that will behave exactly as described here. Usually, I would set a breakpoint by right-clicking 
in Visual Studio and selecting Breakpoint ➤ Insert Breakpoint. 

Listing 7-4. Exercising the Parallel Debugger 

using System; 
using System.Diagnostics; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_04 { 
 
    class Listing_04 { 
        static CountdownEvent cdEvent; 
        static SemaphoreSlim semA, semB; 
         
        static void Main(string[] args) { 
            // initialize the semaphores 
            semA = new SemaphoreSlim(2); 
            semB = new SemaphoreSlim(2); 
 
            // define the number of tasks we will use 
            int taskCount = 10; 
 
            // initialize the barrier 
            cdEvent = new CountdownEvent(taskCount); 
 
            Task[] tasks = new Task[10]; 
            for (int i = 0; i < taskCount; i++) { 
                tasks[i] = Task.Factory.StartNew((stateObject) => { 
                    InitialMethod((int)stateObject); 
                }, i); 
            } 
 
            // wait for all of the tasks to have reached a terminal method 
            cdEvent.Wait(); 
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            // throw an exception to force the debugger to break 
            throw new Exception(); 
        } 
 
        static void InitialMethod(int argument) { 
            if (argument % 2 == 0) { 
                MethodA(argument); 
            } else { 
                MethodB(argument); 
            } 
        } 
 
        static void MethodA(int argument) { 
            if (argument < 5) { 
                TerminalMethodA(); 
            } else { 
                TerminalMethodB(); 
            } 
        } 
 
        static void MethodB(int argument) { 
            if (argument < 5) { 
                TerminalMethodA(); 
            } else { 
                TerminalMethodB(); 
            } 
        } 
 
        static void TerminalMethodA() { 
            // signal the countdown event 
            cdEvent.Signal(); 
            // acquire the lock for this method 
            semA.Wait(); 
            // perform some work 
            for (int i = 0; i < 500000000; i++) { 
                Math.Pow(i, 2); 
            } 
            // release the semaphore 
            semA.Release(); 
        } 
 
        static void TerminalMethodB() { 
            // signal the countdown event 
            cdEvent.Signal(); 
            // acquire the lock for this method 
            semB.Wait(); 
            // perform some work 
            for (int i = 0; i < 500000000; i++) { 
                Math.Pow(i, 3); 
            } 
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           // release the semaphore 
           semB.Release(); 
        } 
    } 
} 

 
To see the parallel debugging features, compile the code in Listing 7-4, and select Start Debugging 

from the Debug menu. Once the Tasks have been created and reached the required point, the main 
application threads will throw an exception, and the debugger will break. 

The first new feature to look at is the Parallel Tasks window, which you can display by selecting 
Parallel Tasks from the Debug ➤ Windows menu. This window shows all of the Tasks in your code, as 
illustrated in Figure 7-7. 

 

 

Figure 7-7. The Parallel Tasks debugger window 

For Listing 7-4, all ten Tasks are listed in Figure 7-7, and the Task ID, the current status and other 
information is displayed for each. The currenly viewed Task is indicated by the yellow arrow (if you don’t 
see a yellow arrow, double-click the first task in the list); double-clicking a Task in the list makes that the 
current Task. The currently viewed Task’s call stack is displayed in the Call Stack debugger window and is 
also highlighted in the Parallel Stacks window, as you’ll see in a moment. 

You can select columns to display diferent Task information by right-clicking the column headers. 
Table 7-2 describes the available columns. 
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Table 7-2. Parallel Tasks Columns 

Column Description 

Flags Right-clicking the flag icon allows you to flag or unflag a Task. The Parallel Stacks 
window allows you to view only flagged Tasks to simplify the display. 

Icons A yellow arrow shows the currently viewed Task. A white arrow shows the Task 
that caused the debugger to break. A pause icon shows that a Task is frozen. 

ID This is the Task ID, which is equivalent to the result from the Task.CurrentId 
property. 

Status This is the status of the Task prior to the debugger breaking. “Running” means 
that the Task was executing. “Waiting” means that the Task was waiting to 
acquire a synchronization primitive or waiting for another Task to complete. A 
scheduled Task has been created and is awaiting execution. A deadlocked Task is 
one that is engaged in a deadlock with another Task; see the “Detecting 
Deadlocks” section later in this chapter for details. 

Location This is the location in the call stack of the Task. You can see the entire call stack 
by hovering over this field with the mouse.  

Task The initial method and arguments that were used to create the Task. 

Parent This is the ID of the parent Task if there is one. 

Thread Assignment This is the name of the classic thread that is executing the Task. Note that a 
thread can be used to perform more than one Task and that a Task may be 
performed inline (see Chapter 4 for details of inline execution). 

 
You can group the Tasks in the list by any of the columns, so you can see all of the Tasks with a given 

status or were executing a given method when the debugger broke. As you step through the code with a 
debugger, you can switch from Task to Task. 

You can freeze a Task by right-clicking and selecting Freeze Thread. The Task will no longer execute 
when you step through the code. However, it is the classic thread executing the Task that is frozen, not 
just the Task, so some care should be taken when using this feature. 

The other new window is the Parallel Stacks display, which you can select from the Debug ➤ 
Windows menu. Figure 7-8 shows this window for Listing 7-4. 
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Figure 7-8. The Parallel Stacks debugger window 

Make sure that you have selected Tasks from the drop-down list at the top-left of the window. This 
debugger window shows you a graphical representation of all of your Tasks that is focused on the 
methods that they have called. You can see that of the ten Tasks created in Listing 7-4, five have called 
MethodA(), five have called MethodB(), and so on down through the call stack. The buttons across the top 
of the window allow you to display only Tasks you have flagged in the Parallel Tasks window and to focus 
on one specific method, rather than showing the entire call tree. If you hover over the title of each box, 
you will see details of the Tasks that have called it, and you can switch to any of them.  

As you switch from Task to Task, the code window will show the source statements for the current 
Task. The Call Stack switches to the calls made by that Task; the Locals window shows the data for the 
current Task, and so on.  

By using the new parallel windows, you can drive the debugger from Task to Task effortlessly. You 
can see what each Task was doing when the debugger broke, see the local data for each Task, and walk 
through Task-by-Task as the code executes. Unlike the Concurrency Visualizer, which is an awkward 
tool, the parallel debugger features are fast and elegant, and they allow you to dig deep into the detail of 
your parallel program. 

Handling Exceptions 
There is a minor wrinkle when debugging code where you have handled exceptions thrown by Tasks in 
your code. For an example, see Listing 7-5. 
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Listing 7-5. A Program That Handles Task Exceptions 

using System; 
using System.Threading.Tasks; 
 
namespace Listing_05 { 
 
    class Listing_05 { 
         
        static void Main(string[] args) { 
 
            Task[] tasks = new Task[2]; 
            for (int i = 0; i < tasks.Length; i++) { 
                tasks[i] = Task.Factory.StartNew(() => { 
                    for (int j = 0; j < 5000000; j++) { 
                        if (j == 500) { 
                            throw new Exception("Value is 500"); 
                        } 
                        Math.Pow(j, 2); 
                    } 
                }); 
            }   
 
            // wait for the tasks and catch any exceptions 
            try { 
                Task.WaitAll(tasks); 
            } catch (AggregateException ex) { 
                ex.Handle(innerEx => { 
                    Console.WriteLine("Exception message is {0}", innerEx.Message); 
                    return true; 
                }); 
            } 
        } 
    } 
} 

 
When you run this code normally, each Task throws an exception, and these exceptions are wrapped 

in an instance of System.AggregateException, which is handled by the try. . .catch code block around 
the Task.WaitAll() method. 

However, when you run this code in the debugger, the debugger will break and flag the exceptions 
as unhandled. To fix this, select “Options and Settings” from the Debug menu in Visual Studio, and 
uncheck the Enable Just My Code option, as shown in Figure 7-9. This allows for Task exception 
handling to be handled properly in the debugger. 
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Figure 7-9. Unchecking the Enable Just My Code debugger option 

Detecting Deadlocks 
One of the most useful features of the debugger is the ability to detect deadlocks in your application. 
Deadlocks occur when two or more Tasks are waiting on each other to finish or are otherwise holding 
resources, such as a lock on a primitive, that the other Task needs before it can move forward. The ability 
of the debugger to find and report deadlocks is impressive. Listing 7-6 shows a simple program that 
creates a number of Tasks that collectively represent a deadlock, because each Task in the array waits for 
the next Task to finish.  

Listing 7-6. A Circular Deadlock 

using System.Diagnostics; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Listing_06 { 
 
    class Listing_06 { 
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        static void Main(string[] args) { 
            // specify the number of tasks 
            int taskCount = 10; 
            // create a countdown event so that 
            // we can wait until all of the tasks  
            // have been created before breaking 
            CountdownEvent cdEvent = new CountdownEvent(taskCount); 
            // create the set of tasks 
            Task[] tasks = new Task[taskCount]; 
            for (int i = 0; i < taskCount; i++) { 
                tasks[i] = Task.Factory.StartNew((stateObj) => { 
                    // signalthe countdown event 
                    cdEvent.Signal(); 
                    // wait on the next task in the array 
                    tasks[(((int)stateObj) + 1) % taskCount].Wait(); 
                }, i); 
            } 
 
            // wait for the count down event  
            cdEvent.Wait(); 
            // break if there is a debugger attached 
            if (Debugger.IsAttached) { 
                Debugger.Break(); 
            } 
        } 
    } 
} 

 
As with the previous example, Listing 7-5 uses CountDownEvent to ensure that the Tasks have all been 

created and scheduled. This time, we break the debugger in the code using the System.Diagnostics. 
Debugger class. Figure 7-10 shows the Parallel Tasks debugger window when Listing 7-5 breaks.  
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Figure 7-10. Detecting deadlocks 

You can see that all of the Tasks have been identified as being deadlocked. If you hover over each 
Task, you can see what the Task is waiting for. The debugger doesn’t always manage to detect complex 
deadlocks, but it does a pretty good job most of the time. 

Summary 
In this chapter, you have seen how to measure performance and track down parallel bugs. The Visual 
Studio 2010 tools can be very helpful, but to get the best from them, you need to have a good 
understanding of the kinds of problems that can arise. I have listed some of the most common problems 
in each chapter as we have moved through this book, but you will find that your personal coding style 
leads you to create patterns of problems that you will have to track down and fix. The best advice I can 
give you is not to give up. Spending hours chasing down an intermittent issue can be exceptionally 
painful, but you will learn a huge amount as you do so. Over time, you will get a feel for what lies behind 
the problems are you looking for and your ability to locate and fix parallel defects will become much 
better—and, on occasion, you will find that hunting down a particularly elusive error can even be 
enjoyable.
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Common Parallel Algorithms 

In this chapter are 11 common parallel algorithms implemented using the TPL. You can download all of 
the source code for all of the algorithms from www.Apress.com.  

These are some of the most widely used building blocks in parallel programming, and I have 
included them as a reference for when you are facing a problem, a time-saver for when you need a quick 
answer, and a demonstration of how the TPL abstractions we covered throughout this book allow 
complex and rich functions to be developed with relatively few lines of code. 

There are lots of variations in parallel algorithms. I have chosen those that I think have the broadest 
application and in which the core ideas are easily seen. I have kept the implementations as simple as 
possible, so you’ll need to deal with exceptions, cancellations, and degrees of parallelization yourself; 
you’ll find all you need to do so in earlier chapters. 

Sorting, Searching, and Caching 
The following sections offer solutions for challenges faced in sorting and caching. 

Using Parallel Quicksort 
Quicksort is a sorting algorithm that is well suited to parallelization. It has three steps: 

1. Pick an element, called a pivot, from the data to be sorted 

2. Reorder the data so that all of the elements that are less than the pivot come 
before the pivot in the data and all the elements that are greater than the pivot 
come after the pivot.  

3. Recursively process the subset of lesser elements and the subset of greater 
elements. 

http://www.Apress.com
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Quicksort is ideal for parallel execution because the sets of data elements are processed 
independently, which means we don’t have to worry about data races. This implementation sorts arrays 
and uses an IComparer for item comparison. We will use an in-place Quicksort, meaning that we move 
elements around inside the array, rather than creating new arrays to hold the subsets. 

To avoid the overhead of parallelization for small amounts of work, we add support for using the 
sequential Quicksort implementation available in the System.Array.Sort() method when a given level of 
recursion is reached or where the number of elements to sort in a subset is less than a given number.  
I set these values based on some simple testing on my development system, which is a four-core 
machine. Using these values, the parallel implementation is around twice as fast as the sequential 
implementation. 

The Code 
The following code illustrates the use of an in-place Quicksort: 

 
using System; 
using System.Collections.Generic; 
using System.Threading.Tasks; 
 
namespace Parallel_Sort { 
 
    class Parallel_Sort<T> { 
 
        public static void ParallelQuickSort(T[] data, IComparer<T> comparer,  
            int maxDepth = 16, int minBlockSize = 10000) { 
            // call the internal method 
            doSort(data, 0, data.Length - 1, comparer, 0, maxDepth, minBlockSize); 
        } 
 
        internal static void doSort(T[] data, int startIndex, int endIndex,  
            IComparer<T> comparer, int depth, int maxDepth, int minBlockSize) { 
 
            if (startIndex < endIndex) { 
                // if we have exceeded the depth threshold or there are 
                // fewer items than we would like, then use sequential sort 
                if (depth > maxDepth || endIndex - startIndex < minBlockSize) { 
                    Array.Sort(data, startIndex, endIndex - startIndex + 1, comparer); 
                } else { 
                    // we need to parallelize 
                    int pivotIndex = partitionBlock(data, startIndex, endIndex, comparer); 
                    // recurse on the left and right blocks 
                    Task leftTask = Task.Factory.StartNew(() => { 
                        doSort(data, startIndex, pivotIndex - 1, comparer,  
                            depth + 1, maxDepth, minBlockSize); 
                    }); 
                    Task rightTask = Task.Factory.StartNew(() => { 
                        doSort(data, pivotIndex + 1, endIndex, comparer,  
                            depth + 1, maxDepth, minBlockSize); 
                    }); 
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                    // wait for the tasks to complete 
                    Task.WaitAll(leftTask, rightTask); 
                } 
            } 
        } 
 
        internal static int partitionBlock(T[] data, int startIndex, int endIndex,  
            IComparer<T> comparer) { 
 
            // get the pivot value - we will be comparing all  
            // of the other items against this value 
            T pivot = data[startIndex]; 
            // put the pivot value at the end of block 
            swapValues(data, startIndex, endIndex); 
            // index used to store values smaller than the pivot 
            int storeIndex = startIndex; 
            // iterate through the items in the block 
            for (int i = startIndex; i < endIndex; i++) { 
                // look for items that are smaller or equal to the pivot 
                if (comparer.Compare(data[i], pivot) <= 0) { 
                    // move the value and increment the index 
                    swapValues(data, i, storeIndex); 
                    storeIndex++; 
                } 
            } 
            swapValues(data, storeIndex, endIndex); 
            return storeIndex; 
        } 
 
         internal static void swapValues(T[] data, int firstIndex, int secondIndex) { 
            T holder = data[firstIndex]; 
            data[firstIndex] = data[secondIndex]; 
            data[secondIndex] = holder; 
        } 
    } 
} 

Using the Code 
To use the algorithm, you must have an array to sort and an implementation of IComparer that will 
compare instances of the array type. The following code shows a simple example using an int array: 

 
using System; 
using System.Collections.Generic; 
 
namespace Parallel_Sort { 
    
    class Use_Parallel_Sort { 
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        static void Main(string[] args) { 
            // generate some random source data 
            Random rnd = new Random(); 
            int[] sourceData = new int[5000000]; 
            for (int i = 0; i < sourceData.Length; i++) { 
                sourceData[i] = rnd.Next(1, 100); 
            } 
 
            // perform the parallel sort 
            Parallel_Sort<int>.ParallelQuickSort(sourceData, new IntComparer()); 
        } 
 
        public class IntComparer : IComparer<int> { 
            public int Compare(int first, int second) { 
                return first.CompareTo(second); 
            } 
        } 
    } 
} 

Traversing a Parallel Tree  
There is no standard Tree structure in the .NET Framework class library, in part because there are so 
many different ways of implementing them.  

The Code 
This example creates a very simple Tree type, which has a data value and two child nodes. For each node 
in the tree, a user-supplied System.Action() is invoked on the data value and Tasks are created to 
parallel process the child nodes. 

 
using System; 
using System.Threading.Tasks; 
 
namespace Parallel_Tree_Traverse { 
 
    public class Tree<T> { 
        public Tree<T> LeftNode, RightNode; 
        public T Data; 
    } 
 
    class TreeTraverser { 
        public static void TraverseTree<T>(Tree<T> tree, Action<T> action) { 
            if (tree != null) { 
                // invoke the action for the data 
                action.Invoke(tree.Data); 
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                // start tasks to process the left and right nodes if they exist 
                if (tree.LeftNode != null && tree.RightNode != null) { 
                    Task leftTask = Task.Factory.StartNew( 
                        () => TraverseTree(tree.LeftNode, action)); 
                    Task rightTask = Task.Factory.StartNew( 
                        () => TraverseTree(tree.RightNode, action)); 
                    // wait for the tasks to complete 
                    Task.WaitAll(leftTask, rightTask); 
                } 
            } 
        } 
    } 
} 

Using the Code 
The following example creates a Tree<int> and populates it with random values. The System.Action 
prints out even values as they are encountered during tree traversal. 

 
using System; 
 
namespace Parallel_Tree_Traverse { 
    class Use_Parallel_Tree_Traverse { 
 
        static void Main(string[] args) { 
 
            // create and populate a simple tree 
            Tree<int> tree = populateTree(new Tree<int>(), new Random()); 
 
            // traverse the tree, print out the even values 
            TreeTraverser.TraverseTree(tree, item => { 
                if (item % 2 == 0) { 
                    Console.WriteLine("Item {0}", item); 
                } 
            }); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
 
        internal static Tree<int> populateTree(Tree<int> parentNode,  
            Random rnd, int depth = 0) { 
 
            parentNode.Data = rnd.Next(1, 1000); 
            if (depth < 10) { 
                parentNode.LeftNode = new Tree<int>(); 
                parentNode.RightNode = new Tree<int>(); 



CHAPTER 8 ■ COMMON PARALLEL ALGORITHMS 

 

276  

                populateTree(parentNode.LeftNode, rnd, depth + 1); 
                populateTree(parentNode.RightNode, rnd, depth + 1); 
            } 
            return parentNode; 
        } 
    } 
} 

Searching a Parallel Tree  
The parallel tree traversal example can be easily modified to become a parallel tree search. This 
implementation uses a CancellationToken to reduce the number of Tasks that are started after a result 
has been found. Searches are performed using a function and the first tree node that causes the function 
to return true is considered to be the result; subsequent matches are not sought. We use a wrapper 
around the search result in order to avoid complications with the C# generic type support. 

The Code 
This code searches a parallel tree: 

 
using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Parallel_Tree_Search { 
 
    public class Tree<T> { 
        public Tree<T> LeftNode, RightNode; 
        public T Data; 
    } 
 
    class TreeSearch { 
 
        public static T SearchTree<T>(Tree<T> tree, Func<T, bool> searchFunction) { 
            // create the cancellation token source 
            CancellationTokenSource tokenSource = new CancellationTokenSource(); 
            // search the tree 
            TWrapper<T> result = performSearch(tree, searchFunction, tokenSource); 
            return result == null ? default(T) : result.Value;         
        } 
 
        class TWrapper<T> { 
            public T Value; 
        } 
 
        private static TWrapper<T> performSearch<T>(Tree<T> tree,  
            Func<T, bool> searchFunction,  
            CancellationTokenSource tokenSource) { 
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            // define the result 
            TWrapper<T> result = null; 
            // only proceed if we have something to search 
            if (tree != null) { 
                // apply the search function to the current tree 
                if (searchFunction(tree.Data)) { 
                    //cancel the token source 
                    tokenSource.Cancel(); 
                    // set the result 
                    result = new TWrapper<T>() { Value = tree.Data }; 
                } else { 
                    // we have not found a result - continue the search 
                    if (tree.LeftNode != null && tree.RightNode != null) { 
                        // start the task for the left node 
                        Task<TWrapper<T>> leftTask = Task<TWrapper<T>>.Factory.StartNew( 
                            () => performSearch(tree.LeftNode, searchFunction, tokenSource), 
                            tokenSource.Token); 
                        // start the task for the right node 
                        Task<TWrapper<T>> rightTask = Task<TWrapper<T>>.Factory.StartNew( 
                            () => performSearch(tree.RightNode, searchFunction,  
                            tokenSource), tokenSource.Token); 
 
                        try { 
                            // set the result based on the tasks 
                            result = leftTask.Result != null ? 
                            leftTask.Result : rightTask.Result != null ? 
                            rightTask.Result : null; 
                        } catch (AggregateException) { } 
                    } 
                } 
            } 
            // return the result 
            return result; 
        } 
    } 
} 

Using the Code 
The following example creates and populates a tree of integer values and then searches for the first 
instance of the value 183. I have cheated here somewhat and supplied a seed value for the random 
number generator so that I know that 183 will exist in the tree. 

 
using System; 
 
namespace Parallel_Tree_Search { 
    class Use_TreeSearch { 
 
        static void Main(string[] args) { 
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            // create and populate a simple tree 
            Tree<int> tree = populateTree(new Tree<int>(), new Random(2)); 
 
            // traverse the tree, print out the even values 
            int result = TreeSearch.SearchTree(tree, item => { 
                if (item == 183) Console.WriteLine("Value : {0}", item); 
                return item == 183; 
            }); 
 
            Console.WriteLine("Search match ? {0}", result); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
 
        private static Tree<int> populateTree(Tree<int> parentNode,  
            Random rnd, int depth = 0) { 
 
            parentNode.Data = rnd.Next(1, 1000); 
            if (depth < 10) { 
                parentNode.LeftNode = new Tree<int>(); 
                parentNode.RightNode = new Tree<int>(); 
                populateTree(parentNode.LeftNode, rnd, depth + 1); 
                populateTree(parentNode.RightNode, rnd, depth + 1); 
            } 
            return parentNode; 
        } 
    } 
} 

Using a Parallel Cache 
A cache is an optimization that reuses the results from an expensive function. The function can be 
expensive in any number of ways—raw computation, network bandwidth, time, and so on. This cache is 
very simple but demonstrates how you can combine parallel features to make something that can be 
surprisingly useful. 

The constructor for the cache takes a factory function as an argument that is called to create new 
values when calls are made to the GetValue() method for keys for which no key-value pair presently 
exists. 

All of the hard work in this class is performed by the underlying ConcurrentDictionary class, which 
takes care of synchronization and data management. But, ConcurrentDictionary only cares about 
ensuring the integrity of the key-value pairs it is managing and does not consider the cost of using the 
factory function, which gives rise to a problem. 

The problem is the GetOrAdd() method in the ConcurrentDictionary class, which tries to retrieve the 
value for a given key. If no key-value pair exists, the factory function is called to create a value, which is 
added to the collection and returned as the result of the method call. Unfortunately, the 
ConcurrentDictionary class calls the factory function before acquiring an internal synchronization 
primitive, which can lead to the factory function being called more than once to create values for a given 
key if one Task requests a key before another Task’s request has finished creating the corresponding 
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value. Given that the whole point of the cache is to minimize the use of the function, this result can be 
undesirable.  

The problem exists during the period from when a request for a nonexistent key-value pair is made 
to when an entry for that key-value pair exists in the collection. The use of Lazy<TValue> is a sleight-of-
hand that reduces (but does not eliminate) the likelihood of duplicated factory function calls. Rather 
than invoke the expensive factory function directly, a Lazy value is created that will invoke the expensive 
factory function after the key-value pair has been added to the collection. This has the effect of limiting 
the amount of time for which no key-value pair exists. Lazy values are safe for parallel use and will only 
be initialized once irrespective of how many times the Value property is read. 

The Code 
The following code implements the Lazy value solution: 

 
using System; 
using System.Collections.Concurrent; 
 
namespace Parallel_Cache { 
 
    class Parallel_Cache<TKey,TValue> { 
        private ConcurrentDictionary<TKey, Lazy<TValue>> dictionary; 
        private Func<TKey, TValue> valueFactory; 
 
        public Parallel_Cache(Func<TKey, TValue> factory) { 
            // set the factory instance variable 
            valueFactory = factory; 
            // initialize the dictionary 
            dictionary = new ConcurrentDictionary<TKey,Lazy<TValue>>(); 
        } 
 
        public TValue GetValue(TKey key) { 
            return dictionary.GetOrAdd(key,  
                new Lazy<TValue>(() => valueFactory(key))).Value; 
        } 
    } 
} 

Using the Code 
The following code creates a set of Tasks, each of which requests the same set of values from the cache. 
The factory function simply squares the values of the key. 

 
using System; 
using System.Threading.Tasks; 
 
namespace Parallel_Cache { 
 
    class Use_Parallel_Cache { 
        static void Main(string[] args) { 
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            // create the cache 
            Parallel_Cache<int, double> cache 
                = new Parallel_Cache<int, double>(key => { 
                    Console.WriteLine("Created value for key {0}", key); 
                    return Math.Pow(key, 2); 
                }); 
 
            for (int i = 0; i < 10; i++) { 
                Task.Factory.StartNew(() => { 
                    for (int j = 0; j < 20; j++) { 
                        Console.WriteLine( 
                            "Task {0} got value {1} for key {2}", 
                            Task.CurrentId, cache.GetValue(j), j); 
                    } 
                }); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Using Parallel Map and Reductions 
The solutions in this section address common situations in mapping and reduction. 

Using a Parallel Map 
Mapping is the same thing as projection, which you saw in Chapter 6. Each of a set of source values is 
mapped (or projected) to a result value—something that is very easily performed using PLINQ. 

The Code 
There are countless variations of the basic map operation, and one of the most common is where each 
source value is mapped to multiple result values. This can be achieved by replacing the Select() method 
in the following code below with SelectMany(). 

 
using System; 
using System.Linq; 
 
namespace Parallel_Map { 
 
    class Parallel_Map { 
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        public static TOutput[] ParallelMap<TInput, TOutput>( 
            Func<TInput, TOutput> mapFunction,  
            TInput[] input) { 
 
            return input 
                .AsParallel() 
                .AsOrdered() 
                .Select(value => mapFunction(value)) 
                .ToArray(); 
        } 
    } 
} 

Using the Code 
The following example maps an array of integers to their squares: 

 
using System; 
using System.Linq; 
 
namespace Parallel_Map { 
 
    class Use_Parallel_Map { 
 
        static void Main(string[] args) { 
 
            // create the source data 
            int[] sourceData = Enumerable.Range(0, 100).ToArray(); 
 
            // define the mapping function 
            Func<int, double> mapFunction = value => Math.Pow(value, 2); 
 
            // map the source data 
            double[] resultData  
                = Parallel_Map.ParallelMap<int, double>( 
                      mapFunction,  
                      sourceData); 
 
            // run through the results 
            for (int i = 0; i < sourceData.Length; i++) { 
                Console.WriteLine("Value {0} mapped to {1}", 
                    sourceData[i], 
                    resultData[i]); 
            } 
        } 
    } 
} 
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Using a Parallel Reduction 
Mapping is never far from its companion reduction. In reductions, a sequence of source values is 
reduced to a single value using a function. Another term for reduction is aggregation – which we saw in 
Chapter 6 and which is a key PLINQ feature. 

The Code 
The following example creates a parallel reduction: 

 
using System; 
using System.Linq; 
 
namespace Parallel_Reduce { 
 
    class Parallel_Reduce { 
 
        public static TValue Reduce<TValue>( 
            TValue[] sourceData, 
            TValue seedValue, 
            Func<TValue, TValue, TValue> reduceFunction) { 
 
            // perform the reduction 
            return sourceData 
                .AsParallel() 
                .Aggregate( 
                    seedValue, 
                    (localResult, value) =>  
                        reduceFunction(localResult, value), 
                    (overallResult, localResult) =>  
                        reduceFunction(overallResult, localResult), 
                    overallResult => overallResult); 
        } 
    } 
} 

Using the Code 
The following reduces a sequence of integers using addition: 

 
using System; 
using System.Linq; 
 
namespace Parallel_Reduce { 
 
    class Use_Parallel_Reduce { 
 
        static void Main(string[] args) { 
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            // create some source data 
            int[] sourceData = Enumerable.Range(0, 10).ToArray(); 
 
            // create the aggregation function 
            Func<int, int, int> reduceFunction = (value1, value2) => value1 + value2; 
 
            // perform the reduction 
            int result = Parallel_Reduce.Reduce<int>(sourceData, 0, reduceFunction); 
 
            // write out the result 
            Console.WriteLine("Result: {0}", result); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Using Parallel MapReduce 
The final piece in the mapping and reduction set is where a Map algorithm and a Reduce algorithm are 
combined to create a MapReduce algorithm. There are three stages to MapReduce. First, a sequence of 
values is mapped to a sequence of intermediate results; typically, each source value is mapped to 
multiple intermediate values, but this is not always the case. Second, the intermediate values are 
grouped together using a key. Finally, each group of intermediate values is reduced to a result value.  

The Code 
This implementation of MapReduce uses four data types: the type of the source data, intermediate 
result, grouping key, and final result data. Many implementations only use three, omitting the 
separation between the key and the final result types. I find the four-type approach more useful because 
it allows separation of the reduction type from the grouping type. You can see an example of this here, 
where I return a KeyValuePair that allows me to associate the intermediate result with the final result 
value: 

 
using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Parallel_MapReduce { 
    class Parallel_MapReduce { 
 
        public static IEnumerable<TOutput>  
            MapReduce<TInput, TIntermediate, TKey, TOutput>( 
                IEnumerable<TInput> sourceData, 
                Func<TInput, IEnumerable<TIntermediate>> mapFunction, 
                Func<TIntermediate, TKey> groupFunction, 
                Func<IGrouping<TKey, TIntermediate>, TOutput> reduceFunction) { 
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                    return sourceData 
                        .AsParallel() 
                        .SelectMany(mapFunction) 
                        .GroupBy(groupFunction) 
                        .Select(reduceFunction); 
        } 
    } 
} 

Using the Code 
The following code calculates the frequency of factors for a sequence of integers. The map function takes 
an int value and returns an IEnumerable<int> containing the factors for that source value; this means 
that the source and intermediate data types are both int for this MapReduce. 

Because we want to determine the frequency of a result, the group function selects the value itself—
that is to say, all instances of a given intermediate result are grouped together. This means that the key 
type for this MapReduce is also int. 

The reduce function creates a KeyValuePair which uses the factor value as the key and the result of 
Count() applied to the grouping, which gives the frequency that this intermediate result occurred. This 
means that the result type is KeyValuePair<int, int> for this MapReduce. 

 
using System; 
using System.Collections.Generic; 
using System.Linq; 
 
namespace Parallel_MapReduce { 
 
    class Use_Parallel_MapReduce { 
 
        static void Main(string[] args) { 
 
            // create a function that lists the factors 
            Func<int, IEnumerable<int>> map = value => { 
                IList<int> factors = new List<int>(); 
                for (int i = 1; i < value; i++) { 
                    if (value % i == 0) { 
                        factors.Add(i); 
                    } 
                } 
                return factors; 
            }; 
 
            // create the group function - in this example 
            // we want to group the same results together,  
            // so we select the value itself 
            Func<int, int> group = value => value; 
 
            // create the reduce function - this simply 
            // counts the number of elements in the grouping 
            // and returns a Key/Value pair with the result as the 
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            // key and the count as the value 
            Func<IGrouping<int, int>,  
                KeyValuePair<int, int>> reduce =  
                grouping => { 
                    return new KeyValuePair<int, int>( 
                        grouping.Key, grouping.Count()); 
            }; 
 
            // create some source data 
            IEnumerable<int> sourceData = Enumerable.Range(1, 50); 
 
            // use parallel map reduce with the source data 
            // and the map, group and reduce functions 
            IEnumerable<KeyValuePair<int, int>> result =  
                Parallel_MapReduce.MapReduce( 
                    sourceData,  
                    map,  
                    group,  
                    reduce); 
 
            // process the results 
            foreach (KeyValuePair<int, int> kvp in result) { 
                Console.WriteLine("{0} is a factor {1} times",  
                    kvp.Key,  
                    kvp.Value); 
            } 
        } 
    } 
} 

Speculative Processing 
The examples in this section illustrate speculative selection and caching. 

Selection 
Speculative selection performs several different functions that yield the same result value and returns a 
result as soon as one of the functions “wins”. Typically, this technique is used if there is a quick 
algorithm that works for only certain values and a slower algorithm that works for all values. 

Imagine, for example, trying to guess a password. One algorithm randomly tries values from a 
dictionary, while another tries variations on the user’s name. In some cases, the second function will 
return a result quickly. In speculative selection, you perform both functions in parallel and take the 
result from whichever gives a result first. 

The Code 
This implementation takes any number of functions. The maximum number that will be performed in 
parallel will be limited by the task scheduler used by the Parallel.ForEach() loop, so if you have lots of 
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functions to choose from, you should either write a custom scheduler (see Chapter 4) or, better still, 
order the functions so that ones that take the least time to execute but which have the highest likelihood 
of success are at the start of the arguments. 

 
using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Speculative_Selection { 
 
    static class Speculative_Selection { 
 
        public static void Compute<TInput, TOutput>( 
            TInput value,  
            Action<long, TOutput> callback, 
            params Func<TInput, TOutput>[] functions) { 
 
            // define a counter to indicate the results produced 
            int resultCounter = 0; 
 
            // start a task to perform the parallel loop, otherwise 
            // this method will block until a result has been found 
            // and the functions running at that time have finished, 
            // even if they are unsuccessful 
            Task.Factory.StartNew(() => { 
                // perform the parallel foreach 
                Parallel.ForEach(functions, 
                    (Func<TInput, TOutput> func, 
                    ParallelLoopState loopState, 
                    long iterationIndex) => { 
                        // compute the result 
                        TOutput localResult = func(value); 
                        // increment the counter 
                        if (Interlocked.Increment(ref resultCounter) == 1) { 
                            // we are the first iteration to produce the result 
                            // stop the loop 
                            loopState.Stop(); 
                            // invoke the callback 
                            callback(iterationIndex, localResult); 
                        } 
                    } 
                ); 
            }); 
        } 
    } 
} 
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Using the Code 
The following code defines two functions that compute the same result; the only difference is the period 
that the function waits before returning the result value. A callback Action is defined that writes out the 
result and the index of the winning function and the computation is performed for ten sequential integer 
values. 

 
using System; 
using System.Threading; 
using System.Threading.Tasks; 
 
namespace Speculative_Selection { 
 
    class Use_Speculative_Suggestion { 
 
        static void Main(string[] args) { 
 
            // create some sample functions 
            Func<int, double> pFunction = value => { 
                Random rnd = new Random(); 
                Thread.Sleep(rnd.Next(1, 2000)); 
                return Math.Pow(value, 2); 
            }; 
 
            // create some sample functions 
            Func<int, double> pFunction2 = value => { 
                Random rnd = new Random(); 
                Thread.Sleep(rnd.Next(1, 1000)); 
                return Math.Pow(value, 2); 
            }; 
 
            // define the callback 
            Action<long, double> callback = (index, result) => { 
                Console.WriteLine("Received result of {0} from function {1}", 
                    result, index); 
            }; 
 
            // speculative compute for some values 
            for (int i = 0; i < 10; i++) { 
                Speculative_Selection.Compute<int, double>( 
                    i,  
                    callback,  
                    pFunction, pFunction2); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 
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Speculative Caching 
A speculative cache is an adaption of the parallel cache from earlier in the chapter that speculates on 
what keys are likely to be requested in the future based on a given request now. When accurately 
anticipating later requests, the cache can improve performance by building up a stock of precomputed 
values. Values that are computed but never requested are wasted effort. 

The Code 
The following implementation takes a speculator function and a factory function as constructor 
arguments. When a request is made for a key that does not presently exist in the cache, the key is placed 
in a queue for background processing in a Parallel.ForEach loop. When processed, the speculator 
generates an array of values that should be precomputed, and these are passed to the factory function if 
they are not already in cache. 

You will notice the use of the Lazy type again; this is to minimize duplicative calls to the factory 
function, just as in the original parallel cache. 

 
using System; 
using System.Collections.Concurrent; 
using System.Threading.Tasks; 
 
namespace Speculative_Cache { 
 
    class Speculative_Cache<TKey, TValue> { 
        private ConcurrentDictionary<TKey, Lazy<TValue>> dictionary; 
        private BlockingCollection<TKey> queue; 
        private Func<TKey, TKey[]> speculatorFunction; 
        private Func<TKey, TValue> factoryFunction; 
         
        public Speculative_Cache(Func<TKey, TValue> factory,  
                                 Func<TKey, TKey[]> speculator) { 
 
            // set the speculator instance variable 
            speculatorFunction = speculator; 
            // initialize the dictionary 
            dictionary = new ConcurrentDictionary<TKey, Lazy<TValue>>(); 
            // initialize the queue 
            queue = new BlockingCollection<TKey>(); 
 
            // create the wrapper function 
            factoryFunction = (key => { 
                // call the factory function  
                TValue value = factory(key); 
                // add the key to the speculative queue 
                queue.Add(key); 
                // return the results 
                return value; 
            }); 
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            // start the task that will handle speculation 
            Task.Factory.StartNew(() => { 
                Parallel.ForEach(queue.GetConsumingEnumerable(), 
                    new ParallelOptions { MaxDegreeOfParallelism = 2 }, 
                    key => { 
                        // enumerate the keys to speculate  
                        foreach (TKey specKey in speculatorFunction(key)) { 
                            TValue res = dictionary.GetOrAdd( 
                                specKey,  
                                new Lazy<TValue>(() => factory(specKey))).Value; 
                        } 
                    }); 
            }); 
        } 
 
        public TValue GetValue(TKey key) { 
            return  dictionary.GetOrAdd(key, 
                new Lazy<TValue>(() => factoryFunction(key))).Value; 
        } 
    } 
} 

Using the Code 
In the following code, the speculator function generates the next five sequential values for a given key. 
The factory function returns the square of the key value. An instance of the speculative cache is created 
and values are requested for the first 100 integer values. 

 
using System; 
using System.Linq; 
 
namespace Speculative_Cache { 
 
    class Use_Speculative_Cache { 
        static void Main(string[] args) { 
 
            // create a new instance of the cache 
            Speculative_Cache<int, double> cache 
                = new Speculative_Cache<int, double>( 
                    key1 => { 
                        Console.WriteLine("Created value for key {0}", key1); 
                        return Math.Pow(key1, 2); 
                    }, 
                    key2 => Enumerable.Range(key2 + 1, 5).ToArray()); 
 
            // request some values from the cache 
            for (int i = 0; i < 100; i++) { 
                double value = cache.GetValue(i); 
                Console.WriteLine("Got result {0} for key {1}", value, i); 
            } 
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            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 

Using Producers and Consumers  
The examples in this section cover decoupling the Console class and pipelining functions. 

Decoupling the Console Class 
The previous chapter mentioned that you should avoid using the System.Console class in parallel 
programs. The synchronization in the Console class affects the overall performance of your application, 
and adding Console.WriteLine() calls when trying to fix a problem can actually change the interaction 
between the tasks in your program enough that you may not be able to recreate the issue. 

That said, everyone still uses System.Console —myself included. And, having admitted and accepted 
that fact, the best compromise is to use a decoupled console class, which is a simple 
Producer/Consumer pattern that allows Tasks to put messages destined for the console into a queue 
with minimal delay and for a single consumer Task to take those messages and write them out. 

The Code 
The following implementation is a little more general than it needs to be. The items in the queue are 
System.Actions that write messages to the Console class. You could easily adapt this model to perform 
other types of Action as required. 

 
using System; 
using System.Collections.Concurrent; 
using System.Threading.Tasks; 
 
namespace Decoupled_Console { 
    class Decoupled_Console { 
        // queue-based blocking collection 
        private static BlockingCollection<Action> blockingQueue; 
        // task that processes messages to the console 
        private static Task messageWorker; 
 
        static Decoupled_Console() { 
            // create the blocking collection 
            blockingQueue = new BlockingCollection<Action>(); 
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            // create and start the worker task 
            messageWorker = Task.Factory.StartNew(() => { 
                foreach (Action action in blockingQueue.GetConsumingEnumerable()) { 
                    // invoke the action 
                    action.Invoke(); 
                } 
            }, TaskCreationOptions.LongRunning); 
        } 
 
        public static void WriteLine(object value) { 
            blockingQueue.Add(new Action(() => 
                Console.WriteLine(value))); 
        } 
 
        public static void WriteLine(string format, params object[] values) { 
            blockingQueue.Add(new Action(() => 
                Console.WriteLine(format, values))); 
        } 
    } 
} 

Using the Code 
Using the decoupled console is just like using the regular Console class. The following code starts a 
number of Tasks, each of which writes a number of messages: 

 
using System; 
using System.Threading.Tasks; 
 
namespace Decoupled_Console { 
    class Using_Decoupled_Console { 
       
        static void Main(string[] args) { 
            // create a set of tasks that each writes messages 
            for (int i = 0; i < 10; i++) { 
                Task.Factory.StartNew(state => { 
                    for (int j = 0; j < 10; j++) { 
                        Decoupled_Console.WriteLine("Message from task {0}", 
                            Task.CurrentId); 
                    } 
                }, i); 
            } 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 
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Creating a Pipeline 
A pipeline chains together a number of functions that are used to process data values. The result of one 
function is used as the input to the next in the pipeline—the result of the final function is the result of 
the pipeline as a whole.  

You could simple write one function that encompassed all of the transformations represented by 
the individual functions, but the benefit of using a pipeline like the one included here is flexibility. You 
can easily change the functions that are used, change the order in which they are applied, and reuse the 
basic logic as required.  

The Code 
This version is a decoupled, long-lived pipeline. Long-lived meaning that once we have created an 
instance and started it off, we can feed values in over a period of time, and those values will be processed 
using the chained functions. Decoupled means that when we add a value, we also supply a callback that 
will be invoked when the value has been processed by all of the functions—the AddValue() method 
doesn’t block while the functions are applied. 

We create a new instance by providing the first function you want in the pipeline. Additional 
functions are added by calling the AddFunction() method. This implementation is strongly-typed, such 
that when we add a new function to the pipeline, the input type must match the output type of the last 
function we added. 

Once we have added all of the functions we require, we must call the StartProcessing() method. 
This creates the underlying collection and the Task and Parallel.ForEach loop that collect and push 
values through the function chain. We close down the pipeline by calling the StopProcessing() method. 

 
using System; 
using System.Collections.Concurrent; 
using System.Threading.Tasks; 
 
namespace Pipeline { 
 
    class Pipeline <TInput, TOutput> { 
        // queue based blocking collection 
        private BlockingCollection<ValueCallBackWrapper> valueQueue; 
        // the function to use 
        Func<TInput, TOutput> pipelineFunction; 
 
 
        public Pipeline(Func<TInput, TOutput> function) { 
            // assign the function 
            pipelineFunction = function; 
        } 
 
        public Pipeline<TInput, TNewOutput>  
            AddFunction<TNewOutput>(Func<TOutput, TNewOutput> newfunction) { 
 
            // create a composite function 
            Func<TInput, TNewOutput> compositeFunction = (inputValue => { 
                return newfunction(pipelineFunction(inputValue)); 
            }); 
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            // return a new pipeline around the composite function 
            return new Pipeline<TInput, TNewOutput>(compositeFunction); 
        } 
 
        public void AddValue(TInput value, Action<TInput, TOutput> callback) { 
            // add the value to the queue for processing 
            valueQueue.Add(new ValueCallBackWrapper { 
                Value = value, Callback = callback 
            }); 
        } 
 
        public void StartProcessing() { 
            // initialize the collection 
            valueQueue = new BlockingCollection<ValueCallBackWrapper>(); 
            // create a parallel loop to consume 
            // items from the collection 
            Task.Factory.StartNew(() => { 
                Parallel.ForEach( 
                    valueQueue.GetConsumingEnumerable(), 
                    wrapper => { 
                        wrapper.Callback( 
                            wrapper.Value,  
                            pipelineFunction(wrapper.Value)); 
                    }); 
            }); 
        } 
 
        public void StopProcessing() { 
            // signal to the collection that no 
            // further values will be added 
            valueQueue.CompleteAdding(); 
        } 
 
        private class ValueCallBackWrapper { 
            public TInput Value; 
            public Action<TInput, TOutput> Callback; 
        } 
 
    } 
} 

Using the Code 
The following code defines three very simple functions and chains them together with a Pipeline. 
Sequential values are generated and put into the pipeline, along with a callback that filters the results 
and prints out selected values to the Console. 
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using System; 
 
namespace Pipeline { 
 
    class Use_Pipleline { 
        static void Main(string[] args) { 
 
            // create a set of functions that we want to pipleline together 
            Func<int, double> func1 = (input => Math.Pow(input, 2)); 
            Func<double, double> func2 = (input => input / 2); 
            Func<double, bool> func3 = (input => input % 2 == 0 && input > 100); 
 
            // define a callback 
            Action<int, bool> callback = (input, output) => { 
                if (output) { 
                    Console.WriteLine("Found value {0} with result {1}", input, output); 
                } 
            }; 
 
            // create the pipeline 
            Pipeline<int, bool> pipe = new Pipeline<int, double>(func1) 
                .AddFunction(func2) 
                .AddFunction(func3); 
 
            // start the pipeline 
            pipe.StartProcessing(); 
 
            // generate values and push them into the pipeline 
            for (int i = 0; i < 1000; i++) { 
                Console.WriteLine("Added value {0}", i); 
                pipe.AddValue(i, callback); 
            } 
 
            // stop the pipeline 
            pipe.StopProcessing(); 
 
            // wait for input before exiting 
            Console.WriteLine("Press enter to finish"); 
            Console.ReadLine(); 
        } 
    } 
} 
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Default property, TaskScheduler class, 156 

delegate, monitoring task cancellation 
with, 19–20 
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dependencies, performing parallel loops 
with, 193–195 

Deposit type, 148 

Dequeue( ) method, 88, 99 

detached Task, 126–127 

Dictionary class, 55 

Dictionary<Thread, string> class, 55 

Dispose( ) method, 160 

dot-notation, 221 

dynamic partitioner, 195 

■E 
embarrassingly parallel problems, 193 

Enqueue( ) method, 89 

Enqueue(T) method, ConcurrentQueue 
class, 91 

Enter( ) method, 64, 70 

Enter key, 76, 123 

EnterReadLock( ) method, 80–81 

EnterUpgradeableReadLock( ) method, 83 

EnterWriteLock( ) method, 80, 83–84 

Enumerable class, 221 

EnumerableSource class, 206–207 

escalation policy, custom, 41–43 

exception handling 

debugging, 265–266 

parallel loops, 187 

PLINQ, 238–239 

task continuations, 122–126 

in tasks, 35–43 

basic exceptions, 36–37 

reading task properties, 39–41 

using custom escalation policy, 41–43 

using iterative handler, 37–39 

Exception property, 36–37, 39, 115–116, 
125 

Exchange( ) method, 67 

Exchange<T>(ref T, T) method, 
Interlocked class, 67 

Exchange(ref Double, Double) method, 
Interlocked class, 67 

Exchange(ref Int32, Int32) method, 
Interlocked class, 67 

Exchange(ref Int64, Int64) method, 
Interlocked class, 67 

Exchange(ref Object, Object) method, 
Interlocked class, 67 

Exchange(ref Single, Single) method, 
Interlocked class, 67 

exclusive index, 178 

execution, synchronizing, 59–61 

Exit( ) method, 64, 70 

ExitReadLock( ) method, 80, 84 

ExitUpgradeableReadLock( ) method, 83–
84 

ExitWriteLock( ) method, 80, 83 

explicitly inlined tasks, 159 

■F 
Factory class, 10 

Faulted member, TaskStatus enumeration, 
43 

FIFO (first in, first out) queue, 89 

filtering, sequential, 249–250 

finally block, 64 

first in, first out (FIFO) queue, 89 

first-generation collections, 97–99 

Flags column, 264 

for loop, 4, 46, 177–178 
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ForAll( ) method, 231, 238, 240 

foreach loop, 4, 151, 157, 168, 179–180 

Freeze Thread, 264 

■G 
generic collections, 99–100 

GetBalance( ) method, 78 

GetConsumingEnumerable( ) method, 
151–152, 157, 168 

GetConsumingEnumerable(CancellationT
oken) method, 152 

GetDynamicPartitions( ) method, 206, 
208–209 

GetEnumerator( ) method, 206, 208–209 

getNextChunk( ) method, 207, 209 

GetOrAdd( ) method, 278 

GetPartitions( ) method, 206, 209 

GetScheduledTasks( ) method, 156, 160 

GetValue( ) method, 278 

■H 
Handle( ) method, 37 

handling exceptions. See exception 
handling 

heavyweight primitives, 60, 63 

Hello task, 7–8 

■I 
Icons column, 264 

Id, TaskScheduler class, 157 

ID column, 264 

IEnumerable interface, 151–152 

IEnumerable Interface, 157 

IEnumerable interface, 157, 168 

immutability, 51–53 

implicitly inlined tasks, 159 

inclusive index, 178 

inconsistent cancellation, 162 

Increment( ) method, 67–68 

IncrementBalance( ) method, 78 

Increment(ref Int32) method, Interlocked 
class, 67 

Increment(ref Int64) method, Interlocked 
class, 67 

InitialCount member, CountDownEvent 
class, 137 

inline execution, 159 

InnerException property, 125 

InnerExceptions property, 37 

int array, 273 

Interlocked class, 67–69, 191–192 

interlocked operations, 67–69 

interprocess synchronization, configuring, 
76 

Invoke( ) method, 175–176 

IsAddingComplete member, 
BlockingCollection class, 151 

IsCanceled property, 25, 41 

isCancellationRequested property, 16 

IsCancellationRequested property, 17 

IsCancelled property, 24, 36, 39 

IsComplete property, 168 

IsCompleted method, 151, 188 

IsCompleted property, 36, 39, 41, 150–151, 
165 

IsExceptional method, 184 

IsFaulted property, 36, 39, 41 

IsHeld property, SpinLock class, 72 

IsHeldByCurrentThread property, 
SpinLock class, 72 

isolation, 51, 53–59 
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isolation by convention, 54–55 

IsSet member 

CountDownEvent class, 137 

ManualResetEvent class, 139 

IsSet member, ManualResetEvent class, 
139 

IsStopped method, 184 

IsStopped property, 187 

IsThreadOwnerTrackingEnabled property, 
SpinLock class, 72 

iterative handler, 37–39 

■J 
Join( ) method, 160 

■K 
KeysNormalized property, 210 

KeysOrderedAcrossPartitions property, 
210 

KeysOrderedInEachPartition property, 210 

■L 
lambda expressions, 118 

last in, first out (LIFO) queue, 91 

lazy execution, 43–44, 232 

lazy initialization, 57 

Lazy type, 288 

LIFO (last in, first out) queue, 91 

lightweight primitives, 60, 130 

local variable evaluation, 46 

Location column, 264 

lock acquisition order, 103–104 

lock keyword, 62–65, 98, 104–105 

lock recursion, 83–87 

locks, 62–65 

acquisition order, 103–104 

interlocked operations, 67–69 

multiple, 74–76, 101–102 

orphaned, 105–107 

spin locking, 70–72 

long-lived pipeline, 292 

LongRunning value, 15, 158 

loops. See parallel loops 

LowestBreakIteration method, 184, 187–
188 

■M 
ManualResetEventSlim class, 130, 139 

many-to-one continuations, 111, 117–119 

MapReduce algorithm, 283–284 

MaxDegreeOfParallelism property, 181 

MaximumConcurrencyLevel method, 157, 
160 

Monitor class, 64 

monitoring 

locking and, 62–65 

task cancellation 

with delegate, 19–20 

by polling, 17 

with wait handle, 20 

Monitor.TryEnter( ) method, 64 

Monitor.TryEnter(Object, Boolean) 
method, 65 

Monitor.TryEnter(Object, Int32, Boolean) 
method, 65 

Monitor.TryEnter(Object,TimeSpan,Boole
an) method, 65 

multiphase algorithms, 130–132 

multiple locks, 74–76, 101–102 
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multitask continuations, 110, 117 

mutability, 100 

Mutex class, 72–76, 78, 105 

■N 
nested Task, 126 

neverScheduled Task, 122 

None antecedent result, 119 

None continuation result, 119 

None value 

TaskContinuationOptions 
enumeration, 115 

TaskCreationOptions enumeration, 15 

NotOnCancelled value, 111, 115 

NotOnFaulted value, 111, 115 

NotOnRanToCompletion value, 115 

NullReferenceException exception, 39 

■O 
one-to-many continuations, 113 

OnlyOnCancelled value, 115, 122 

OnlyOnFaulted value, 111, 115–116, 134 

OnlyOnRanToCompletion value, 115 

OpenExisting( ) method, 76 

OperationCancelledException class, 16, 
38–39, 135 

OrderablePartitioner class, 200 

OrderBy( ) method, 248 

ordered default partitioning strategy, 199–
200 

orphaned locks, 105–107 

out parameter, 89, 91, 95, 151–153 

overhead costs, parallel programming, 3 

■P 
parallel algorithms, 271–293 

parallel cache, 278–279 

parallel map, 280–281 

parallel MapReduce algorithm, 283–284 

parallel Quicksort algorithm, 271–273 

parallel reduction, 282 

searching parallel tree, 276–277 

speculative processing 

selection, 285–287 

speculative caching, 288–289 

traversing parallel tree, 274–275 

using producers and consumers 

creating pipeline, 292–293 

decoupling Console class, 290–291 

parallel bugs, 260–269 

debugging program state, 261–265 

detecting deadlocks, 267 

exception handling, 265–266 

Parallel LINQ. See PLINQ (Parallel LINQ) 

parallel loops, 173–218, 252. See also 
partitioning strategy 

breaking and stopping, 183–187 

canceling, 189 

common problems, 214–218 

creating basic parallel for loop, 177–178 

creating basic parallel foreach loop, 
179–180 

exception handling, 187 

getting loop results, 188–189 

performing, with dependencies, 193–
195 

versus sequential loops, 173–174 



■ INDEX 

302 

setting options, 181 

using thread local storage in, 190–192 

parallel performance, measuring 

making simple performance 
comparisons, 253–256 

performing parallel analysis with Visual 
Studio, 256–260 

using good coding strategies, 252–253 

parallel programming, 1–6 

benefits and pitfalls of, 3 

deciding when to stay sequential, 4 

deciding when to use, 3–4 

getting example code, 5–6 

overview, 1–2 

Parallel Stacks, 264 

ParallelEnumerable class, 221, 246 

ParallelExecutionMode enumeration, 235 

Parallel.For( ) method, 177, 181, 183, 187, 
189 

Parallel.ForEach( ) method, 179–181, 183, 
187, 189, 196, 285, 288 

Parallel.Invoke( ) method, 176 

ParallelLoopState class, 183 

ParallelMergeOptions enumeration, 241 

ParallelOptions class, 176, 181 

Parent column, 264 

ParticipantCount member, Barrier class, 
132 

ParticipantsRemaining member, Barrier 
class, 132 

Partitioner class, 198, 200 

partitioners, 195 

partitioning strategy, 191, 195–200 

chunking, 196–199 

creating custom strategy, 200–214 

writing contextual partitioner, 201–
209 

writing orderable contextual 
partitioner, 209–214 

ordered default, 199–200 

partitioning work evenly, 252 

performWork( ) method, 202 

PI field, 100 

PLINQ (Parallel LINQ), 1, 4, 219–250 

common problems with, 247–250 

controlling concurrency, 234–237 

forcing parallelism, 235 

forcing sequential execution, 237 

limiting parallelism, 236 

custom aggregation, 245–246 

custom partitioning, 242–244 

exception handling, 238–239 

generating parallel ranges, 246 

managing deferred query execution, 
232–234 

queries, 222–231 

cancelling, 239–240 

features, 225–226 

ordering query results, 226–231 

performing no-result query, 231 

setting merge options, 240–242 

polling, monitoring task cancellation by, 
17 

PreferFairness member, 
TaskCreationOptions 
enumeration, 15 

primitives, basic synchronization, 61–87 

configuring interprocess 
synchronization, 76 

declarative synchronization, 78–79 

interlocked operations, 67–69 
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locking and monitoring, 62–65 

reader-writer locks, 79–87 

spin locking, 70–72 

wait handles and Mutex class, 72–76 

printMessage( ) method, 10, 12 

Producer/Consumer pattern, 146–155 

combining multiple collections, 151–
155 

creating, 147–151 

creating BlockingCollection 
instance, 148–149 

creating consumers, 150–151 

creating producers, 149–150 

selecting collection type, 149 

properties, reading, 39–41 

Push( ) method, 91 

PushRange( ) method, 91 

PushRange(T[ ], int, int) method, 
ConcurrentStack class, 92 

PushRange(T[ ]) method, ConcurrentStack 
class, 92 

Push(T) method, ConcurrentStack class, 
92 

■Q 
queries, PLINQ, 222–231 

cancelling, 239–240 

features, 225–226 

ordering query results, 226–231 

performing no-result query, 231 

Queue.Dequeue( ) method, 88 

QueueTask( ) method, 156–157, 159–160 

Quicksort algorithm, 271–273 

 

■R 
Range( ) method, 246 

RanToCompletion member, TaskStatus 
enumeration, 43 

reader-writer locks 

ReaderWriterLockSlim class, 79–82 

recursion and upgradable read locks, 
83–87 

ReaderWriterLockSlim class, 79–84 

readonly keyword, 52, 100 

recursion, lock, 83–87 

Reduce algorithm, 283 

ref keyword, 68 

Register( ) method, 17, 20 

Release( ) method, 143–146 

Release(int) method, SemaphoreSlim 
class, 144 

ReleaseMutex( ) method, 72, 76 

RemoveParticipant( ) method, 131, 134 

RemoveParticpants(int) method, Barrier 
class, 131 

Repeat( ) method, 246 

Reset( ) method, 136–137, 139 

Reset(int) method, CountDownEvent 
class, 137 

Result property, 13–14, 112, 118, 162, 164 

return keyword, 9 

Running member, TaskStatus 
enumeration, 43 

RunSynchronously( ) method, 159 

■S 
scaling applications, 3 

Select( ) method, 280 

selective continuations, 110–111, 115 
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SelectMany( ) method, 280 

SemaphoreSlim class, 143–146 

sequential execution, 4, 51–52 

sequential filtering, 249–250 

sequential loops, 173–174 

Set( ) method, 139, 141 

Set As Startup Project option, 5–6 

SetObserved( ) method, 43 

sharedQueue.Dequeue( ) method, 88 

sharedStartIndex variable, 207 

sharing data, 49–107 

basic synchronization primitives, 61–87 

configuring interprocess 
synchronization, 76 

declarative synchronization, 78–79 

interlocked operations, 67–69 

locking and monitoring, 62–65 

reader-writer locks, 79–87 

spin locking, 70–72 

wait handles and Mutex class, 72–76 

challenges with, 50–52 

common problems and causes, 100–
107 

lock acquisition order, 103–104 

multiple locks, 101–102 

orphaned locks, 105–107 

unexpected mutability, 100 

executing 

immutably, 52–53 

in isolation, 53–59 

sequentially, 52 

synchronizing, 59–61 

ShouldExitCurrentIteration method, 184, 
187 

Signal( ) method, 136–137, 139 

SignalAndWait( ) method, 131–132, 134–
135 

SignalAndWait(CancellationToken) 
method, Barrier class, 131 

SignalAndWait(Int32, CancellationToken) 
method, Barrier class, 131 

SignalAndWait(Int32) method, Barrier 
class, 131 

SignalAndWait(TimeSpan, 
CancellationToken) method, 
Barrier class, 131 

SignalAndWait(TimeSpan) method, 
Barrier class, 131 

Signal(int) method, CountDownEvent 
class, 137 

simple continuations, 111–113 

single lock object, 65 

single Task, waiting for, 31–32 

Sleep( ) method, 26–28, 47 

sleeping, 26–28 

SleepWait( ) method, 26 

Solution Explorer window, 5 

Source property, 37 

speculative processing 

selection, 285–287 

speculative caching, 288–289 

spin locking, 70–72 

SpinCount member, ManualResetEvent 
class, 139 

SpinLock class, 70, 72 

spinning 

excessive, 47–48 

spin waiting, 29–30 

SpinWait( ) method, 29–30, 47 

Start( ) method, 9, 11, 16, 111, 160 

StartNew( ) method, 10, 14 
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StartProcessing( ) method, 292 

static partitioners, 195 

StaticPartitioner class, 243 

Status column, 264 

SteppedIterator( ) method, 180 

Stop( ) method, 183–184 

stopping parallel loops, 183–187 

StopProcessing( ) method, 292 

Stopwatch class, 4 

supervisors, 129 

SupportsDynamicPartitions property, 206 

synchronization, 51 

basic primitives, 61–87 

configuring interprocess 
synchronization, 76 

declarative synchronization, 78–79 

interlocked operations, 67–69 

locking and monitoring, 62–65 

reader-writer locks, 79–87 

spin locking, 70–72 

wait handles and Mutex class, 72–76 

declarative, 78–79 

interprocess, configuring, 76 

using readily, 252 

using sparingly, 252 

using to coordinate tasks, 129–146 

AutoResetEvent class, 141–142 

Barrier class, 131–135 

CountDownEvent class, 136–139 

ManualResetEventSlim class, 139 

SemaphoreSlim class, 143–146 

Synchronization attribute, 78–79 

synchronization handles, 72 

Synchronized method, 97–98 

synchronizing execution, 59–61 

System.Action( ) method, 9, 131–132, 274 

System.Action<object> instance, 11 

System.Action<Task> argument, 111–112 

System.Action(Barrier) method, 132 

System.AggregateException class, 36 

System.Array.Sort( ) method, 272 

System.Collection.IEnumerable interface, 
177 

System.Collections.Concurrent 
namespace, 88, 94, 200, 216 

System.Collections.Concurrent.BlockingC
ollection class, 147 

System.Collections.Concurrent.Concurren
tBag class, 94 

System.Collections.Concurrent.Concurren
tDictionary class, 95 

System.Collections.Concurrent.Concurren
tQueue class, 91 

System.Collections.Concurrent.Concurren
tStack class, 91–92 

System.Collections.Concurrent.IProducer
ConsumerCollection interface, 149 

System.Collections.Concurrent.Partitioner 
class, 198 

System.Collections.Generic namespace, 99 

System.Collections.Generic.IEnumerable<
T> interface, 177 

System.Collections.Generic.Queue<int> 
class, 87 

System.Collections.Queue class, 97 

System.ContextBoundObject class, 78 

System.Diagnostics.Debugger class, 268 

System.Diagnostics.Stopwatch class, 253 

System.Exception class, 115 

System.InvalidOperationException class, 
88 
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System.Linq namespace, 221 

System.Runtime.Remoting.Contexts 
namespace, 78 

System.Threading namespace, 8 

System.Threading.AutoResetEvent class, 
130, 141 

System.Threading.Barrier class, 130–131 

System.Threading.CancellationTokenSour
ce.CreateLinkedTokenSource( ) 
method, 23 

System.Threading.CountDownEvent class, 
130, 136–137 

System.Threading.Interlocked class, 62, 67, 
191 

System.Threading.LockRecursionExceptio
n class, 72 

System.Threading.ManualResetEvent 
class, 139 

System.Threading.ManualResetEventSlim 
class, 130, 139 

System.Threading.Monitor class, 63 

System.Threading.Monitor.TryEnter 
method, 65 

System.Threading.Montor class, 62 

System.Threading.Mutex class, 62, 72 

System.Threading.OperationCanceledExce
ption method, 17 

System.Threading.ReaderWriter class, 80 

System.Threading.ReaderWriterLockSlim 
class, 79 

System.Threading.Semaphore class, 143 

System.Threading.SemaphoreSlim class, 
130, 143–144 

System.Threading.SpinLock class, 62, 70, 
72 

System.Threading.Tasks.ConcurrentBag 
class, 89 

System.Threading.Tasks.ConcurrentDictio
nary class, 89 

System.Threading.Tasks.ConcurrentQueu
e class, 89 

System.Threading.Tasks.ConcurrentStack 
class, 89 

System.Threading.Tasks.Parallel class, 175 

System.Threading.Tasks.Task class, 8 

System.Threading.Tasks.TaskContinuatio
nOptions enumeration, 115 

System.Threading.Tasks.TaskCreationOpti
ons enumeration, 15, 128 

System.Threading.Tasks.TaskFactory 
class, 117 

System.Threading.Tasks.TaskScheduler 
class, 156 

System.Threading.Tasks.TaskScheduler.U
nobservedTaskException member, 
41 

System.Threading.Tasks.TaskStatus 
enumeration, 43 

System.Threading.Thread class, 157 

System.Threading.ThreadLocal class, 55 

System.Threading.WaitHandle class, 62, 72 

System.Threading.WaitHandleCannotBeO
penedException class, 76 

■T 
T type, 91, 150, 153 

Take( ) method, 149, 151–153, 165 

Take(CancellationToken) method, 
BlockingCollection class, 152 

TakeFromAny( ) method, 155 

TakeFromAny(BlockingCollection<T>[ ], 
out T, CancellationToken) 
method, 153 

TakeFromAny(BlockingCollection<T>[ ], 
out T) method, 153 
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targetSum variable, 205 

Task array, 30, 34 

Task class, 4, 7–9, 16, 30, 175 

Task Programming Library (TPL), 1–2, 4, 7, 
9, 15, 35 

task scheduler, 9 

Task<>.Factory.StartNew( ) method, 43 

TaskContinuationOptions enumeration, 
111, 113, 122, 127, 129 

TaskContinuationOptions.AttachedToPare
nt value, 129 

Task.ContinueWith( ) method, 111, 113, 
115, 120, 160 

Task.ContinueWith<int>( ) method, 112 

Task.ContinueWith<T>( ) method, 112 

TaskCreationOptions enumeration, 127 

TaskCreationOptions.LongRunning 
enumeration value, 157 

Task.CurrentId property, 15 

Task.Factory class, 14 

TaskFactory class, 117 

Task.Factory property, 117 

Task.Factory.ContinueWhenAll( ) method, 
111, 118, 120, 160 

Task.Factory.ContinueWhenAny( ) 
method, 111, 119–120 

Task.Factory.StartNew( ) method, 8–10, 14, 
160 

Task.Factory.StartNew<T>( ) method, 9 

Task.IsCancelled property, 17 

Task.Result property, 9 

tasks, 7–48 

cancelling, 15–25 

creating composite cancellation 
token, 23 

determining if task was cancelled, 
24–25 

monitoring by polling, 17 

monitoring with delegate, 19–20 

monitoring with wait handle, 20 

multiple tasks, 22 

child, creating, 126–129 

common problems 

assuming status on any-to-one 
continuations, 164 

deadlocked task scheduler, 169–172 

excessive spinning, 47–48 

inconsistent/unchecked 
cancellation, 162 

local variable evaluation, 46 

reusing objects in producers, 166 

task dependency deadlock, 45 

trying to take concurrently, 165 

using BlockingCollection as 
IEnumerable, 168 

continuations, 110–126 

any-to-one, 117–119 

canceling, 120–122 

handling exceptions, 122–126 

many-to-one, 117–119 

one-to-many, 113 

selective, 115 

simple, 111–113 

waiting for, 122 

creating and starting, 8–15 

creating simple, 9–10 

getting result, 13–14 

identifying, 15 

setting task state, 11–13 

specifying task creation options, 15 
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custom task scheduler 

creating, 156–160 

using, 160 

exception handling, 35–43 

basic exceptions, 36–37 

reading task properties, 39–41 

using custom escalation policy, 41–
43 

using iterative handler, 37–39 

executing lazily, 43–44 

Hello task, 7–8 

Producer/Consumer pattern, 146–155 

combining multiple collections, 
151–155 

creating pattern, 147–151 

status of, 43 

using synchronization to coordinate, 
129–146 

AutoResetEvent class, 141–142 

Barrier class, 131–135 

CountDownEvent class, 136–139 

ManualResetEventSlim class, 139 

SemaphoreSlim class, 143–146 

waiting for, 25–34 

one of many tasks, 34 

several tasks, 33–34 

single task, 31–32 

using cancellation token wait 
handle, 26–27 

using classic sleep, 27–28 

using spin waiting, 29–30 

TaskScheduler class, 41, 113, 156, 159–160, 
181 

Task.Start( ) method, 113, 160 

Task.Status property, 43, 162 

TaskStatus.WaitingForChildrenToComplet
e value, 129 

Task.Wait( ) method, 33, 36, 122 

Task.WaitAll( ) method, 33–34, 36–37, 40, 
122, 266 

Task.WaitAny( ) method, 30, 34, 36, 164 

Task.WaitForAll( ) method, 30 

TAType antecedent result, 119 

TCType continuation result, 119 

TerminalMethodA( ) method, 261 

TerminalMethodB( ) method, 261 

testing parallel performance 

making simple performance 
comparisons, 253–256 

performing parallel analysis with Visual 
Studio, 256–260 

using good coding strategies, 252–253 

Thread Assignment column, 264 

Thread class, 157–158, 160 

thread local storage (TLS), 55, 57–59, 190–
192 

ThreadLocal class, 55, 57 

ThreadLocal<int> class, 57 

Threads button, 258 

Thread.Sleep( ) method, 26–28, 47 

Thread.SleepWait( ) method, 26 

Thread.SpinWait( ) method, 29–30, 47 

ThrowIfCancellationRequested( ) method, 
16–17 

TLS (thread local storage), 55, 57–59, 190–
192 

ToArray( ) extension method, 233 

ToArray( ) method, 160 

ToDictionary( ) extension method, 233 

Token property, 16, 26 
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Token.Register( ) method, 17 

Token.ThrowIfCancellationRequested( ) 
method, 16 

Token.WaitHandle.WaitOne( ) method, 17 

ToList( ) extension method, 233 

TPL (Task Programming Library), 1–2, 4, 7, 
9, 15, 35 

TryAdd( ) method, 151 

TryAddCount( ) method, 136–137 

TryAddCount(int) method, 
CountDownEvent class, 137 

TryAdd(T, int, CancellationToken) 
method, BlockingCollection class, 
150 

TryAdd(T, int) method, BlockingCollection 
class, 150 

TryAdd(T, TimeSpan) method, 
BlockingCollection class, 150 

TryAdd(T) method, BlockingCollection 
class, 150 

TryAdd(TKey, TVal) method, 
ConcurrentDictionary class, 95 

TryAddToAny(BlockingCollection<T>[ ], T, 
int, CancellationToken) method, 
153 

TryAddToAny(BlockingCollection<T>[ ], T, 
int) method, 153 

TryAddToAny(BlockingCollection<T>[ ], T) 
method, 153 

TryAddToAny(BlockingCollection<T>[ ], T, 
Timespan) method, 153 

try...catch...finally sequence, 105 

TryDequeue( ) method, 89–90, 156 

TryDequeue(out T) method, 
ConcurrentQueue class, 91 

TryEnter( ) method, 70 

TryExecuteTask( ) method, 156–157, 160 

 

TryExecuteTaskInLine( )method, 156, 159 

TryGetValue( ) method, 95 

TryGetValue(TKey, out TVal) method, 
ConcurrentDictionary class, 95 

TryPeek( ) method, 89–91, 93 

TryPeek(out T) method 

ConcurrentBag class, 94 

ConcurrentQueue class, 91 

ConcurrentStack class, 92 

TryPop( ) method, 91 

TryPop(out T) method, ConcurrentStack 
class, 92 

TryPopRange( ) method, 91 

TryPopRange(out T[ ], int, int) method, 
ConcurrentStack class, 92 

TryPopRange(out T[ ]) method, 
ConcurrentStack class, 92 

TryRemove(TKey, out TVal) method, 
ConcurrentDictionary class, 95 

TryTake( ) method, 93, 151, 165, 168 

TryTakeFromAny(BlockingCollection<T>[ 
], out T, CancellationToken) 
method, 153 

TryTakeFromAny(BlockingCollection<T>[ 
], out T, int) method, 153 

TryTakeFromAny(BlockingCollection<T>[ 
], out T) method, 153 

TryTakeFromAny(BlockingCollection<T>[ 
], out T, Timespam) method, 153 

TryTake(out T, int, CancellationToken) 
method, BlockingCollection class, 
152 

TryTake(out T, int) method, 
BlockingCollection class, 152 

TryTake(out T) method, 
BlockingCollection class, 152 

TryTake(out T) method, ConcurrentBag 
class, 94 
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TryTake(out T, TimeSpan) method, 
BlockingCollection class, 152 

TryUpdate(TKey, TVal, TVal) method, 
ConcurrentDictionary class, 95 

■U 
unbounded collections, 149 

unchecked cancellation, 162 

unexpected mutability, 100 

unhandled exceptions, 35, 122 

UnobservedTaskException event, 
TaskScheduler class, 157 

UnobservedTaskExceptionEventArgs.Exce
ption property, 43 

UnobservedTaskExceptionEventArgs.SetO
bserved( ) method, 43 

upgradable read locks, 83–87 

■V 
value factory, TLS, 57 

Value property, 55, 57 

Visual Studio, performing parallel analysis 
with, 256–260 

■W 
Wait( ) method, 30–33, 36, 122, 129–130, 

136–137, 139, 143–146, 159 

wait handles, 20, 60, 72–76 

WaitAll( ) method, 33–34, 36–37, 40, 62, 74, 
76, 104, 122, 266 

WaitAny( ) method, 30, 34, 36, 74, 76, 164 
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