THE EXPERT’S VOICE® IN .NET

Pro

.NET 4 Parallel
Programming in C#

Discover how concurrent programming
can improve your code

Adam Freeman

Apress:

Pro .NET 4 Parallel
Programming in C#

Adam Freeman

Apress-

Download from Wow! eBook

Boykma
Text Box
Download from Wow! eBook

Pro .NET 4 Parallel Programming in C#
Copyright © 2010 by Adam Freeman

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2967-4
ISBN-13 (electronic): 978-1-4302-2968-1
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning

Lead Editor: Ewan Buckingham

Technical Reviewer: André van Meulebrouck

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Anne Collett

Copy Editor: Heather Lang

Production Support: Patrick Cunningham

Indexer: BIM Indexing & Proofreading Services

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales—eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

For my wife Jacqui Griffyth and her chickens

Contents at a Glance

About the AUtROrccvsmmimmmsnmienmsnss s Xiii
About the Technical REVIEWETccssessssmsmsssnsssssnssmssssssssassssssnsssssnsssssnsssssnssnssnsanss xiv
AcCKnOWIedgments........ccuveesmrsmmsmsmmsssmsssmssssssssssnsssss s ssnssssnssssm s ssn s s san s s nnnn s nn s Xv
Chapter 1: Introducing Parallel Programmingc.ccccussssmssssmmsssssssssssssssssssssssssssanss 1
Chapter 2: Task Programming......ccuuesessssssssssnsssssssssssnsessansesssssesssnsesssnsesssnsesssnnssssnns 7
Chapter 3: Sharing Datacccovnnmemmmmmmssmmmmmssssmmmssssmmsssss s ———— 49
Chapter 4: Coordinating Tasksccucusmmsmmmssmsssmssnmssmmssmmssssssssmssms s ssssssassanns 109
Chapter 5: Parallel LOOPScceerruremmmsssssnssnssmmssnnnnnsssnnss 173
Chapter 6: Parallel LINQcccusmmsnmmsanmssassssnsssasssssssssnsssassssssssasssssssssnsssassssanssns 219
Chapter 7: Testing and Debuggingcccusseerrmssssnnnmsssssnsnmsssssnssssssssnssssssssnsssssssnns 251
Chapter 8: Common Parallel Algorithmsc.ccccusmmmnsmmmsssnsmsssssmsssssssssssesssnnsns 271
INA@X..eeeiiiiisnnnnnnssssnnsnsssssnnnssssssnnssssssnnnssssssnnnnsssssnnnnsnsssnnnsnssssnnnnnssssnnnnnssssnnnnnssssnnnnnnss 295

Contents

About the AUtROrccvsmmimmmsnmienmsnss s Xiii
About the Technical REVIEWETccssessssmsmsssnsssssnssmssssssssassssssnsssssnsssssnsssssnssnssnsanss xiv
Acknowledgments..........ccccummssmmmssmnmsssasmsssansssssssssssnsssssnssssansssssnsasssnsssssnnssssnsanssnnanssns Xv
Chapter 1: Introducing Parallel Programmingc.ccccussssmssssmmsssssssssssssssssssssssssssanss 1
Introducing .NET Parallel Programming.........c.cccocvernernessensessessessessessessesssssesssssessssssssssssnnes 1
What’s in This Book (and What IS NOt).........cccccveeiiennnmiesnesesnsesssse e sessssesnes 2
Understanding the Benefits (and Pitfalls) of Parallel Programmingccceevvvvvvvrennnne. 3
Considering OVEINEA ..o s 3
CoOrdinating DALA........ccveeeerrreererrs et r s e e R e n R nn s 3
SCAlING APPICALIONScererrieccrerrre et e s p e e a e e a s e e e nnns 3
Deciding When t0 GO Parallel ... sssnnnes 3
Deciding When to Stay Sequential...........c.ccocverircercncrsr s 4
Getting Prepared for ThiS BOOK..........cceoveieneriesresesesnnese s s sss s e sssesnesessesnssesnens 4
Understanding the Structure of ThiS BOOK...........cccvererererersesesesesesese e 4
Getting the EXample COAE ... s 5
SUMMANY ...ttt a s e a e s e r e e s R nn e eae e e e e n e e sae e s e nnnnnnnnns 6

A\

=

CONTENTS

Chapter 2: Task Programming......ccuusesmmssssssnmssssssnssssssssnsssssssssnsssssssnnssssssnnnssssssnnnsnss 7
e I T G 7
Creating and STarting TASKSccccvrerrerrerrerrirsirses s se s e e snssss e s sassnssnssassnnsns 8
Creating SiMPIE TASKS.......veererererereresesesesesesesesesesesssesesessasssaeas 9
SEttiNg TASK STALEcvcucceerriccrirr e e b e p e s 11
GEttiNG @ RESUIL ... ———————— 13
Specifying Task Creation OPtioNS..........ccccviirrninnc e a s e s 15
L0 LeT L I 15
CanCelling TASKS......cccirereirerieirs s 15
Monitoring Cancellation DY POIlING.......cccoovceeeernieenernnee e sesesessssnnes 17
Monitoring Cancellation with @ Delegate...........cooceerrrcnrrsccr s 19
Monitoring Cancellation with @ Wait Handle...........cccouevnrnecnrnsescrsse e seesssens 20
0 1 T T =TT I 22
Creating a Composite Cancellation TOKENcoverererereresesesesesesesesesesese s ssssssssssssssssssssssssssssaens 23
Determining If @ Task Was CanCelled..........ccccvreerererrneeserssse s sesessssssesessssssesesssssssesssssssssssssssenes 24
Waiting for Time 10 Pass.........cccvriinnn s 25
Using a Cancellation Token Wait HandIe ..o sessssssssessssssenes 26
USING CIASSIC SIBEP ..c.eveveeeerereceirieeec st se s e s e s s e e e se e p e e nn s 27
USING SPIN WAILINGcoveviiecrcricrceri et et et e s e e s e b p s 29
WaItiNg fOr TASKS......cccererrerirreri s 30
Waiting for @ SiNGIE TASK.....cccvieierrrieerererse e e sa s se s s e st s e b et nnns 3
Waiting fOr SEVEIal TASKScccevrererererererererererere s es 33
Waiting for One of Many TaskS.........cccceriennirer e 34
Handling EXCeplions in TASKS.......c.ccoerrerrnsesesnneress s sse e ssssssss s ssssesssssssesssssssenns 35
Handling BasiC EXCEPLIONScccouruiiiirireci e 36
Using an Rerative HandIr ... e 37
Reading the Task Properties ..ot s 39
Using a Custom ESCAlation PONICY.........cccuveerrnncncnnneses e s se s e see s sesssessssesassssens 41

CONTENTS

Getting the Status of @ TasK ... ——— 43
Executing TaSKS LAZIlY........cccueerermrerensesenessessesssessssessesss s e sssssssssssssssssssssssssssssssssssssens 43
Understanding Common Problems and Their CaUSES..........c.cooueererenmrernsesessnsesessssesesennes 45
Task Dependency DEAAIOCKcovuceererereerereresese et se s se s ne s e s 45
Local Variable EVAlUALION ... s 46
EXCESSIVE SPINMING....coviiiererrseererrssesese e se e sesasss s sssssss s ssssesessssssssssnsssssssesssessnssssssenes 47
31 3 1 N 48
Chapter 3: Sharing Datacommmmmmmmme s —————————— 49
The Trouble With Data..........cccoeeeriresreres e 50
GOING 10 The RACES......ccoeeeererererereese e e e 50
Creating SOME OFAEKcccecerireereriere e s e e r e e eea R e ne bR e e e b e e e R e e e nnnpenn s 51
Executing Sequentially ... s 52
Executing IMmutably ... ————— 52
Executing in ISOIALION..........ccovoircrir e ———— 53
SyNChronizing EXECULION.........coueeeeceeececece e sn e snenn e nne e 99
Defining Critical REGIONScoverererrererererseseresessersesessessssessssessssessssessesssssssssessssessesesssnssssssssesssnesssnssaes 59
Defining Synchronization PrMItIVES.........cccceericcrrree et e 59
Using Synchronization WISEY..........ccuecrineicnennne s sesssss s et ssssesessssssssessssssssessssssenes 60
Using Basic Synchronization Primitives..........ccouovrernniesnnennsnsesssesssssessssessessssessssens 61
Locking and MONITOMING.......ccceierrirerenessse s s s e s s e e s s e s e s n e e ne s e nre e ne e nnas 62
Using Interlocked OPEratioNnscccceceererieseseressnsesesessssesese e sss e ssssssssesssssssssssssssssssssssssssssssssssenes 67
USING SPIN LOCKINGcvrviueeireeeeirieeecses s e e se e ss s e se s e e s s s e ss e s nnnnnas 70
Using Wait Handles and the MUteX Classcccucerrnnenerennesenesnsesessssssssesessssssesessssssssessssssssssssssenes 72
Configuring Interprocess SYNChrONIZatioN...........cccceerrneresernesesersee s nes 76
Using Declarative SYNChronization............cccccevrcnnnnnnesess s sss s sesssssseses 78
USiNg REAAEr-WItEr LOCKS........cccveiririererirnscsc s sn s sn s se s sssss s s ssssnssnes 79
vii

CONTENTS

viii

Working with Concurrent ColleCtions ... 87
Using .NET 4 Concurrent ColleCtion CIASSES........c.cocverererererermrerenesesesesesesesesesesesesesesese e e s e e sessseesesesens 88
Using First-Generation COlIECHONSccoveirininininninini s 97
USiNG GENEIIC COIBCLIONS.....ccucuceeeerrrece i r e e a s e e p e e nnn s 99

Common Problems and Their CaUSES..........ccovrerermnesessssessssse s s 100
Unexpected MULADIlITYcccceveerriererererererer s re e s e res e e sae e s e sae e saesa s e sas e saesesassesasananns 100
MUIEIPIE LOCKS ..o e e e e e e e 101
LOCK ACQUISITION OFAEEc.ceecccceeesereeese e se e ss s s 103
OFPNANEU LOCKS.cucereriesecresinseesesssse s sesesssss e e s ss s se s se e s sss s et ssasese st ssssenessssssnssssensnssssssenes 105

O30 3] 1 N 107

Chapter 4: Coordinating TaskSccsssesmssnsssansssansssnsssansssansssnsssassssassssnsssansssanssas 109

D0iNg More With TASKScccuceeerrerenerieresssesese s e e sse s s s e ssssesse s snes 110

Using Task Continuations ... 110
Creating Simple CoNtiNUALIONSccccceiiererereseser e e nnnn s 111
Creating One-to-Many CONtINUALIONSccccveiicirirnecre e s 113
Creating Selective CONtiNUALIONS..........covverereinescre e r s e sren s 115
Creating Many-to-One and Any-To-0ne ContinUationscccevreenerernesesesssssesese s sesessenes 117
Canceling CONtINUALIONScveverererererere st 120
Waiting for CONtiNUALIONScccceeierecerr e e 122
Handling EXCEPLIONSccoeiereccre s 122

Creating Child TASKScccvrerereneseresesesesese s sss e s se s sessssssesssssssassssssanaes 126

Using Synchronization to Coordinate Taskscceceervrrrsssessensesses s sessesenns 129
272 - 131
COUNEDOWNEVENT ... s 136
ManUaIRESEIEVENTSIIM........coccererrccrr e p e e r e n s p e e n s 139
AULORESEIEVENT ...t se e e s 141
SEMAPNOTESIIM ...ttt r s b e e s s e s s e s e s e s s s s se s s s s e e s e nanEnsssnsnsnsnsnsnsnsnsas 143

CONTENTS

Using the Parallel Producer/Consumer Pattern ... 146
Creating the PAIEIN ... e e e 147
Combining Multiple COlECHONSccceereieeerereccre e e 152

Using a Custom Task SChedUIercccveeerienesserr s 156
Creating @ CuStom SCREAUIET ... s 156
Using @ CUSOM SCREAUIETceeeieccr e r s e n s 160

Common Problems and Their CaUSES..........ccorrerermenernsssssssse s 162
Inconsistent/Unchecked CanCellationccoeeeeriecnnnncscss s sesn s 162
Assuming Status on Any-To-0ne ContinUAtioNS..........cccueeeerrnererernsesese e es 164
Trying t0 Take CONCUITENTIYccvruieirirrccr e e et p s 165
Reusing ODJECLS iN PrOUUCETS.......cvierererrerersererseserseseressssessesessesessessssessssessssesssssssssssssnsssensssessessssssanaens 166
Using BlockingCollection as I[ENUMETADIEccceeruruecrerereecrireeeses e 168
Deadlocked TaSk SCREAUIEEcevvererererererere et 169

31 3] 1 172

Chapter 5: Parallel LOOPSc.occurrmsssnssmsssssssssssssssssssssssssssssssssnssssssnsnssssssnsssssssnnns 173

Parallel vs. Sequential LOOPS.......cccvvrierierimnienieniessessessessesessessesessessessessesaessesaessesaesaesns 173

The Parallel ClaSS ..o s 175
INVOKING ACHIONS ...t e e e s e p e a s e p e e nnnn s 175
USING Parallel LOOPSovoueeeererrecseresseesesesssssessssssssesssssssssesssnes 176
Setting Parallel Loop OPLONSccccviincnnnn et sss s s ss s sas s s 181
Breaking and Stopping Parallel LOOPS........cceverriesereresesssesesssssesessssesssessssssssesssssssssssssssssssssssssssssssssnes 183
Handling Parallel LoOp EXCEPHONSccoeeeererrcirernece e 187
GELtiNG LOOP RBSUILS.....cerueereerereerererereree e reeserse e saesesaesas e sas e saesesse s sae s saessssesassessssssasnessesesesssnesasanaens 188
Canceling Parallel LOOPScceeererseeneresseesessssssssessssssssesssssssssssssssssssssssssssssssssssnsssssssssssssssssssssssenes 189
Using Thread Local Storage in Parallel LOOPScccouecrrnncnnnncnesensese s sssesesssssesessssssesesssssseses 190
Performing Parallel Loops With DEPENUENCIES.......ccveeerererierererererseserseserserersersssesssersssessesessssessssesaens 193
Selecting a Partitioning SIrategyc.ooeoeerrrieicrreer s 195
Creating a Custom Partitioning Strategyc.cccevrrrnienrnnienrr s es 200

1X

CONTENTS

Common Problems and Their CaUSES..........ccurierernmnimnmss s 214
Synchronization in LOOP BOGIEScccevueeerereneeserensssesessssssssessssssssesssaes 214
LOOP BOAY Data RACES.......ccoururueeererecirirece s se st 215
Using Standard COIIBCLIONS..........ccvuierererrreererse e e n s nsr e e snsn s 216
USiNg Changing DALAcccovueemrerrnesesersseesessssssese s ssssse e ssse e s s sssssssssssssssssssssssssssssssssssssnssssssssnes 217

301101 1 T 218

Chapter 6: Parallel LINQcccucmmimmmsnsmmsssmssssmssssssssssssssssssssssssssssssssssnsssassnsnsnnss 219

0 o) 219

USING PLINQ QUEKIEScceeerererrrrsssseseeesesessnsssssssssnens 222
Using PLINQ QUErY FEATUIES........couruieeerececer et 225
Ordering QUETY RESUIES.......ccvuiuiereriree e s e e e a e e b s e b s et e st e s nnep s 226
Performing @ NO-RESUIL QUETY..........cceceeerrreierersrreesesessssse e sesessssssssessssssssessssssssssssssssssssssssssesssssssaes 231

Managing Deferred QUery EXECULIONcccceververrerierrerres e see e sn e ssnesae e 232

Controlling CONCUITENCYccccererereressersessssesssssssessssssssssssesssssssessssssssssssessssssssssssssssssssns 234
FOrcing ParalleliSM ..o s 235
Limiting ParalleliSM ..o e 236
Forcing Sequential EXECULION ..ot e 237

Handling PLINQ EXCEPLIONS.......ccceurrrerenreeemseseresessssesssesesesesssssssssssssesesesssssssssssssnssenens 238

Cancelling PLINQ QUEKIESc.ceuverrrrereeeseressressssssssssesesesesssssssssssssssssssssssssssssssnsssssssnens 239

Setting Merge OPtioNS........c.ccoeeeiiernnmiesrsse e sa s s n s 240

Using Custom Partitioningccceeverenenennness s ses e sss s ssssesssessssassassassasssssssssssnns 242

Using Custom Aggregationcccceeeeeeesssesssssssses s sss s ssssssssssssssssesssssessessesssssssnenns 245

Generating Parallel RANGES ... 246

CONTENTS

Common Problems and Their CaUSES..........ccurierernmnimnmss s 247
Forgetting the PLINQ BaSIiCScccvrreerererresenerssssesessssssesessaes 247
Creating Race CONditions ... 248
CONTUSING OFABIING....ceveereeerrerererererereressersesersesersesesaesssesaserssessessssssssessssersnsessssesassensensesessssssassanaens 248
SeQUENTIAL FIILEIING ...veveeeeereiececrerseese st se s e srsss e e e e se s e s nrnsnns 249

0T 111 1T OO 250

Chapter 7: Testing and Debuggingcucccsusssesmsssnsssssnsssssnsssssnsssssnsssssnsssssnnssssanssss 251

Making Things Better When Everything Goes Wrongcccueeensernnnssesensesesssessnsennes 251

Measuring Parallel Performance ... 252
Using GOOd COdiNG SIrat@GIESc.eoeeererereereriereese s senns s 252
Making Simple Performance COMPAriSONSccccerurueererersnesesessssssesessssssesessssssssessssssssesssssssssssssssenes 253
Performing Parallel Analysis With Visual StUTi0...........cceerrercnernncsernsesese e sesnenes 256

Finding Parallel BUgS.........ccucrieriersirsissisesses s s sessesssssnssnssnsssssssssssnsssssssssssssssssssnsnns 260
Debugging Program STAte ... s 261
Handling EXCEPLIONSccoeiereccre s 265
Detecting DEAUIOCKS.cccovrriuerirerseserers e e se s se s p s se e nnp e e nnnnnnn s 267

31 3] 1 269

Chapter 8: Common Parallel Algorithmsccccumsmmmemmssemmssmmsassssssmsssssassssnsnes 271

Sorting, Searching, and Cachingcccouceerninnsniernere e 271
Using Parallel QUICKSOI ... 271
Traversing @ Parallel TIB.... ..o et 274
Searching @ Parallel TFEE ..o n s snsnsnenas 276
Using @ Parallel CAChE...........coeveeicciiisss s s 278

Using Parallel Map and ReduCtionsccceevernserensnesnse s ssesessesnsns 280
USiNG @ Parallel Map.........cccoouiieecrer e 280
Using a Parallel REAUCTION.........c.covuiieeerereeerrrss s s nn s 282
Using Parallel MApREAUCE..........ccoruieeeerereeereriseere e p s 283

.

CONTENTS

SPeCUlatiVe PrOCESSING......cccceereererrerrerrerressessessessessesnessesssssssssssessssssssssnssssssssssssssssssannnns 285

R =] T 0] PP PP 285
Speculative CaChING.........oveeeeeerreee et nenp s 288
Using Producers and CONSUMENS..........ccoveeeerressnsesssssssessssessessssesssssssessssssssssssesssnssssns 290
Decoupling the CONSOIE CIASScccceererereirerieeeese e e nns s 290
Creating @ PIPEIINEcccveeereererererereserasersesersesesaesesaesessesassessssessesesasssaesssseransessssessssensessesessssssasanaens 292
INA@X . ueiiiessesssmsssnsrrns s s s s —————————————_ 295

About the Author

Adam Freeman is an experienced IT professional who has held senior
positions in a range of companies, most recently chief technology officer
and chief operating officer of a global bank. He has written several of books
onJava and .NET and has a long-term interest in all things parallel.

xiii
Download from Wow! eBook

Boykma
Text Box
Download from Wow! eBook

About the Technical Reviewer

André van Meulebrouck has an interest in functional programming and
the functional approach to parallel computing. He has written white
papers and articles on functional programming and theoretical computer
science and is a beta tester for F#, which is Microsoft’s new functional
programming language. He lives in southern California and works as a
.NET developer.

Xiv

Acknowledgments

I'would like to thank everyone at Apress for working so hard to bring this book to print. In particular, I
would like to thank Anne Collett for keeping things on track and Ewan Buckingham for commissioning
and editing the book. I would also like to thank Heather Lang and André van Meulebrouck whose
respective efforts as copy editor and technical reviewer made this book far better than it would have
been without them.

CHAPTER 1

Introducing Parallel Programming

When I started programming in the mid-1990s, Java was the hot new language. One of the most talked-
about features was its support for parallel programming—the ability for an application to do more than
one task simultaneously. I was very excited; I worked in a research lab, and I finally had a way to use the
four CPUs in the Sun server that I had managed to get in a moment of budget madness.

Having a four-CPU machine was a big—no, huge—deal in those days. It cost $150,000 and designed
for use in a data center, and I made the machine into a desktop computer by adding a couple of
monitors and shoe-horning it into my tiny office. On a summer’s day, the office temperature reached 95
degrees, and I got dizzy from dehydration. But I was in geek heaven—cool hardware, cool language, and
cool project.

When I started to actually write parallel code, I hit a brick wall; my code didn’t behave the way I
wanted. Everything would suddenly stop, or I'd get bad results or tie up all of the CPUs so badly that I
would have to reboot the machine. A reboot took up to an hour, which was far from ideal when giving
demonstrations.

So, like many other people before me, I embarked on a long and painful learning process to figure
out how to get things right.

Alot has changed over the years. Sun has been sold; a computer with ten times the power of my old
Sun server can be bought at the local mall for $500, and there are rules against making a sauna out of an
office, even in the name of geek glory.

One thing that has remained the same is the gulf between the knowledge and skills required to write
single-threaded versus parallel code. Languages have evolved to make the programmer’s life easier for
writing regular programs, but little has changed for parallel programming—until now, of course.
Microsoft has added features to C#, the .NET Framework, and Visual Studio 2010 that take a big step
toward pairing a modern programming language with a modern approach to parallel programming.

Introducing .NET Parallel Programming

This book is about the parallel programming features of .NET 4, specifically the Task Parallel Library
(TPL), Parallel LINQ, and the legion of support classes that make writing parallel programs with C#
simpler and easier than ever before.

I'have been writing parallel programs on and off since I had that overheated office, about 15 years in
all. I can honestly say that the TPL is the single most impressive, useful, and well thought out
enhancement in all that time.

With the widespread use of multiprocessor and multicore computers, parallel programming has
gone mainstream. Or it would have, if the tools and skills required had been easier to use and acquire.

CHAPTER 1 ' INTRODUCING PARALLEL PROGRAMMING

Microsoft has responded to the need for a better way to write parallel programs with the enhancements
to the .NET framework I describe in this book.

.NET has had support for parallel programming since version 1.0, now referred to as classic
threading, but it was hard to use and made you think too much about managing the parallel aspects of
your program, which detracts from focusing on what needs to be done.

The new .NET parallel programming features are built on top of the classic threading support. The
difference between the TPL and classic threading becomes apparent when you consider the basic
programming unit each uses. In the classic model, the programmer uses threads. Threads are the engine
of execution, and you are responsible for creating them, assigning work to them, and managing their
existence. In the classic approach, you create a little army to execute your program, give all the soldiers
their orders, and keep an eye on them to make sure they do as they were told. By contrast, the basic unit
of the TPL is the task, which describes something you want done. You create tasks for each activity you
want performed, and the TPL takes care of creating threads and dealing with them as they undertake the
work in your tasks. The TPL is task-oriented, while the classic threading model is worker-oriented.

Tasks let you focus primarily on what problem you want to solve instead of on the mechanics of how
it will get done. If you have tried parallel programming with classic threads and given up, you will find
the new features have a refreshing and enabling approach. You can use the new features without having
to know anything about the classic features. You'll also find that the new features are much better
thought out and easier to use.

As I'said, the classic threading model is still there, but the TPL takes care of it for you. Threads are
created and used to execute one or more of your tasks, all without you having to pay attention to the
details of how it happens. The process is very cool and makes parallel programming much more
pleasant and productive.

What'’s in This Book (and What Is Not)

If you want to know how to write parallel programs using C#, this is the book for you. This focused,
hands-on book shows you the classes and features, how to use them, and the kinds of problems they can
be used to solve. Lots of fully worked code samples are included, as well as lists of methods and
properties and pointers and warnings for topics that have potential traps.

This book contains a lot of code. I believe that the best way to learn how to use a feature is to see it
used. You'll often see a chain of examples that only have minor differences, and I make no apology for
this similarity. When you want to remind yourself of a specific class or technique, you will want to see it
being used fully, without having to piece together fragments of examples from different sections and
chapters. For the same reason, the examples tend to be trivial, often adding a series of numeric values or
calculating integer powers. The point is always to show you how to use something in the TPL, not for me
to demonstrate that I can write large applications. Seeing small, simple, frequent, repetitive code, and
more code, is how programmers learn best.

I have avoided writing about the theory behind the new features, and I'm pretty liberal in my use of
terms. Parallel programming is an active area of academic research, and the new .NET parallel features
incorporate some recent innovations and ideas. But this is a book about programming, and my guess is
that you have picked up this book because you, like me, want to know how to program as quickly and as
effectively as possible. I love the research; I find it interesting and respect the people who do it, but this
book is not the place for it.

Similarly, I don’t cover the classic threading model except in a couple of advanced sections
explaining how you can control the way that the TPL interacts with the underlying threads used to
perform your work. Some good books are available on the classic model, but given that the whole point
of the TPL is to abstract away from the details, I am comfortable leaving that material to other authors.

CHAPTER 1 "/ INTRODUCING PARALLEL PROGRAMMING

Understanding the Benefits (and Pitfalls) of Parallel
Programming

Parallel computing is, at heart, a performance play. The work that a program performs is broken up into
pieces, which are performed by multiple cores, processors, or computers. Some of those pieces of work
will be performed at the same time, that is, in parallel, or concurrently, which is where the two key terms
for this kind of programming arise. Writing the code that breaks up and arranges for parallel computing
is called parallel programming.

If you have a multicore or multi-processor machine, spreading the pieces of work across them can
reduce the amount of time to complete the work overall. The key phrase here is can reduce; there are
some caveats that you should be aware of as you read this book.

Considering Overhead

Parallel execution doesn’t come for free. There are overhead costs associated with setting up and
managing parallel programming features. If you have only a small amount of work to perform, the
overhead can outweigh the performance benefit.

Coordinating Data

If your pieces of work share common data or need to work in a concerted manner, you will need to
provide coordination. I explain this is detail in Chapters 3 and 4, but as a general rule, the more
coordination that is required, the poorer the performance of your parallel program. If the pieces of work
can be performed in complete isolation from one another, you don’t have to worry. But such situations
are uncommon, and mostly, you will have to take care to ensure that coordination is used to get the
results you desire.

Applying coordination is not hard, but applying just the right amount is a trick that comes with
forethought and experience. Too much coordination compromises the performance of your parallel
program; too little gets you unexpected results.

Scaling Applications

Adding a second core or CPU might increase the performance of your parallel program, but it is unlikely
to double it. Likewise, a four-core machine is not going to execute your parallel program four times as
quickly— in part because of the overhead and coordination described in the previous sections. However,
the design of the computer hardware also limits its ability to scale. You can expect a significant
improvement in performance, but it won’t be 100 percent per additional core, and there will almost
certainly be a point at which adding additional cores or CPUs doesn’t improve the performance at all.

Deciding When to Go Parallel

My advice for assessing if a problem can be parallelized successfully is to just give it a try and measure
the results. If a problem is difficult to write a parallel solution for, you will find out pretty quickly. If the
problem can be parallelized but is affected by one or more of the caveats in the previous section, you can
make an informed decision as to whether to use the parallel version or stick with the sequential

CHAPTER 1 ' INTRODUCING PARALLEL PROGRAMMING

implementation. Either way, you’ll have increased your exposure to, and experience with, parallel
programming.

The key is measurement. Don’t just assume that a parallel solution will give you better performance
and move on. Aside from the caveats I mentioned, you may well find that your first attempt can stand to
be improved, and unless you measure, measure and measure again, you won’t know what’s going on.
See Chapter 7 for details of how to use the Stopwatch class as a simple and effective measurement tool.

Deciding When to Stay Sequential

It may seem odd to emphasize the value of sequential execution in a book about parallel programming,
but effective parallel programmers know when to leave well enough alone. Some problems are
inherently sequential in nature—there are no pieces of work that can be performed concurrently. Some
problems require so much coordination that the overhead incurred by parallel execution cancels out the
performance gains. Some problems come with a mass of legacy code that would require too much
rewriting to integrate with parallel code.

One of the most important times to consider sequential execution is when something is wrong with
your parallel code and you can’t work out why. There are some new parallel features in the Visual Studio
2010 debugger that can be very helpful in tracking down bugs (see Chapter 7), but sometimes you need
to go back to the basics to make sure that you are able to code a solution that works at all.

Getting Prepared for This Book

You should already know how to write C# code and use Visual Studio to create, compile, and run .NET
applications in C#. You need Visual Studio 2010 and .NET 4 for this book. The edition of Visual Studio
you have doesn’t matter except in Chapter 8, which uses the Concurrency Visualizer and some debugger
features that are only available with the commercial editions. All of the examples in this book are
available for download as Visual Studio solutions; you can get them from the Source Code page at
www.Apress. com.

Understanding the Structure of This Book

The first several chapters of this book focus on introducing and using the basic unit of the TPL, the Task
class. There is a lot to take in, especially in Chapter 2, but stick with it, and you will start to make sense of
it all. When you get to Chapters 3 and 4, I hope you will start to see how these features can be of use to
you in your programming.

Chapter 5 focuses on parallel loops, which are replacements for the standard for and foreach loops,
except that loop iterations are processed in parallel. This is like “parallel programming light,” but I have
put it after the Task class chapters, because to get the most from these useful loops, you need to
understand something of what is happening behind the scenes.

Chapter 6 looks at Parallel Language Integrated Query (PLINQ), which is a parallel-enabled version
of LINQ to Objects. If you are a LINQ programmer (and if not, why not?), you will love this chapter.
PLINQ is a happy marriage of the performance of parallelism and the flexibility and ingenuity of LINQ.

In Chapter 7, I give a very brief overview of the tools available to help you measure the performance
of your parallel code and track down bugs. Parallel programming adds some unique problems to
debugging, but the new Visual Studio 2010 parallel debugger features go a long way to addressing them.

http://www.Apress.com

The final chapter, Chapter 8, contains some sample implementations of common parallel
algorithms. In many cases, especially when you are starting with parallel programming, you will find that
what you are looking for—or at least something that you can use as a starting point—is contained in this
understand how the new parallel features

chapter. If nothing else, you should look at these examples to
of .NET can be combined to create powerful algorithms with

Getting the Example Code

You can get the source code for all of the examples from the Apress web site. There is a different Visual
Studio solution for each chapter and each listing is contained in a separate project. Figure 1-1 shows you

how this appears in Visual Studio 2010.

CHAPTER 1

surprisingly little code.

06 02 - Task Programming - Microsoft Visual Studio

o @] = |

File Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help

JIRFRE RSO

iG-S 4 aB]9 -0 - -5 b [Debug B
R 2 0PE B3N

Listing 02.cs

H4Listing 02 Listing 02
Slusing System;
using System.Threading.Tasks;

~[% Main(stringl] args)

| .

Jnamespace Listing 82 {

class Listing_e2 {

s2inog ejeq 4 X0q100L 3.

5 static void Main(string[] args) {
// use an Actien delegate and a named method
Task taskl = new Task(new Action(printMessage))s

// use a anonymous delegate
Task task2 = new Task(delegate {
printMessage();

1

// use a lambda expression and a named method
Task task3 = new Task(() => printMessage());

/! use a lambda expression and an ancnymous method
Task task4 = new Task(() => {
printMessage();

B

Error List
@ 0Emors | i\ 0 Wamings | (i) 0 Messages

Description File Lme' Co\u;rm Project ‘

B Solution Explorer

> 1 x

= 2Ea
- Solution 02 - Task Programming’ (26 projects) «
4 Code Listings I
» (& Listing 01
(& Listing_02
> =dl Properties
. [31 References
<] Listing 02.cs
. [Listing_03
» (5 Listing_04
> [Listing 05
» (& Listing 06
. [Listing_07
» (5 Listing_08
. (5 Listing_09
» (& Listing 10
» (3 Listing 11
. (3 Listing 12
. (5 Listing 13
» [Listing 14
» (& Listing 15
. [Listing_16
. (5 Listing 17
» (3 Listing 18
» (& Listing 19
. [Listing_20
. (5 Listing_21
. (5 Listing_22
» (& Listing 23

a

m

P [

&3] Solution Expl...

EZ Class View [Model Brows...

Figure 1-1. The example code for Chapter 2 in Visual Studio 2010

To run a listing, right-click the project in the Solution Explorer window, and select Set As Startup
Project, as shown in Figure 1-2. Once you have selected the project you want, press Ctrl+F5 to compile

and run the code.

INTRODUCING PARALLEL PROGRAMMING

CHAPTER 1 " INTRODUCING PARALLEL PROGRAMMING

Build

Solution Explorer Rebuild

| o (2] | el Clean
4 Solution 02 - % Publish.

4 ¢ Code Listi Run Code Analysis
> # Listi i
g LfStan Calculate Code Metrics
a4 [F Listing
. [Prd Project Dependencies...
> [0 Re Project Build Order...
lis pgg

Listing
Listing
Listing Add Service Reference...

Add Reference...

Listing &2, View Class Diagram

> Listing .
. Listing Set as StartUp Project L\@
8 Listing Debug
> Listing % Add Solution to Source Contral..
> Listing
. Listing & Cut Ctrl+X
y Listing . Paste Ctrl+V
8 Listing X Remove Del
> Listing Rename
> Listing)
. . Listing Unload Project
r > Listing j Open Folder in Windows Explorer

’ LI_StI_nE Properties Alt+En
> Listing_.
> Listing_21

i > Listing_22
> Listing_23

P [Py e

'—i‘ ATl = s B2 Class View [Model Brows...

Figure 1-2. Selecting the startup project

Summary

It should be clear that I am very enthusiastic about the new .NET parallel programming features—
enthusiastic enough to write this book and to say that I have huge respect for the team that created
them. These well-designed and well-implemented features will, I am sure, change the way that parallel
programming is perceived by mainstream programmers and do much to drive up the utilization of all of
those multicore machines out there.

CHAPTER 2

Task Programming

Listing 2-1. Hello Task

using System;
using System.Threading.Tasks;

namespace Listing 01 {
class Listing 01 {
static void Main(string[] args) {

Task.Factory.StartNew(() => {
Console.WriteLine("Hello World");

1

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadLine();

Hello Task

Do you feel different? Did your brain pop at the versatility, utility and general flexibility of the new task
programming model? Probably not, but don’t be disappointed. Listing 2-1 shows how to start a simple
task, but it doesn’t begin to illustrate the power of the Task Programming Library.

This chapter shows you the basics. If you have used .NET classic threads, you will see that
standardizing the building blocks for creating and managing tasks can drastically reduce the amount of
code you have to write to create a parallel application. If you are new to parallel programming, then you
should take the time to read through each of the sections - these are techniques that you will use in
every program that you write.

We will start with the Task class, which is at the heart of the Task Programming Library (TPL). I'll
show you how to use the new standardization features to create and start different types of Task, cancel
them, wait for them to complete, and read their results, as well as how to deal with exceptions.

CHAPTER 2 ' TASK PROGRAMMING

To start, take a quick look at the first code listing; it includes some key building blocks that you'll see
throughout this book and use in your own code. Look at the imported namespace:

using System.Threading.Tasks;

This namespace is one that we will be spending a lot of time with, and you will see it in almost all of
the examples in this book; it contains the key classes for parallel programming. Another important
namespace is System.Threading, which you may recognize as the home of the classic .NET threading
classes. This namespace contains classes we’ll use when we come to coordinate the work of several tasks
in Chapter 4.

The most important part of the first listing is the following:

Task.Factory.StartNew(() => {
Console.WritelLine("Hello World");

1;

This is your first sight of the System.Threading.Tasks.Task class, the fundamental class for parallel
programming. We use the static Task.Factory.StartNew() method to create a simple Task whose body
prints a message to the console. This is the simplest way to create a task that requires no input data and
produces no result. You'll learn how to create and start more complicated tasks in the following sections.

And that is our first (simple) parallel program. Running the program produces the following result:

Main method complete. Press enter to finish.

Hello World

Creating and Starting Tasks

To create the simplest of Tasks, you only need to have a task body, that is, a delegate or action that
represents the workload you want performed in parallel. The Task in Listing 2-1 has a simple body,
where the workload consisted of printing a message to the console. We defined the Task body using
alambda expression, which is the form we will use most often throughout this book. Table 2-1
summarizes the different ways that you can use Tasks and the listings in this section that
demonstrate them.

CHAPTER 2 I TASK PROGRAMMING

Table 2-1. Getting Started with Tasks

Problem Solution Listing

Create and start Call the static Task.Factory.StartNew() method with an Action delegate 2-1
a simple task as an argument.

Create a new Task with an Action delegate as an argument. Call Start() 2-2
on the Task instance.

Provide state to Create a new Task with an Action<object> delegate and an object as 2-
a task constructor arguments. 2

Getaresult from Create a new Task<T>, where T is the type of the result you want, and use 2-5
atask an Action or Action<object> delegate as a constructor argument. Use

the return keyword in the task body to create the result in the task. Read

the result by calling the blocking Task.Result property.

Call the static Task.Factory.StartNew<T>() method (where T is the type 2-6
of the result you want) with an Action or Action<object> delegate as an
argument. Use the return keyword in the task body to create the result

in the task. Read the result by calling the blocking Task.Result property.

Creating Simple Tasks
To perform a simple Task, create a new instance of the Task class, passing in a System.Action delegate
that represents the workload that you want performed as a constructor argument. You can explicitly
create the Action delegate so that it refers to a named method, use an anonymous function, or use a
lambda function. Once you have created an instance of Task, call the Start() method, and your Task is
then passed to the fask scheduler, which is responsible for assigning threads to perform the work. We
look at the task scheduler in detail in Chapter 4. Listing 2-2 shows the different ways of creating and
starting simple tasks.

Simple Tasks, while often useful, are limited by their lack of data input and result output. The TPL
provides ways for you to create Tasks with both inputs and outputs, and I'll show you all of the options
available in the following sections.

Listing 2-2. Four Ways to Create Basic Tasks

using System;
using System.Threading.Tasks;

namespace Listing 02 {
class Listing 02 {

static void Main(string[] args) {

10

CHAPTER 2 ' TASK PROGRAMMING

// use an Action delegate and a named method
Task taski = new Task(new Action(printMessage));

// use a anonymous delegate
Task task2 = new Task(delegate {
printMessage();

1

// use a lambda expression and a named method
Task task3 = new Task(() => printMessage());

// use a lambda expression and an anonymous method
Task task4 = new Task(() => {
printMessage();

D;

task1.Start();
task2.Start();
task3.Start();
task4.Start();

// wait for input before exiting

Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

}

static void printMessage() {
Console.WriteLine("Hello World");
}

Running the code in Listing 2-2 gives the obvious result of calling the printMessage() method four
times, as follows:

Main method complete. Press enter to finish.
Hello World
Hello World
Hello World

Hello World

Listing 2-1 uses the Task.Factory.StartNew() method to create and start a Task. There is little
difference between the approaches shown in Listing 2-2 and the Factory.StartNew() method, but
Microsoft recommends using Factory.StartNew() for simple, short-lived tasks.

CHAPTER 2 I TASK PROGRAMMING

Tip You can’t Start() a Task that has already run. If you need to repeat the work performed by a Task that has
completed, you must create another Task instance with the same workload.

Setting Task State

You can supply the state for a Task by passing in an instance of System.Action<object> and an object
representing your state as the command line arguments. Setting the Task state lets you have Tasks
perform similar workloads on different data. For example, imagine that we want our four Tasks from the
previous example to print out different messages to the console so that we know which technique
printed which message. We create instances of Action<object> to set the message that we wanted each
task to print out and use them as we create the Tasks. Listing 2-3 shows how to do this.

Listing 2-3. Adding Task State

using System;
using System.Threading.Tasks;

namespace Listing 03 {
class Listing 03 {
static void Main(string[] args) {

// use an Action delegate and a named method
Task taski = new Task(new Action<object>(printMessage),
"First task");

// use a anonymous delegate

Task task2 = new Task(delegate (object obj) {
printMessage(obj);

}, "Second Task");

// use a lambda expression and a named method

// note that parameters to a lambda don’t need

// to be quoted if there is only one parameter

Task task3 = new Task((obj) => printMessage(obj), "Third task");

// use a lambda expression and an anonymous method

Task task4 = new Task((obj) => {
printMessage(obj);

}, "Fourth task");

task1.Start();
task2.Start();
task3.Start();
task4.Start();

11

12

CHAPTER 2 ' TASK PROGRAMMING

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

}

static void printMessage(object message) {
Console.WriteLine("Message: {0}", message);
}

The example may not seem that useful until we pick one technique for creating Tasks and then use
the state feature to create several at once. Listing 2-4 shows how to get the same effect as in Listing 2-3
but in a much clearer and more concise manner. Now, we are able to create several Tasks, each of which
has the same code statements in the body, but which operates on different state data.

Listing 2-4. Creating Several Tasks Using Task State

using System;
using System.Threading.Tasks;

namespace Listing 04 {
class Listing 04 {

static void Main(string[] args) {

string[] messages = { "First task", "Second task",
"Third task", "Fourth task" };

foreach (string msg in messages) {
Task myTask = new Task(obj => printMessage((string)obj), msg);
myTask.Start();

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadLine();

}

static void printMessage(string message) {
Console.WriteLine("Message: {0}", message);
}

Notice that we explicitly cast the state data to a string so that we can call the printMessage() method
in the lambda expression in Listing 2-4. The only way to pass state to a Task constructor is using
Action<object>, so you must convert or cast explicitly if you need to access the members of a specific
type. Running the code in Listing 2-4 produces the following results:

CHAPTER 2 I TASK PROGRAMMING

Main method complete. Press enter to finish.
Message: Second task
Message: Fourth task
Message: First task

Message: Third task

The order in which the messages print out when you run the code may be different to the order
shown in these results. The task scheduler decides how to allocate threads to perform Tasks and the
order can vary.

Getting a Result
To get a result from a Task, create instances of Task<T>, where T is the type of the result that will be
produced and return an instance of that type in your Task body. To read the result, you call the Result
property of the Task you created.

It is simple and easy to do. Listing 2-5 shows two Tasks that return results, one that uses state and
one that doesn’t.

Listing 2-5. Getting Results from a Task

using System;
using System.Threading.Tasks;

namespace Listing 05 {
class Listing 05 {
static void Main(string[] args) {

// create the task
Task<int> taski = new Task<int>(() => {
int sum = 0;
for (int i = 0; 1 < 100; i++) {
sum += i;
}

return sum;

1

// start the task
task1.Start();

// write out the result
Console.WriteLine("Result 1: {o0}", taski.Result);
// create the task using state

13

CHAPTER 2 ' TASK PROGRAMMING

Task<int> task2 = new Task<int>(obj => {
int sum = 0;
int max = (int)obj;
for (int i = 0; i < max; i++) {

sum += i;
}
return sum;
}, 100);

// start the task
task2.Start();

// write out the result
Console.WriteLine("Result 2: {0}", task2.Result);

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

Reading the Result property waits until the Task it has been called on has completed. In Listing 2-5,
this means that the second Task will not be started until the first has completed, because we call the
Result property on the first Task before creating and starting the second Task.

In Listing 2-1, we are able to create and start a new Task using the static Task.Factory.StartNew()
method. Task.Factory also includes the StartNew<T> method, which will create and start a Task<T> ina
single step as shown by Listing 2-6.

Listing 2-6. Getting a Result with the Task Factory

using System;
using System.Threading.Tasks;

namespace Listing 06 {
class Listing 06 {
static void Main(string[] args) {
// create the task
Task<int> taski = Task.Factory.StartNew<int>(() => {
int sum = 0;
for (int i = 0; i < 100; i++) {

sum += i;
}

return sum;

1

14

CHAPTER 2 I TASK PROGRAMMING

// write out the result
Console.WriteLine("Result 1: {o}", taski.Result);

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

Specifying Task Creation Options

Some of the constructor overloads for Task allow values from the
System.Threading.Tasks.TaskCreationOptions enumeration to be specified. We will discuss the classes
these options relate to later in this book, but they are listed in Table 2-2 just for completeness.

Table 2-2. Members of the TaskCreationOptions Enumeration

Member Description
None Uses the default task creation options
PreferFairness A request to the task scheduler to schedule tasks as fairly as possible (See Chapter 4

for more information about the task scheduler.)

LongRunning Specifies that the task will be long running, which is a hint to the task scheduler
(See Chapter 4 for more information about the task scheduler.)

AttachedToParent Specifies that a child task is attached to a parent in the task hierarchy (See Chapter
4 for more information about the child and parent tasks.)

Identifying Tasks

The Task.CurrentId property returns a unique int that identifies the current Task. This property will
return null if it is called outside of a Task body.

Cancelling Tasks

One of the new areas of standardization in the TPL is cancelling tasks. This may seem like an odd thing
to regard as useful, especially if you are accustomed to writing your own cancellation code using classic
.NET threads. The new approach makes parallel code simpler and more consistent and reduces the risk
of encountering some of the most commonly encountered problems when performing a cancellation, as
you will see when we discuss putting a thread to sleep later in this chapter.

15

16

CHAPTER 2 ' TASK PROGRAMMING

Creating a Task that you can cancel is a four-step process:

1.

4.

Create a new instance of System.Threading.CancellationTokenSource:
CancellationTokenSource tokenSource = new CancellationTokenSource

Call the CancellationTokenSource.Token property to get a System.Threading.
CancellationToken:

CancellationToken token = tokenSource.Token;

Create a new Task or Task<T> using an Action or Action<object> delegate and
the CancellationToken from step 2 as constructor arguments:

Task taski = new Task(new Action(myMethod), token);

Call the Start() method on your Task or Task<T> as you would normally.

To cancel a Task, simply call the Cancel() method on the CancellationTokenSource created in step 1.
Task cancellation is cooperative, which means that the .NET Framework doesn’t force your tasks to
finish; you have to monitor the CancellationToken you used to create your task and stop your task when
you detect that a cancellation has been requested. Passing the cancellation token to the Task constructor
allows the .NET Framework to avoid starting tasks that rely on tokens that have already been cancelled.
Table 2-3 provides a quick summary of the different mechanisms available for cancelling tasks, each of
which I describe in the following sections.

Table 2-3. Canceling Tasks

Problem Solution Listing
Create a Get a System.Threading.CancellationToken by creating a new instance of 2-7
cancellable System.Threading.CancellationTokenSource and accessing the Token

task. property. Use the token as a constructor argument to the Task class.

Cancel a task. Call the Cancel() method on CancellationTokenSource. 2-7

Cancel several Use a single CancellationToken in the constructor of several Tasks, and call ~ 2-10

tasks. the Cancel() method on the CancellationTokenSource.

Monitor several Create a composite cancellation source by calling the 2-11

tokens. CancellationTokenSource.CreatelLinkedTokenSource() method.

Poll for task Check the isCancellationRequested property of CancellationToken each 2-7

cancellation. time your task body loop iterates. If this property returns true, release any
resources you have been using and throw an instance of
OperationCanceledException.

Poll for task Call the Token.ThrowIfCancellationRequested() method to check for 2-8

cancellation. cancellation, and throw an instance of OperationCanceledExceptionina

single code statement.

CHAPTER 2 I TASK PROGRAMMING

Problem Solution Listing
Use adelegate Pass an Action delegate to the Token.Register() method. The delegate will 2-8
for task be invoked when the CancellationTokenSource.Cancel() method is called.
cancellation.

Use a wait Call the Token.WaitHandle.WaitOne() method to block the calling thread 2-9

handle for task until the CancellationTokenSource.Cancel() method is called.
cancellation.

Determineifa Read the Task.IsCancelled property, which returns true if the Task was 2-12
task was cancelled.
cancelled.

Monitoring Cancellation by Polling

Many task bodies contain loops to iteratively process data. You can use the loop iterations to check if
your task has been cancelled by polling the IsCancellationRequested property of the CancellationToken
class. If the property returns true, you need to break out of the loop and release any resources you are
holding (network connections, transaction containers, etc.)

You must also throw an instance of System.Threading.OperationCanceledException in your task
body; this is how you acknowledge the cancellation, and if you forget, the status of your task will not be
set correctly. The following code fragment shows the basic anatomy of a task body loop that polls for
cancellation:

while (true) {
if (token.IsCancellationRequested) {
// tidy up and release resources
throw new OperationCanceledException(token);
} else {
// do a unit of work
}

}

If you don’t have any resources to release, you can simplify your code by calling the
CancellationToken.ThrowIfCancellationRequested() method, which will perform the cancellation check
and throw the exception in one step. This changes the loop anatomy as follows:

while (true) {
token.ThrowIfCancellationRequested();
// do a unit of work
}

}

Listing 2-7 demonstrates creating a cancellable task and polling to check for cancellation.

17

18

CHAPTER 2 ' TASK PROGRAMMING

Listing 2-7. Cancelling a Task

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 07 {
class Listing 07 {
static void Main(string[] args) {

// create the cancellation token source
CancellationTokenSource tokenSource
= new CancellationTokenSource();

// create the cancellation token
CancellationToken token = tokenSource.Token;

// create the task
Task task = new Task(() => {
for (int i = 0; i < int.MaxValue; i++) {
if (token.IsCancellationRequested) {
Console.WritelLine("Task cancel detected");
throw new OperationCanceledException(token);
} else {
Console.WriteLine("Int value {0}", i);
}

}, token);

// wait for input before we start the task
Console.WriteLine("Press enter to start task");
Console.WriteLine("Press enter again to cancel task");
Console.ReadlLine();

// start the task
task.Start();

// read a line from the console.
Console.ReadlLine();

// cancel the task
Console.WriteLine("Cancelling task");
tokenSource.Cancel();

CHAPTER 2 I TASK PROGRAMMING

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

Monitoring Cancellation with a Delegate

You can register a delegate with a CancellationToken, which will be invoked when the
CancellationTokenSource.Cancel() method is called. You can use this as an alternative to the method
shown in Listing 2-7 for checking cancellation, which can be useful if your task relies on other
asynchronous operations, such as I/0 reads. You can also use the delegate feature to be notified when a
cancellation happens; this can be useful in UI applications. Listing 2-8 shows how the delegate feature
can be used.

Listing 2-8. Monitoring Cancellation with a Delegate

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 08 {
class Listing 08 {
static void Main(string[] args) {

// create the cancellation token source
CancellationTokenSource tokenSource
= new CancellationTokenSource();

// create the cancellation token
CancellationToken token = tokenSource.Token;

// create the task
Task task = new Task(() => {
for (int i = 0; i < int.MaxValue; i++) {
if (token.IsCancellationRequested) {
Console.WriteLine("Task cancel detected");
throw new OperationCanceledException(token);
} else {
Console.WriteLine("Int value {0}", i);
}

}
}, token);

// register a cancellation delegate
token.Register(() => {
Console.liriteLine(">»>>>> Delegate Invoked\n");

}s

19

20

CHAPTER 2 ' TASK PROGRAMMING

// wait for input before we start the task
Console.WritelLine("Press enter to start task");
Console.WriteLine("Press enter again to cancel task");
Console.ReadLine();

// start the task
task.Start();

// read a line from the console.
Console.ReadLine();

// cancel the task
Console.WriteLine("Cancelling task");
tokenSource.Cancel();

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

Listing 2-8 is very similar to Listing 2-7, with the addition of the cancellation delegate registered
using the Register () method of the CancellationToken class, which is shown in the bold code in the
listing. The Register() method takes an instance of Action or Action<object>. The latter allows you
provide a state object to your delegate in much the same manner as you would when passing state to a
task delegate. When the Task is cancelled, the Action you have specified is performed. In the case of
Listing 2-8, this is to print out a simple message.

Monitoring Cancellation with a Wait Handle
The third way to monitor task cancellation is to call the WaitOne() method of the CancellationToken.
WaitHandle property. I cover wait handles in depth later in this book, but for this chapter, it is enough to
know that when you call the WaitOne() method it blocks until the Cancel() method is called on the
CancellationTokenSource that was used to create the token whose wait handle you are using.

Listing 2-9 demonstrates the use of the wait handle for cancellation monitoring. Two Tasks are
created, one of which (task2) calls the WaitOne() method, which blocks until the first Task is cancelled.

Listing 2-9. Cancelation Monitoring with a Wait Handle

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 09 {
class Listing 09 {
static void Main(string[] args) {

CHAPTER 2

// create the cancellation token source
CancellationTokenSource tokenSource
= new CancellationTokenSource();

// create the cancellation token
CancellationToken token = tokenSource.Token;

// create the task
Task taski = new Task(() => {
for (int i = 0; i < int.MaxValue; i++) {
if (token.IsCancellationRequested) {
Console.WritelLine("Task cancel detected");
throw new OperationCanceledException(token);
} else {
Console.WriteLine("Int value {0}", i);
}

}
}, token);

// create a second task that will use the wait handle
Task task2 = new Task(() => {

// wait on the handle

token.WaitHandle.WaitOne();

// write out a message

Console.WriteLine(">>>>> Wait handle released");

};

// wait for input before we start the task
Console.WriteLine("Press enter to start task");
Console.WriteLine("Press enter again to cancel task");
Console.ReadLine();

// start the tasks
task1.Start();
task2.Start();

// read a line from the console.
Console.ReadlLine();

// cancel the task
Console.WriteLine("Cancelling task");
tokenSource.Cancel();

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

TASK PROGRAMMING

21

22

CHAPTER 2 ' TASK PROGRAMMING

Cancelling Several Tasks

You can use a single token when creating several Tasks and cancel them all with a single call to the
CancellationTokenSource.Cancel() method. Listing 2-10 shows this in action.

Listing 2-10. Cancelling Multiple Tasks

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 10 {
class Listing 10 {
static void Main(string[] args) {

// create the cancellation token source
CancellationTokenSource tokenSource

= new CancellationTokenSource();
// create the cancellation token
CancellationToken token = tokenSource.Token;

// create the tasks
Task taski = new Task(() => {
for (int i = 0; i < int.MaxValue; i++) {
token.ThrowIfCancellationRequested();
Console.WritelLine("Task 1 - Int value {0}", 1i);

}
}, token);

Task task2 = new Task(() => {
for (int i = 0; i < int.MaxValue; i++) {
token.ThrowIfCancellationRequested();
Console.WriteLine("Task 2 - Int value {0}", i);

}
}, token);

// wait for input before we start the tasks
Console.WriteLine("Press enter to start tasks");
Console.WriteLine("Press enter again to cancel tasks");
Console.ReadlLine();

// start the tasks
task1.Start();
task2.Start();

// read a line from the console.
Console.ReadLine();

CHAPTER 2 I TASK PROGRAMMING

// cancel the task
Console.WriteLine("Cancelling tasks");
tokenSource.Cancel();

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

Creating a Composite Cancellation Token

You can create a token that is composed from several CancellationTokens that will be cancelled if any of
the underlying tokens is cancelled. You do this by calling the System.Threading.
CancellationTokenSource.CreatelLinkedTokenSource() method and passing in the CancellationTokens
that you want to link. The result is a new CancellationToken that you can use normally. Listing 2-11
demonstrates creating and using a composite cancellation token.

Listing 2-11. Using a Composite Cancellation Token
using System;
using System.Threading;
using System.Threading.Tasks;
namespace Listing 11 {
class Listing 11 {
static void Main(string[] args) {
// create the cancellation token sources
CancellationTokenSource tokenSourcel = new CancellationTokenSource();

CancellationTokenSource tokenSource2 = new CancellationTokenSource();
CancellationTokenSource tokenSource3 = new CancellationTokenSource();

// create a composite token source using multiple tokens
CancellationTokenSource compositeSource =
CancellationTokenSource.CreatelinkedTokenSource(
tokenSourcel.Token, tokenSource2.Token, tokenSource3.Token);

// create a cancellable task using the composite token
Task task = new Task(() => {
// wait until the token has been cancelled
compositeSource.Token.WaitHandle.WaitOne();
// throw a cancellation exception
throw new OperationCanceledException(compositeSource.Token);
}, compositeSource.Token);

23

24

CHAPTER 2 ' TASK PROGRAMMING

// start the task
task.Start();

// cancel one of the original tokens
tokenSource2.Cancel();

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

Determining If a Task Was Cancelled

You can determine if a Task has been cancelled by checking the IsCancelled property, which will return
true if the Task was cancelled. Listing 2-12 demonstrates the use of this property.

Listing 2-12. Using the Task.isCancelled Property

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing_12 {
class Listing 12 {
static void Main(string[] args) {

// create the cancellation token source

CancellationTokenSource tokenSourcel = new CancellationTokenSource();
// create the cancellation token

CancellationToken tokenl = tokenSourceil.Token;

// create the first task, which we will let run fully
Task taski = new Task(() => {
for (int i = 0; i < 10; i++) {
token1.ThrowIfCancellationRequested();
Console.WriteLine("Task 1 - Int value {0}", i);

}
}, tokeni);

// create the second cancellation token source
CancellationTokenSource tokenSource2 = new CancellationTokenSource();
// create the cancellation token

CancellationToken token2 = tokenSource2.Token;

CHAPTER 2 I TASK PROGRAMMING

// create the second task, which we will cancel
Task task2 = new Task(() => {
for (int i = 0; i < int.MaxValue; i++) {
token2.ThrowIfCancellationRequested();
Console.WriteLine("Task 2 - Int value {0}", i);

}
}, token2);
// start all of the tasks
taski.Start();
task2.Start();

// cancel the second token source
tokenSource2.Cancel();

// write out the cancellation detail of each task
Console.WriteLine("Task 1 cancelled? {0}", taski.IsCanceled);
Console.WriteLine("Task 2 cancelled? {0}", task2.IsCanceled);
// wait for input before exiting

Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

The code in Listing 2-12 creates two Tasks, each of which is constructed using a CancellationToken
from a different CancellationTokenSource. The CancellationTokenSource for the second Task is
cancelled, but the first Task is allowed to complete normally. The values of the IsCanceled property are
printed out for each of the tasks. Running the code produces results similar to the following:

Task 1 cancelled? False
Task 2 cancelled? True

Task 1 - Int value 0

Task 1 - Int value 9

Main method complete. Press enter to finish.

Waiting for Time to Pass

It can be useful to have a Task wait for a given period of time, for example, if you are periodically polling
the status of something before continuing executing the Task. Making a Task wait like this is referred to

25
Download from Wow! eBook

Boykma
Text Box
Download from Wow! eBook

26

CHAPTER 2 ' TASK PROGRAMMING

as sleeping. You specify a period of time for the Task to sleep for, and it will wait until that period of time
has elapsed, at which point the Task will wake up and continue execution.

Table 2-4. Putting Tasks to Sleep

Problem Solution Listing
Sleep using a Create a CancellationTokenSource, and use the CancellationToken wait 2-13
wait handle. handle by calling the CancallationToken.WaitHandle.WaitOne() instance

method, specifying the number of milliseconds to sleep. The Task will sleep
until the time specified has elapsed or the token has been cancelled.

Sleep using Call the static Thread.Sleep() method, specifying the number of 2-14
classic .NET milliseconds to sleep for. This method does not monitor cancellation
threads. tokens.

Sleep using spin Call the static Thread.Sleephait () method, specifying the number of CPU 2-15
waiting. loops to wait for. Use this technique with caution.

Using a Cancellation Token Wait Handle

The best way to put Tasks to sleep is to use the wait handle of a CancellationToken, which you saw earlier
in the “Cancelling Tasks” section. Create an instance of CancellationTokenSource, and read the Token
property to obtain the CancellationToken instance. Use the WaitHandle property, and call the overloaded
WaitOne() method. In the “Cancelling Tasks” section, you saw the version that takes no arguments,
which causes the calling thread to wait until the CancellationTokenSource.Cancel() method is called.
However, other overloads of this method allow you to specify a period to wait using either an Int32 or a
TimeSpan. When you specify a time period, the WaitOne() method will put the task to sleep for the specific
number of milliseconds or until the CancellationToken is cancelled, whichever happens first. Listing 2-
13 demonstrates how this works.

Listing 2-13. Putting a Task to Sleep
using System;
using System.Threading;
using System.Threading.Tasks;
namespace Listing 13 {
class Listing 13 {
static void Main(string[] args) {
// create the cancellation token source
CancellationTokenSource tokenSource = new CancellationTokenSource();

// create the cancellation token
CancellationToken token = tokenSource.Token;

CHAPTER 2 I TASK PROGRAMMING

// create the first task, which we will let run fully
Task taski = new Task(() => {
for (int i = 0; i < Int32.MaxValue; i++) {
// put the task to sleep for 10 seconds
bool cancelled = token.WaitHandle.WaitOne(10000);
// print out a message
Console.WriteLine("Task 1 - Int value {0}. Cancelled? {1}",
i, cancelled);
// check to see if we have been cancelled
if (cancelled) {
throw new OperationCanceledException(token);
}

}, token);

// start task
task1.Start();

// wait for input before exiting
Console.WriteLine("Press enter to cancel token.");
Console.ReadlLine();

// cancel the token
tokenSource.Cancel();

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

Listing 2-13 creates a Task that prints out a message and then sleeps for 10 seconds using the
WaitOne() method. If you run the code, the messages will be printed until you hit the return key, at which
point the CancellationToken will be cancelled, causing the Task to wake up again. Remember, the
WaitOne() method will wait until either the time specified has elapsed or the token has been cancelled,
whichever happens first. The CancellationToken.WaitHandle.WaitOne() method returns true if the token
has been cancelled and false if the time elapsed, causing the task has woken up because the time
specified has elapsed.

I prefer this technique for putting tasks to sleep because of the immediate response to the token
being cancelled. You'll see in a moment that this is an improvement over the classic threading model.

Using Classic Sleep

Because the TPL uses the classic .NET threading support behind the scenes, you can use the classic
threading technique to put a Task to sleep. Call the static Thread.Sleep() method, and pass a time
interval as an argument. Listing 2-14 reworks the previous example to use this technique.

27

28

CHAPTER 2 ' TASK PROGRAMMING

Listing 2-14. Sleeping Using Classic Threads

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 14 {
class Listing 14 {
static void Main(string[] args) {

// create the cancellation token source

CancellationTokenSource tokenSource = new CancellationTokenSource();
// create the cancellation token

CancellationToken token = tokenSource.Token;

// create the first task, which we will let run fully
Task taski = new Task(() => {
for (int i = 0; i < Int32.MaxValue; i++) {

// put the task to sleep for 10 seconds
Thread.Sleep(10000);
// print out a message
Console.WriteLine("Task 1 - Int value {0}", i);
// check for task cancellation
token.ThrowIfCancellationRequested();

}
}, token);

// start task
task1.Start();

// wait for input before exiting
Console.WriteLine("Press enter to cancel token.");
Console.ReadlLine();

// cancel the token
tokenSource.Cancel();

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

The key difference with this technique is that cancelling the token doesn’t immediately cancel the
task, because the Thread.Sleep() method will block until the time specified has elapsed and only then
check the cancellation status. In this simple example, this means that the task continues to exist, albeit
asleep, for up to 10 seconds after the token has been cancelled.

CHAPTER 2 I TASK PROGRAMMING

Using Spin Waiting

The spin waiting technique is included in this chapter for completeness, but I recommend against using
it. When you use the other two sleep techniques, the thread that is performing your task gives up its turn
in the schedule when its sleeping, so any other threads can have a turn. The scheduler, which is
responsible for managing the threads running at any given time, has to do some work to determine
which thread should go next and make it happen. You can avoid the scheduler having to do this work by
using a technique called spin waiting: the thread doesn’t give up its turn; it just enters a very tight loop
on the CPU. Listing 2-15 demonstrates how to perform spin waiting by using the Thread.SpinWait()
method.

Listing 2-15. Sleeping by Spin Waiting

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 15 {
class Listing 15 {
static void Main(string[] args) {

// create the cancellation token source

CancellationTokenSource tokenSource = new CancellationTokenSource();
// create the cancellation token

CancellationToken token = tokenSource.Token;

// create the first task, which we will let run fully
Task taski = new Task(() => {
for (int i = 0; i < Int32.MaxValue; i++) {

// put the task to sleep for 10 seconds
Thread.Spinlait(10000);
// print out a message
Console.WritelLine("Task 1 - Int value {0}", i);
// check for task cancellation
token.ThrowIfCancellationRequested();

}
}, token);

// start task
task1.Start();

// wait for input before exiting
Console.WriteLine("Press enter to cancel token.");
Console.ReadLine();

// cancel the token
tokenSource.Cancel();

29

30

CHAPTER 2 ' TASK PROGRAMMING

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

The integer argument passed to the Thread.SpinWait() method is the number of times that the tight
CPU loop should be performed, and the amount of time that this takes depends on the speed of your
system. Spin waiting is most commonly used to acquire synchronization locks, which are described in
the next chapter. The problem with spin waiting is that your task doesn’t stop using the CPU; it just
burns a specified number of CPU cycles. This approach distorts the behavior of the scheduling process,
and you can get some quite odd behaviors from an application if you use spin locks wrongly. My advice
is to avoid spin locking, because it can cause a lot more problems than it solves. There are very few
applications that cannot rely on the more robust and predictable sleep techniques.

Waiting for Tasks

When I showed you how to get a result from a Task, you learned that calling the Task.Result waits until
the task has completed. You can also wait for tasks to complete without reading a result by using other
methods in the Task class. This is useful if you want to wait for a Task that doesn’t return a result or if you
need to do some basic coordination between tasks. You can wait for a single Task to complete, wait for a
number of Tasks to complete or wait for the first of a number of Tasks to complete. Table 2-5 provides a
quick summary of techniques for waiting for tasks.

Table 2-5. Waiting for Tasks

Problem Solution Listing
Wait for a Call the Wait() method on the Task instance, optionally providing a 2-16
single task. maximum duration to wait and a CancellationToken to monitor while

waiting.
Wait for a set Call the static Task.WaitForAl1l() method, supplying a Task array as an 2-17
of tasks. argument and optionally specifying a maximum duration to wait and a

CancellationToken to monitor while waiting.

Wait for the Call the static Task.WaitAny() method, supplying a Task array as an 2-18
firstofasetof argument and optionally specifying a maximum duration to wait and a
tasks. CancellationToken to monitor while waiting.

Tip Waiting for a task that has been cancelled will throw an exception; see the next section for details of
handling exceptions in tasks.

CHAPTER 2 I TASK PROGRAMMING

Waiting for a Single Task

You can wait for a single Task to complete by calling the Wait() instance method. The calling method
will not return until the Task instance has completed, been cancelled or thrown an exception. See the
next section for details of how to handle exceptions and the previous section for details of cancelling
tasks. You can wait conditionally on a task by using the overloaded versions of the Wait() method. Table
2-6 shows the overloaded versions.

Table 2-6. Overloaded Versions of Task.Wait() Instance Method

Method Description

Wait() Wait until the Task completes, is cancelled, or throws an exception.

Wait(CancellationToken) Wait until the CancellationToken is cancelled or the Task completes, is
cancelled, or throws an exception.

Wait(Int32) Wait for the specified number of milliseconds to pass or for the Task to
complete, be cancelled, or throw an exception (whichever happens first).

Wait(TimeSpan) Wait until the specified TimeSpan has passed or for the Task to complete, be
cancelled, or throw an exception (whichever happens first).

Wait(Int32, Wait for the specified number of milliseconds to pass, for the

CancellationToken) CancellationToken to be cancelled, or for the Task to complete, be

cancelled, or throw an exception (whichever happens first).

Listing 2-16 illustrates how to use some of the overloaded versions of Wait().

Listing 2-16. Waiting for a Single Task

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 16 {
class Listing 16 {
static void Main(string[] args) {

// create the cancellation token source
CancellationTokenSource tokenSource = new CancellationTokenSource();
// create the cancellation token
CancellationToken token = tokenSource.Token;
// create and start the first task, which we will let run fully

Task task = createTask(token);
task.Start();

31

CHAPTER 2 ' TASK PROGRAMMING

}

// wait for the task

Console.WriteLine("Waiting for task to complete.");
task.Wait();

Console.WriteLine("Task Completed.");

// create and start another task
task = createTask(token);
task.Start();

Console.WriteLine("Waiting 2 secs for task to complete.");
bool completed = task.Wait(2000);
Console.WriteLine("Wait ended - task completed: {0}", completed);

// create and start another task
task = createTask(token);
task.Start();

Console.WriteLine("Waiting 2 secs for task to complete.");

completed = task.Wait(2000, token);

Console.WriteLine("Wait ended - task completed: {0} task cancelled {1}",
completed, task.IsCanceled);

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadLine();

static Task createTask(CancellationToken token) {

return new Task(() => {
for (int i = 0; i < 5; i++) {

// check for task cancellation
token.ThrowIfCancellationRequested();
// print out a message
Console.WriteLine("Task - Int value {0}", i);
// put the task to sleep for 1 second
token.WaitHandle.WaitOne(1000);

}
}, token);

The overloaded versions that specify a time period return a Boolean result, which will be true if the
Task completed before the duration elapsed and false otherwise.

Note If an exception is thrown by a Task, it will be rethrown when the Wait() method is called. See the
“Handling Exceptions in Tasks” section of this chapter for further details.

CHAPTER 2 I TASK PROGRAMMING

Waiting for Several Tasks

You can wait for a number of tasks to complete by using the static Task.WaitAll() method. This method
will not return until all of the tasks passed as arguments have completed, been cancelled, or thrown an
exception. The WaitAl1l() method is overloaded and follows the same pattern of signatures as the
Task.Wait() instance method (see Table 2-5 for details). Listing 2-17 demonstrates how to wait for
several tasks.

Tip When using this method, a Task is considered complete if it has finished its workload, been cancelled, or
thrown an exception. If one or more of your tasks has thrown an exception, the WaitA11() method will throw an
exception. See the “Handling Exceptions” section in this chapter for details.

Listing 2-17. Waiting for Several Tasks

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 17 {
class Listing 17 {
static void Main(string[] args) {

// create the cancellation token source

CancellationTokenSource tokenSource = new CancellationTokenSource();
// create the cancellation token

CancellationToken token = tokenSource.Token;

// create the tasks
Task taski = new Task(() => {
for (int i = 0; 1 < 5; i++) {

// check for task cancellation
token.ThrowIfCancellationRequested();
// print out a message
Console.WriteLine("Task 1 - Int value {0}", i);
// put the task to sleep for 1 second
token.WaitHandle.WaitOne(1000);

Console.WriteLine("Task 1 complete");
}, token);

Task task2 = new Task(() => {
Console.WriteLine("Task 2 complete");
}, token);

33

34

CHAPTER 2 ' TASK PROGRAMMING

// start the tasks
task1.Start();
task2.Start();

// wait for the tasks

Console.WriteLine("Waiting for tasks to complete.");
Task.WaitAll(task1, task2);

Console.WriteLine("Tasks Completed.");

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

In the listing, we create two tasks, one of which takes longer to complete than the other. Notice that
we create cancellable tasks, because we want to use the CancellationToken wait handle to slow down the
execution of the first task by putting it to sleep. We start both tasks and then call Task.WaitAll(), which
blocks until both tasks are complete.

Waiting for One of Many Tasks

The Task.WaitAny() method waits for one of a set of tasks to complete, and this method has a number of
overloads, all of which take a Task array. The method waits until any of the specified Tasks completes
and returns the array index of the completed Task. If you use one of the overloads that accept additional
arguments, a return value of -1 indicates that the time period expired or the CancellationToken was
cancelled before any of the tasks completed. Listing 2-18 demonstrates the WaitAny() method.

Tip When using this method, a Task is considered complete if it has finished its workload, been cancelled, or
thrown an exception. If one or more of your tasks has thrown an exception, the WaitAny() method will throw an
exception. See the “Handling Exceptions” section in this chapter for details.

Listing 2-18. Using the WaitAny Method
using System;

using System.Threading;

using System.Threading.Tasks;
namespace Listing 18 {

class Listing 18 {

static void Main(string[] args) {

CHAPTER 2 I TASK PROGRAMMING

// create the cancellation token source

CancellationTokenSource tokenSource = new CancellationTokenSource();
// create the cancellation token

CancellationToken token = tokenSource.Token;

// create the tasks
Task taski = new Task(() => {
for (int i = 0; i < 5; i++) {

// check for task cancellation
token.ThrowIfCancellationRequested();
// print out a message
Console.WritelLine("Task 1 - Int value {0}", i);
// put the task to sleep for 1 second
token.WaitHandle.WaitOne(1000);

Console.WriteLine("Task 1 complete");
}, token);

Task task2 = new Task(() => {
Console.WriteLine("Task 2 complete");
}, token);

// start the tasks
task1.Start();
task2.Start();

// wait for the tasks

Console.WriteLine("Waiting for tasks to complete.");

int taskIndex = Task.WaitAny(task1, task2);
Console.WriteLine("Task Completed. Index: {0}", taskIndex);

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

Handling Exceptions in Tasks

Another of the useful areas of standardization introduced by the TPL is in exception handling. It doesn’t
matter how well we design, write, and test our code, we still have to handle exceptions.

An exception that is thrown but dealt with is known as a handled exception. An exception that is
thrown and not dealt with is an unhandled exception. Unhandled exceptions are something to avoid in
general programming, but they are especially dangerous in when using the TPL, because by default, they
will cause your program to exit unpredictably.

The TPL provides a consistent model for handling exceptions that occur while a task is executing
them, and the following sections describe the different aspects of this model and show you how to leave
all of your exceptions unhandled and override the default policy for dealing with unhandled exceptions.

Table 2-7 provides the quick guide for handling task exceptions.

35

36

CHAPTER 2 ' TASK PROGRAMMING

Table 2-7. Handling Task Exceptions

Problem Solution Listing
Handle Call a trigger member (Task.Wait(), Task.WaitAl1l(), Task,WaitAny(), 2-19
exceptions Task.Result), and catch System.AggregateException. Get an enumerable

thrown by collection of the exceptions thrown by calling

tasks. AggregateException.InnerExceptions.

Use an Call the AggregateException.Handle() method, providing a delegate that 2-20
exception takes a System.Exception and returns true if the exception has been

handler. handled and false if it should be escalated.

Read Task Call the IsCompleted, IsFaulted, IsCancelled and Exception properties of 2-21
properties. the Task class.

Set a custom Register an event handler with 2-22
escalation System.Threading.Tasks.TaskScheduler.UnobservedTaskException.

policy.

Handling Basic Exceptions

Any exception that is thrown (and not caught) by a Task is squirreled away by the .NET Framework until
you call a trigger member, such as Task.Wait(), Task.WaitAl1(), Task.WaitAny(), or Task.Result, at
which point the trigger member will throw an instance of System.AggregateException.

The AggregateException type is used to provider a wrapper around one or more exceptions, and this
is useful because methods such as WaitAll() coordinate multiple Tasks and may need to present you
with multiple exceptions. This feature is also useful for Task chaining, which is described in the next
chapter. An AggregateException is always thrown by the trigger methods, even when there has been only
one exception thrown.

An example is always the best illustration, so Listing 2-19 creates three Tasks, two of which throw
exceptions. The main thread starts the tasks and then calls the static WaitAll() method, catches the
AggregateException and prints out details of the exceptions thrown by the individual Tasks.

Listing 2-19. Basic Exception Handling

using System;
using System.Threading.Tasks;

namespace Listing 19 {
class Listing 19 {

static void Main(string[] args) {

CHAPTER 2 I TASK PROGRAMMING

// create the tasks
Task taski = new Task(() => {
ArgumentOutOfRangeException exception = new ArgumentOutOfRangeException();
exception.Source = "task1";
throw exception;
1);
Task task2 = new Task(() => {
throw new NullReferenceException();

D;
Ta;k task3 = new Task(() => {
Console.WriteLine("Hello from Task 3");

1

// start the tasks
task1.Start(); task2.Start(); task3.Start();

// wait for all of the tasks to complete

// and wrap the method in a try...catch block

try {
Task.WaitAll(task1, task2, task3);

} catch (AggregateException ex) {
// enumerate the exceptions that have been aggregated
foreach (Exception inner in ex.InnerExceptions) {

Console.WritelLine("Exception type {0} from {1}",
inner.GetType(), inner.Source);

}

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

To get the exceptions that have been aggregated, you call the InnerExceptions property of
AggregateException, which returns a collections of exceptions that you can enumerate.

In the listing, tasks task1 and task2 throw exceptions, which are bundled up into an instance of
AggregateException. This exception is thrown when we call the Task.WaitAll() trigger method. One
shortcoming of this approach to handling exceptions is that there is no obvious way of correlating
exceptions that have been thrown to the task that threw them. In the code listing, the Exception.Source
property is used to indicate that taska1 is the source of the ArgumentOutOfRangeException.

Using an Iterative Handler

Generally, you will need to differentiate between the exceptions that you were expecting and the ones
that are unexpected and you need to propagate. The AggregateException class provides the Handle()
method, which allows you to specify a function delegate that will be called for each exception. Your
function or lambda expression should return true if the exception is one that you can handle and false
otherwise.

37

38

CHAPTER 2 ' TASK PROGRAMMING

The “Cancelling Tasks” section of this chapter explained that you should throw an instance of the
OperationCanceledException to acknowledge a cancellation request. That type of exception is likely to be
one you will have to process most frequently. Listing 2-20 shows you how to use the
AggregateException.Handle() method to differentiate between an exception thrown for a cancellation
and other kinds of exception.

Listing 2-20. Using an Iterative Exception Handler

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 20 {
class Listing 20 {
static void Main(string[] args) {

// create the cancellation token source and the token
CancellationTokenSource tokenSource = new CancellationTokenSource();
CancellationToken token = tokenSource.Token;

// create a task that waits on the cancellation token
Task taski = new Task(() => {
// wait forever or until the token is cancelled
token.WaitHandle.WaitOne(-1);
// throw an exception to acknowledge the cancellation
throw new OperationCanceledException(token);
}, token);

// create a task that throws an exception
Task task2 = new Task(() => {
throw new NullReferenceException();

B;

// start the tasks
task1.Start(); task2.Start();

// cancel the token
tokenSource.Cancel();

// wait on the tasks and catch any exceptions
try {
Task.WaitAll(task1, task2);
} catch (AggregateException ex) {
// iterate through the inner exceptions using
// the handle method
ex.Handle((inner) =» {
if (inner is OperationCanceledException) {

CHAPTER 2 I TASK PROGRAMMING

// ...handle task cancellation...
return true;
} else {
// this is an exception we don't know how
// to handle, so return false
return false;

}
H
}

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

If you compile and run the code in Listing 2-20, you will see one of the exceptions—
NullReferenceException—being reported as unhandled. This is, of course, because the exception
handler only marks OperationCanceledExceptions as handled.

Reading the Task Properties

An alternative to catching the exceptions is to use the properties of the Task class, in particular, the
IsCompleted, IsFaulted, IsCancelled, and Exception properties. You still have to catch
AggregateException when you call any of the trigger methods, but you can use the properties to
determine if a task has completed, thrown an exception, or been cancelled, and if an exception was
thrown, you can get the details of the exception. Listing 2-21 shows you how to use the Task properties.

Listing 2-21. Exception Handling with Task Properties
using System;
using System.Threading;
using System.Threading.Tasks;
namespace Listing 21 {
class Listing 21 {
static void Main(string[] args) {
CancellationTokenSource tokenSource = new CancellationTokenSource();
// create a task that throws an exception

Task taski = new Task(() => {
throw new NullReferenceException();

B;

39

CHAPTER 2 ' TASK PROGRAMMING

Task task2 = new Task(() => {
// wait until we are cancelled
tokenSource.Token.WaitHandle.WaitOne(-1);
throw new OperationCanceledException();
}, tokenSource.Token);

// start the tasks
task1.Start();
task2.Start();

// cancel the token
tokenSource.Cancel();

// wait for the tasks, ignoring the exceptions
try {

Task.WaitAll(task1, task2);
} catch (AggregateException) {

// ignore exceptions

// write out the details of the task exception
Console.WriteLine("Task 1 completed: {0}", taski.IsCompleted);
Console.WriteLine("Task 1 faulted: {0}", taski.IsFaulted);
Console.WriteLine("Task 1 cancelled: {0}", taski.IsCanceled);
Console.WritelLine(task1.Exception);

// write out the details of the task exception
Console.WriteLine("Task 2 completed: {0}", task2.IsCompleted);
Console.WritelLine("Task 2 faulted: {0}", task2.IsFaulted);
Console.WriteLine("Task 2 cancelled: {0}", task2.IsCanceled);
Console.WritelLine(task2.Exception);

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

The code in the listing creates two tasks: one throws an exception, and the other waits for a
CancellationToken to be cancelled. Once the tasks are started, we cancel the token and call
Task.WaitAll() to allow the tasks to complete. We ignore any exceptions by catching and discarding
AggregateException and then print the values of the Task properties to the console, getting the following
results:

CHAPTER 2 I TASK PROGRAMMING

Task 1 completed: True

Task 1 faulted: True

Task 1 cancelled: False

System.AggregateException: One or more errors occurred. ---> System.NullReferenceException:
... details of exception...

Task 2 completed: True

Task 2 faulted: False

Task 2 cancelled: True

Main method complete. Press enter to finish.

The IsCompleted property will return true if the Task has completed and false otherwise. The
IsFaulted property returns true if the Task has thrown an exception and false if it has not or if the Task
has been cancelled. The IsCanceled property returns true if the Task has been cancelled.

Using a Custom Escalation Policy

If you don’t catch AggregateException when you call a trigger method, the .NET Framework will escalate
the exceptions. By default, this means that the unhandled exceptions will be thrown again when your
Task is finalized and cause your program to be terminated. Because you don’t know when the finalizer
will be called, you won'’t be able to predict when this will happen.

But, if you are determined not to handle the exceptions using one of the techniques described in the
previous sections, you can override the escalation policy and supply your own code to call when an
exception is escalated. You do this by adding an event handler to the static
System.Threading.Tasks.TaskScheduler.UnobservedTaskException member, as shown in the Listing 2-
22. Don’t worry about the other members of the TaskScheduler class; they are described in Chapter 4.
Listing 2-22 shows how to implement an escalation policy that writes the exception type to the console.

41

42

CHAPTER 2 ' TASK PROGRAMMING

Listing 2-22. Custom Escalation Policy

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 22 {
class Listing 22 {
static void Main(string[] args) {

// create the new escalation policy
TaskScheduler.UnobservedTaskException +=
(object sender, UnobservedTaskExceptionEventArgs eventArgs) =>

// mark the exception as being handled

eventArgs.SetObserved();

// get the aggregate exception and process the contents

((AggregateException)eventArgs.Exception).Handle(ex => {
// write the type of the exception to the console
Console.WriteLine("Exception type: {0}", ex.GetType());
return true;

D;

};

// create tasks that will throw an exception
Task taski = new Task(() => {
throw new NullReferenceException();
1;
Task task2 = new Task(() => {
throw new ArgumentOutOfRangeException();

1

// start the tasks
taski.Start(); task2.Start();

// wait for the tasks to complete - but do so

// without calling any of the trigger members

// so that the exceptions remain unhandled

while (!task1.IsCompleted || !task2.IsCompleted) {
Thread.Sleep(500);

}

// wait for input before exiting
Console.WritelLine("Press enter to finish and finalize tasks");
Console.ReadlLine();

CHAPTER 2 I TASK PROGRAMMING

The .NET Framework calls the event handler each time an unhandled exception is escalated. Notice
that the UnobservedTaskExceptionEventArgs.SetObserved() method is called to tell the .NET Framework
that the exception has been handled and should not be escalated any further. If you omit the call to
SetObserved(), the exception will be escalated using the default policy. You can get the exception by
calling the UnobservedTaskExceptionEventArgs.Exception property, which will return instances of
AggregateException. See the previous sections for examples of how to process this type.

Getting the Status of a Task

One other area of standardization for parallel programming is the status information available from the
Task.Status property, which returns a value from the System.Threading.Tasks.TaskStatus enumeration.
The enumeration members are shown in Table 2-8.

Table 2-8. Members of the TaskStatus Enumeration

Member Description

Created The task has been initialized but not yet scheduled.

WaitingForActivation The task is waiting to be scheduled or has been scheduled and is

WaitingToRun awaiting execution.

Running The task is running.

WaitingForChildrenToComplete The task is waiting for a child task (covered in the next chapter) to
complete.

RanToCompletion The task completed without being cancelled and without an
exception being thrown.

Canceled The task was cancelled (see the ” Cancelling Tasks” section in this
chapter).

Faulted The task threw an exception (see the “Handling Exceptions in

Tasks” section in this chapter).

WaitingForChildrenToComplete See Chapter 4 for details about this value.

Executing Tasks Lazily

If you want to perform some work in parallel only when the result is required for the first time, you can
use lazy task execution, which combines lazy variable initialization and the Task<>.Factory.StartNew()
method.

43

CHAPTER 2 ' TASK PROGRAMMING

Lazy variables are not initialized until they are required, allowing you to avoid potentially expensive
computations until they are needed or to avoid doing work for variables that may not be needed at all.
You can combine lazy variables with tasks to create a task that is not executed until the lazy variable is
read.

Listing 2-24 demonstrates lazy task execution using two examples: The first defines the task body as
a function and then uses it to create a lazy variable. The second does the same thing in a single
statement. I have included the first version because the code is a lot easier to understand when the two
parts are created separately.

Listing 2-23. Lazy Task Execution

using System;
using System.Threading.Tasks;

namespace Listing 23 {
class Listing 23 {
static void Main(string[] args) {

// define the function

Func<string> taskBody = new Func<string>(() => {
Console.WriteLine("Task body working...");
return "Task Result";

b

// create the lazy variable
Lazy<Task<string>> lazyData = new Lazy<Task<string>>(() =>
Task<string>.Factory.StartNew(taskBody));

Console.WritelLine("Calling lazy variable");
Console.WriteLine("Result from task: {0}", lazyData.Value.Result);

// do the same thing in a single statement
Lazy<Task<string>> lazyData2 = new Lazy<Task<strings>(
() => Task<string>.Factory.StartNew(() => {
Console.WriteLine("Task body working...");
return "Task Result";

N);

Console.WriteLine("Calling second lazy variable");
Console.WriteLine("Result from task: {0}", lazyData2.Value.Result);

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

CHAPTER 2 I TASK PROGRAMMING

Understanding Common Problems and Their Causes

Take a look at the examples in this section for help in troubleshooting common Task programming
problems.

Task Dependency Deadlock
If two or more Tasks depend on each other to complete, none can move forward without the others, so a
deadlock (the condition where the Tasks involved cannot progress) occurs.

Solution

The only way to avoid this problem is to ensure that your Tasks do not depend on one another. This
requires careful attention when writing your Task bodies and thorough testing. You can also use the
debugging features of Visual Studio 2010 to help detect deadlocks (see Chapter 7 for details).

Example

In the following example, two Tasks depend upon one another, and each requires the result of the other
to generate its own result. When the program is run, both Tasks are started by the main application
thread and deadlock. Because the main thread waits for the Tasks to finish, the whole program seizes up
and never completes.

using System;
using System.Threading.Tasks;

namespace Dependency Deadlock {
class Dependency Deadlock {
static void Main(string[] args) {

// define an array to hold the Tasks
Task<int>[] tasks = new Task<int>[2];

// create and start the first task

tasks[0] = Task.Factory.StartNew(() => {
// get the result of the other task,
// add 100 to it and return it as the result
return tasks[1].Result + 100;

B;

// create and start the second task

tasks[1] = Task.Factory.StartNew(() => {
// get the result of the other task,
// add 100 to it and return it as the result
return tasks[1].Result + 100;

1

45

46

CHAPTER 2 ' TASK PROGRAMMING

// wait for the tasks to complete
Task.WaitAll(tasks);

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

Local Variable Evaluation

Assume that you create a series of Tasks in a for loop and refer to the loop counter in your lambda
expressions. All of the Tasks end up with the same value because of the way that the C# variable scoping
rules are applied to lambda expressions.

Solution

The simplest way to fix this problem is to pass the loop counter in as a state object to the Task.

Example

In the following example, five Tasks print out a message that references the counter of the loop that
created them, and they all print the same value. Another five Tasks do the same thing, but get their
values as state objects, and these get the expected values.

using System;
using System.Threading.Tasks;

namespace Local_Variable Evaluation {
class Local Variable Evaluation {
static void Main(string[] args) {

// create and start the "bad" tasks
for (int i = 0; i < 5; i++) {
Task.Factory.StartNew(() => {
// write out a message that uses the loop counter
Console.WriteLine("Task {0} has counter value: {1}",
Task.CurrentId, i);
D;

}

// create and start the "good" tasks
for (int i = 0; i < 5; i++) {
Task.Factory.StartNew((stateObj) => {
// cast the state object to an int
int loopValue = (int)stateObj;

CHAPTER 2 I TASK PROGRAMMING

// write out a message that uses the loop counter
Console.WriteLine("Task {0} has counter value: {1}",
Task.CurrentId, loopValue);

b 1);

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

Excessive Spinning
Many programmers overestimate the performance impact of a Task waiting (either via Thread.Sleep() or
by using a CancellationToken wait handle) and use spin waiting instead (through the Thread.SpinWait()
method or by entering a code loop).

For anything other than exceptionally short waits, spin waiting and code loops will cripple the
performance of your parallel program, because avoiding a wait also avoids freeing up a thread for
execution.

Solution

Restrict your use of spin waiting and code loops to situations where you know that the condition that
you are waiting for will take only a few CPU cycles. If you must avoid a full wait, use spin waiting in
preference to code loops.

Example

In the following example, one Task enters a code loop to await the cancellation of another Task. Another
Task does the same thing but uses spin waiting. On the quad-core machine that I used to write this book,
this example burns roughly 30 percent of the available CPU, which is quite something for a program that
does nothing at all. You may get different results if you have fewer cores.

using System;
using System.Threading;
using System.Threading.Tasks;
namespace Excessive_Spinning {
class Excessive Spinning {
static void Main(string[] args) {
// create a cancellation token source

CancellationTokenSource tokenSource =
new CancellationTokenSource();

47

48

CHAPTER 2 ' TASK PROGRAMMING

// create the first task

Task t1 = Task.Factory.StartNew(() => {
Console.WritelLine("Task 1 waiting for cancellation");
tokenSource.Token.WaitHandle.WaitOne();
Console.WriteLine("Task 1 cancelled");
tokenSource.Token.ThrowIfCancellationRequested();

}, tokenSource.Token);

// create the second task, which will use a code loop
Task t2 = Task.Factory.StartNew(() => {
// enter a loop until t1 is cancelled
while (!t1.Status.HasFlag(TaskStatus.Canceled)) {
// do nothing - this is a code loop

Console.WriteLine("Task 2 exited code loop");

1

// create the third loop which will use spin waiting
Task t3 = Task.Factory.StartNew(() => {
// enter the spin wait loop
while (t1.Status != TaskStatus.Canceled) {
Thread.SpinWait(1000);
}

Console.WriteLine("Task 3 exited spin wait loop");

1

// prompt the user to hit enter to cancel
Console.WriteLine("Press enter to cancel token");
Console.ReadlLine();

tokenSource.Cancel();

// wait for input before exiting
Console.WriteLine("Main method complete. Press enter to finish.");
Console.ReadlLine();

Summary

This chapter introduced you to the basic building blocks that we will use to explore the Task
Programming Library (TPL). You learned how to create and start Tasks, cancel Tasks as they are running,
handle exceptions when things go wrong, and check the status of Tasks—all essential to writing parallel
programs. In the next chapter, we’ll look at one of the most common complexities that parallel
programmers face, specifically sharing data between tasks.

CHAPTER 3

Sharing Data

Listing 3-1. Hello Task

using System;
using System.Threading.Tasks;

namespace Listing 01 {

class BankAccount {
public int Balance {
get;
set;

}

class Listing 01 {
static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create an array of tasks
Task[] tasks = new Task[10];

for (int i = 0; i < 10; i++) {
// create a new task
tasks[i] = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
// update the balance
account.Balance = account.Balance + 1;
}

1
// start the new task

tasks[i].Start();

49

50

CHAPTER 3 ' SHARING DATA

// wait for all of the tasks to complete
Task.WaitAll(tasks);

// write out the counter value
Console.WriteLine("Expected value {0}, Counter value: {1}",
10000, account.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadLine();

The Trouble with Data

Listing 3-1 creates ten Tasks, each of which increments the BankAccount.Balance property 1,000 times.
We wait for all of the Tasks to complete and print out the value of Balance. If there are ten Tasks and each
of them increments Balance 1,000 times, the final value of Balance should be 10,000 (10 x 1000).
Running Listing 3-1 might produce the following results:

Expected value 10000, Balance: 8840

Press any key to continue . . .

You will certainly get a different result if you run the code. Repeatedly running the program
produces a wide range of results. If we are fortunate, we might get the expected result once or twice. In
this chapter, I explain why this happens and how to correct the problem.

Going to the Races
The odd behavior in Listing 3-1 is caused by a data race. Whenever we have two or more Tasks
performing operations that update a shared piece data, there is the potential for a race. And if we don’t
manage the race properly, we get unexpected and undesirable results.

Incrementing the account balance in Listing 3-1 takes three steps:

1. Read the current balance from the BankAccount object.
2. Calculate the new value.
3. Update the BankAccount with the new balance.

Thinking of this as a three-step process is really a convenience. In fact, we don’t know how the
compiler, the runtime, and the operating system are going to perform or optimize our increment
operation, but let’s stick with three steps for the sake of simplicity.

We get a range of results with Listing 3-1 because there are slight variations in the timing of each
Task. If you run the program several times, your machine will be in a different state each time: the CPU
will be more or less busy; there will be different amounts of memory available, and so on. These
differences influence the way in which the Tasks are created, scheduled, and run.

Download from Wow! eBook

Boykma
Text Box
Download from Wow! eBook

CHAPTER 3 ' SHARING DATA

Figure 3-1 shows what can happen when two Tasks race. The Tasks are performing the steps of the
balance update slightly out of phase with each other, because they have been started a short time apart.
Task 1 reads the current balance and gets 0. A fraction of a second later, Task 2 reads the current
balance of the counter and also gets 0—oops. Both Tasks calculate the new balance by incrementing the
starting balance they received, so both produce a new balance of 1 —oops, again.

Task 1 stores its new value, and a fraction of a second later, Task 2 comes steaming along and does
the same thing. We used two Tasks to perform two increments but got a result of 1. That’s a data race—
two Tasks competing to manipulate a piece of shared data without any coordination between them. You
can imagine how bad things get in Listing 3-1 with ten Tasks performing 1,000 increments each.

Tas

k1 Task 2 Balance

Read Current Value

N
o

Y

Read Current Value <« 0

Calculate New Value

VN
o

A

Y

Calculate New Value <« 0

y

Store New Value

\ 4

Figure 3-1.

Creatin

Y

Store New Value —-— 1

A simple data race

g Some Order

A datarace is like a birthday party. The Tasks are the party guests, and when the cake is brought out, the
guests can get a little wild. If all of the guests rush to get themselves some cake at the same time, order
breaks down.

We created a mad scramble to read and write the shared data in Listing 3-1 and ended up with a

datarace. T

he cake in this example is the bank account balance. We have to manage a potential problem

whenever multiple Tasks share and update the same data. There are four broad kinds of solution to
shared data problems:

Sequential execution: We stop parallelizing the work.
Immutability: We stop Tasks being able to modify the data.
Isolation: We stop sharing the data.

Synchronization: We coordinate the actions of the Tasks so that they take turns
instead of competing.

51

52

CHAPTER 3 ' SHARING DATA

We discuss each of these solutions in the following sections and look at the various .NET features
available to support them.

Executing Sequentially

Sequential execution solves the shared data problem by having only one active Task, in essence, going
back to a single-threaded code model. Put another way, you don’t need to share the cake if you are the
only person at the party.

This is the least useful and interesting solution to the data race in a book on parallel programming,
but don’t be afraid of sequential execution if the problem you are trying to solve is not well suited to the
parallel world.

Executing Immutably

Immutability solves the shared data problem by not allowing data to be changed. If data can’t be
changed, there is no scope for a data race. If sequential execution means that you get the cake to
yourself, immutability means that you can look at the cake but can’t eat.

C# supports immutability with the readonly and const keywords. Fields marked with the const
modifier must be declared and assigned in a single statement, such as this:

public const int AccountNumber = 123456;
Once declared and assigned, the const value cannot be changed, and the field can only be accessed
through the type name, not an instance of the type. The readonly keyword is accessible through type
instances and can be modified in a constructor; this means that the value of a readonly field can depend

on which constructor is used to instantiate an immutable type. Listing 3-2 shows demonstrates both
keywords in use.

Listing 3-2. An Immutable Bank Account
using System;
namespace Listing 02 {
class ImmutableBankAccount {
public const int AccountNumber = 123456;
public readonly int Balance;
public ImmutableBankAccount(int InitialBalance) {

Balance = InitialBalance;
}

public ImmutableBankAccount() {
Balance = 0;
}

CHAPTER 3 ' SHARING DATA

class Listing 02 {
static void Main(string[] args) {

// create a bank account with the default balance

ImmutableBankAccount bankAccountl = new ImmutableBankAccount();

Console.WriteLine("Account Number: {0}, Account Balance: {1}",
ImmutableBankAccount.AccountNumber, bankAccounti.Balance);

// create a bank account with a starting balance

ImmutableBankAccount bankAccount2 = new ImmutableBankAccount(200);

Console.WriteLine("Account Number: {0}, Account Balance: {1}",
ImmutableBankAccount.AccountNumber, bankAccount2.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadLine();

Immutability is not a widely used solution in C#, because not being able to change data values is a
huge limitation. In Listing 3-2, we ended up with a bank account whose balance can be read but not
changed. Immutability is useful, however, for creating a clear separation between immutable reference
data that can be safely shared between Tasks and mutable Task data that must be protected using a
different technique.

Tip See the “Unexpected Immutability” example in the “Understanding Common Problems and Their Causes”
section at the end of this chapter for an example of how misusing immutability can cause problems.

Executing in Isolation

Isolation solves the shared data problem by giving everyone their own piece of data. You don’t need to
share if everyone at the party gets their own cake.

We can provide a Task with isolated data by using the constructor overload that takes a state object,
as described in Chapter 2. Listing 3-3 updates our simple bank account example to use isolation. Each
Task is given the current balance as a state object when it is created. The data is isolated because each
Task only modifies its own version of the balance. When all of the Tasks have completed, we read the
results and combine them to accurately update the bank account.

53

54

CHAPTER 3 ' SHARING DATA

Listing 3-3. Isolation by Convention

using System;
using System.Threading.Tasks;

namespace Listing 03 {

class BankAccount {
public int Balance {
get;
set;

}

class Listing 03 {
static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create an array of tasks
Task<int>[] tasks = new Task<int>[10];

for (int i = 0; i < 10; i++) {
// create a new task
tasks[i] = new Task<int>((stateObject) => {

// get the state object
int isolatedBalance = (int)stateObject;

// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
// update the balance
isolatedBalance++;

}

// return the updated balance
return isolatedBalance;

}, account.Balance);

// start the new task
tasks[i].Start();

// get the result from each task and add it to
// the balance
for (int i = 0; i < 10; i++) {
account.Balance += tasks[i].Result;
}

CHAPTER 3 ' SHARING DATA

// write out the counter value
Console.WritelLine("Expected value {0}, Balance: {1}",
10000, account.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

There is no data race in Listing 3-3, because the Tasks are only concerned with their own local
version of the balance. This is an example of isolation by convention: the code is written so that the Tasks
works in isolation but the isolation is not enforced by the .NET runtime; we have to take care to ensure
that Tasks don’t share data by mistake.

.NET provides the System.Threading.ThreadlLocal class, which creates isolation that is enforced by
the .NET Framework. ThreadlLocal represents a special kind of data called thread local storage (TLS),
where a single ThreadLocal results in each thread that accesses the data getting its own isolated instance.

TLS can be a little hard to understand, but try thinking of it like this—when we declare a ThreadLocal
to hold, say a string, we make the following call:

ThreadlLocal<string> isolatedData = new ThreadlLocal<string>();

Imagine that the .NET Framework creates Dictionary<Thread, string> behind the scenes and that
whenever we call the ThreadLocal.Value property to get or set the isolated data value, the framework
translates that into a query against the Dictionary so that we only read or write the value associated with
the current thread and each thread has its own value.

TLS doesn’t really use a Dictionary, but imagining that it does is a helpful way of understanding an
unusual concept. The important thing to remember is each thread has its own isolated data value and
can’t read or write the value belonging to any other thread.

Now, notice that we are talking about threads and not Tasks, and remember from Chapter 1 that a
single thread can be used to perform multiple Tasks. To ensure that you get the results you expect with
Tasks, make sure that you set the ThreadLocal.Value property at the start of your Task body. Listing 3-4
shows ThreadlLocal being used in our simple bank account program, with the isolated data value being
set at the start of the Task body.

Listing 3-4. Using TLS

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 04 {

class BankAccount {
public int Balance {
get;
set;

55

56

CHAPTER 3 ' SHARING DATA

class Listing 04 {
static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create an array of tasks
Task<int>[] tasks = new Task<int>[10];

// create the thread local storage
ThreadLocal<int> tls = new ThreadLocal<inty();

for (int i = 0; i < 10; i++) {
// create a new task
tasks[i] = new Task<int>((stateObject) => {

// get the state object and use it
// to set the TLS data
tls.Value = (int)stateObject;

// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
// update the TLS balance
tls.Value++;

}

// return the updated balance
return tls.Value;

}, account.Balance);

// start the new task
tasks[i].Start();

// get the result from each task and add it to
// the balance
for (int i = 0; i < 10; i++) {
account.Balance += tasks[i].Result;
}

// write out the counter value
Console.WriteLine("Expected value {0}, Balance: {1}",
10000, account.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

CHAPTER 3 ' SHARING DATA

Even though we have created only one instance of ThreadLocal<int>, each Task is able to initialize
its own isolated instance of the data using the state object and perform updates without worrying about
data races. ThreadLocal provides an overloaded constructor so you can supply a factory delegate that will
initialize the isolated data value. This factory delegate is lazily initialized, meaning that it will not be
called until the Task calls the ThreadLocal.Value property for the first time.

Be careful when using lazy initialization in TLS (or elsewhere in C#); it can trip you up. The factory
delegate is not called until the first time that the variable is accessed, so any other data that you depend
on will not be read until then. Remember also that TLS works on threads and not Tasks, so the value
factory will only be called the first time a thread performs one of your Tasks. Take a look at Listing 3-5,
which shows an ill-advised use of the value factory.

Listing 3-5. A TLS Value Factory That Produced Unexpected Results

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 05 {

class BankAccount {
public int Balance {
get;
set;

}

class Listing 05 {
static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create an array of tasks
Task<int>[] tasks = new Task<int>[10];

// create the thread local storage
ThreadLocal<inty tls = new ThreadlLocal<int>(() => {
Console.WriteLine("Value factory called for value: {o}",
account.Balance);
return account.Balance;

H

for (int i = 0; i < 10; i++) {
// create a new task
tasks[i] = new Task<int>(() => {

57

58

CHAPTER 3 ' SHARING DATA

// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
// update the TLS balance
tls.Value++;

}

// return the updated balance
return tls.Value;

B;

// start the new task
tasks[i].Start();
}

// get the result from each task and add it to
// the balance
for (int i = 0; i < 10; i++) {
account.Balance += tasks[i].Result;
}

// write out the counter value
Console.WriteLine("Expected value {0}, Balance: {1}",
10000, account.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadLine();

Running Listing 3-5 yields the following results:

Value factory called for value: 0
Value factory called for value: 0
Value factory called for value: 0
Value factory called for value: 0
Expected value 10000, Balance: 29000

Press enter to finish

We started ten Tasks, but the value factory was called to initialize the TLS only four times. Can you
guess why? Yep, the code was run on a four-core machine, and four threads were used to execute the ten
Tasks. As a consequence, the final balance from one Task was carried over to be the initial balance for

CHAPTER 3 ' SHARING DATA

another, and we ended up with an overall balance that was unexpected. TLS can be a useful technique if
used carefully but can trip up the unwary.

Synchronizing Execution

If sequential execution means being the only person at the party, immutability is having a plastic cake,
and isolation is giving everyone their own cake, then synchronization is having many guests and one
cake and asking your great aunt Matilda to make everyone act politely. Matilda makes sure that everyone
gets a piece of the cake by having the guests take turns and play nice.

Synchronization means making Tasks take turns, avoiding races by serializing access to shared data,
usually only allowing one Task access to the shared data at any given time (although there are other
options that we will cover in Chapter 4).

The two key elements to understanding synchronization are the critical region and the
synchronization primitive. In party terms, critical regions are the cakes, or the things that we want to
control access to in order to avoid problems. Synchronization primitives play the role of the great aunt,
or the way in which we enforce order and politeness.

Defining Critical Regions

A critical region is one or more C# statements that we want to serialize access to so we can avoid a data
race. For the bank account example in Listing 3-1, the critical region is the statement that increments the
account balance, as shown in the following fragment:

for (int j = 0; j < 1000; j++) {
// update the balance
account.Balance = account.Balance + 1; // <-- critical region

More complex programs will have larger and more complex critical regions, of course. And classes
can have more than one critical region. Imagine that we added new methods to our simple BankAccount
type that read and update the balance. We must serialize access to the statements within each method
but also across methods, so that a Task that calls one method doesn’t start a data race with a Task calling
the other method. Don’t worry if the idea of critical regions doesn’t immediately make sense; there are
plenty of examples in this chapter and throughout the rest of this book that will help.

Defining Synchronization Primitives
A synchronization primitiveis a special kind of data type that is used to coordinate Tasks’ access to
critical regions and, therefore, to shared data. A Task arrives at a point in its work where they need to
access a critical region. The Task checks with the synchronization primitive to see if the critical section is
already in use. If the critical section is free, then it proceeds to execute the code statements. If there is
another Task already using the critical section, then the newly arrived Task is asked to wait. When the
Task that is using the critical section has finished, it tells the synchronization primitive that it is done, so
that another Task can be allowed to proceed.

When a primitive grants access to a critical section, the Task is said to acquire or take the lock. When
a Task notifies the primitive that is leaving the critical section, it is said to release or exit the lock.

59

60

CHAPTER 3 ' SHARING DATA

There are three kinds of synchronization primitives in the .NET Framework:
e Lightweight primitives
e Heavyweight (classic) primitives
e Wait handles

With .NET 4, Microsoft has introduced some new lightweight primitives, so called because they are
more efficiently implemented than the equivalent classic threading classes. They can only provide
synchronization within one application domain, but since this is usually what programmers require, you
will find yourself using these primitives most frequently.

The heavyweight threading primitives have existed since the early versions of .NET and have been
widely used with the classic .NET threading model. They don’t perform as well as the lightweight
primitives, but they can be used across application domains.

Wait handles use a feature of the Windows operating system and can be used to provide
synchronization between processes. Wait handles are often used to coordinate Tasks (something we will
cover at length in the next chapter), but they can be used to avoid data races as well. They can also be
used to provide synchronization across different processes.

Note This note is for you particularly detail-oriented readers. You know from Chapter 1 that tasks are executed
by threads. The .NET synchronization primitives actually operate at the thread level, but since the threads are
executing Tasks, we will discuss synchronization as though it operated at the task level. There is no effective
difference and keeping everything at the task level makes for clearer examples.

Getting to grips with synchronization is one of the most challenging aspects of parallel
programming, and it trips up everyone at some point. When you encounter problems (and you almost
certainly will), stop and think about what you are trying to achieve and ask yourself a couple of
questions. Have I selected the right synchronization primitive? And am I using it correctly. Nine times
out of ten, the problem can be found in the answers to those two questions.

Using Synchronization Wisely
Before we cover the different synchronization primitives, let me set out some advice that you should
consider if you want to write effective parallel programs:

e Don’t synchronize too much.
e Don’t synchronize too little.
e Pick the lightest tool to do the job.

e Don’t write you own synchronization primitives.

CHAPTER 3 ' SHARING DATA

Don’t Synchronize Too Much
Most programmers go through a transition period when they come to parallel programming in which
they write the program structure as though they planned for sequential execution and apply parallel
features later. Data races arise, which are then fixed using synchronization applied like a Band-Aid.
Because the program was designed for sequential use, the programmer finds it hard to synchronize
with any granularity and ends up synchronizing everything.
As I said earlier, synchronization has a cost and can reduce performance. Synchronizing with a
heavy hand means that your code will end up running restricting parallelism but still incur the
synchronization overheads.

Don’t Synchronize Too Little

The natural reaction to having produced a program with too much synchronization is to over-
compensate and use too little. Now, we end up with a program that performs well because the number
of synchronization points is drastically reduced but doesn’t protect all of the shared data and so suffers
from data races.

Pick the Lightest Tool

The .NET Framework includes synchronization primitives from the classic .NET threading era and some
new primitives introduced as part of the TPL. The new primitives are more efficient, but some of them
lack useful features available in the heavyweight older primitives.

It may sound obvious, but you should pick the most efficient primitive that meets your program
requirements. As programmers, we tend to end up with a shortlist of types and primitives that we use
again and again because we understand them and have confidence in them. While that is fine for general
programming, it can easily produce problems in parallel programming by either introducing a
performance penalty or by not delivering the required level of synchronization.

Don’t Write Your Own Synchronization Primitives

At some point, every parallel programmer struggles to use a particular synchronization primitive in a
particular way and thinks, “hmmm, maybe I should write my own.” You will have those thoughts, too.
Don’t do it; don’t give in and write your own. I guarantee you that you will end up making things much,
much worse.

Synchronization primitives are very difficult to write correctly. Most of the primitives in the .NET
Framework rely on features of the operating system and, in some cases, of the machine hardware. My
advice to you is to change the code whenever you can’t get one of the .NET primitives to fit in with your
code model. That solution will be simpler and quicker, and you have a far greater chance of producing
working code than if you try to write your own primitive.

Using Basic Synchronization Primitives

The following sections describe the basic .NET synchronization primitives. Each of these classes can be
used to ensure that only one Task is able to enter a critical region. The next chapter will describe some
advanced synchronization primitives that will allow you to work with different numbers of Tasks.

61

62

CHAPTER 3 ' SHARING DATA

Table 3-1. Synchronization Primtives

Problem Solution Listing
Serialize access to a critical Use the lock keyword or System.Threading.Montor class, 3-6, 3-7,
region. or use the System.Threading.SpinLock class. and 3-10
Increment or decrement a Use the static members of the 3-8
numeric value. System.Threading.Interlocked class. and 3-9
Create cross process Use the System.Threading.Mutex class to create anamed 3-11
synchronization. mutex.

Perform synchronization using Use WaitAl1l() method of a primitive that extends 3-12
multiple locks. System.Threading.WaitHandle.

Synchronize all of the methods Use declarative synchronization. 3-14

in a class.

Create locks that permit Use a reader-writer lock. 3-15
multiple readers. and 3-16

Locking and Monitoring

The simplest way to use synchronization in C# is with the lock keyword, which is a two-stage process.
First, you must create a lock object that is visible to all of your Tasks. Second, you must wrap the critical
section in a lock block using the lock, as follows:

lock (lockObj) {
...critical section code...
}

Listing 3-6 shows the application of the lock keyword to the critical region of the bank account
example from Listing 3-1.

Listing 3-6. Applying the lock Keyword

using System;
using System.Threading.Tasks;

namespace Listing 06 {

class BankAccount {
public int Balance {
get;
set;

class Listing 06 {

static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create an array of tasks
Task[] tasks = new Task[10];

// cxeate the lock object
object lockObj = new object();

for (int i = 0; i < 10; i++) {
// create a new task
tasks[i] = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
lock (lockObj) {
// update the balance
account.Balance = account.Balance + 1;
}
}
1);

// start the new task
tasks[i].Start();

}

// wait for all of the tasks to complete
Task.WaitAll(tasks);

// write out the counter value
Console.WriteLine("Expected value {0}, Balance: {1}",
10000, account.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

heavyweight primitive.

lock (lockObj) {

}

...critical region code...

CHAPTER 3

SHARING DATA

The lock keyword is a C# shortcut for using the System.Threading.Monitor class, which is a

63

64

CHAPTER 3 ' SHARING DATA

The preceding fragment is equivalent to the following:

bool lockAcquired;
try {
Monitor.Enter(lockObj, ref lockAcquired);
...critical region code...
} finally {
if (lockAcquired) Monitor.Exit(lockObj);
}

The members of the Monitor class are static, which is why you must provide a lock object—this tells
the Monitor class which critical region a Task is trying to enter.

Tip It is important to ensure that all of your Tasks use the same lock object when entering a given critical
region. See the discussion of the Isolated Lock References antipattern in this chapter for more details.

The lock keyword automatically takes care of acquiring and releasing the lock for the critical region
by calling Monitor.Enter() and Monitor.Exit() for you. If you decide to use the Monitor class directly
(and there are some reasons for this that we’ll come to in a moment), you should ensure that you call
Monitor.Exit() within a finally block, just as in the preceding fragment. If you do not, you run the risk
of encountering the orphaned locks problem described at the end of this chapter.

Monitor.Enter() takes a lock object and a pass-by-reference bool as arguments. The bool is set to
true when the lock is acquired and should be checked before releasing the lock with Monitor.Exit().
There are some conditions under which you risk trying to release a lock that you have not acquired.

When one Task has acquired the lock, no other Task can enter the critical region. Calls to
Monitor.Enter() will block until the first Task releases the lock by calling Monitor.Exit(). If there are
Tasks waiting when the lock is released, Monitor selects one of them and allows it to acquire the lock.
Tasks may acquire the lock in any sequence; the order in which Tasks arrive at the critical region doesn’t
guarantee anything about the order in which they will acquire the lock.

You can try to acquire the lock by calling one of the overloads of the Monitor.TryEnter() method,
which will let your Task try and acquire the lock without waiting indefinitely for it to become available.
The overloads are listed in Table 3-2.

CHAPTER 3 ' SHARING DATA

Table 3-2. Overloads of the System. Threading.Monitor. TryEnter Method

Overload Description

Monitor.TryEnter Attempt to acquire a lock using a given lock object. The Boolean
(Object, Boolean) argument is set to true if the lock was acquired and false otherwise.
Monitor.TryEnter Attempt to acquire a lock using the lock object, waiting a maximum of

(Object, Int32, Boolean) Int32 milliseconds. The Boolean argument is set to true if the lock was
acquired and false otherwise.

Monitor.TryEnter Attempt to acquire a lock using the lock object, waiting for the TimeSpan
(Object,TimeSpan,Boolean) to see if the lock becomes available. The Boolean argument is set to true
if the lock was acquired and false otherwise.

The same lock object, as I have said, must always be used for a given critical region. If you wish to
protect two related critical regions (perhaps because they update the same shared data), the same object
should be used to enter either region.

Listing 3-7 extends our simple bank account example to serialize access to critical regions. There are
two groups of Tasks, one of which wants to increment the balance while the other wants to decrement it.
By using the same lock object, we ensure that there is at most one Task working in the pair of critical
regions.

Listing 3-7. Using a Single Lock Object to Serialize Access to Two Critical Regions

using System;
using System.Threading.Tasks;

namespace Listing 07 {
class BankAccount {
public int Balance {

get;
set;

}
class Listing 07 {
static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create an array of tasks
Task[] incrementTasks = new Task[5];
Task[] decrementTasks = new Task[5];

65

66

CHAPTER 3 ' SHARING DATA

// create the lock object
object lockObj = new object();

for (int i = 0; i < 5; i++) {
// create a new task
incrementTasks[i] = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
lock (lockObj) {
// increment the balance
account.Balance++;

}

1;
// start the new task
incrementTasks[i].Start();

}

for (int i = 0; i < 5; i++) {
// create a new task
decrementTasks[i] = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
lock (lockObj) {
// decrement the balance

account.Balance = account.Balance -2;

}
}

1
// start the new task
decrementTasks[i].Start();

}

// wait for all of the tasks to complete
Task.WaitAll(incrementTasks);
Task.WaitAll(decrementTasks);

// write out the counter value
Console.WriteLine("Expected value: -5000");
Console.WritelLine("Balance: {0}", account.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

CHAPTER 3 ' SHARING DATA

Using Interlocked Operations

The System.Threading.Interlocked class provides a set of static methods that use special features of the
operating system and hardware to provide high-performance synchronized operations. All of the
methods in Interlocked are static and synchronized. Table 3-3 provides a summary of the key members.

Table 3-3. Selected Members of the System. Threading.Interlocked Class

Member Description

Exchange(ref Double, Double) Set a value.
Exchange(ref Int32, Int32)

Exchange(ref Int64, Int64)

Exchange(ref Single, Single)

Exchange(ref Object, Object)

Exchange<T>(ref T, T)

Add(ref Int32, Int32) Add two 32-bit or 64-bit integers
Add(ref Int64, Int64)

Increment(ref Int32) Increment a 32-bit or 64-bit integer.
Increment(ref Int64)

Decrement(ref Int32) Decrement a 32-bit or a 64-bit integer.
Decrement(ref Int64)

CompareExchange(ref Double, Double, Double) Compare two values, and if they are equal,
CompareExchange(ref Int32, Int32, Int32) replace one of them.
CompareExchange(ref Int64, Int64, Int64)

CompareExchange(ref Single, Single, Single)

CompareExchange(ref Object, Object, Object)

CompareExchange<T>(xref T, T, T)

The Interlocked.Exchange() method sets the value of a variable. The following statements are
functionally equivalent, but manage synchronization using different techniques:

int myval = 99;
lock (lockObj) {

// change value
myval = 100;

// change value - synchronized
Interlocked.Exchange(ref myval, 101);
The Add(), Increment(), and Decrement () methods are convenient shortcuts when using integers

and work the way that you would expect. Listing 3-8 shows how we can use Interlocked.Increment() to
fix the data race from Listing 3-1. Notice that we have had to change the BankAccount class to expose the

67

68

CHAPTER 3 ' SHARING DATA

balance as an integer, because Interlocked methods require arguments modified by the ref keyword
and values from properties cannot be used with ref.

Listing 3-8. Using Interlocked.Increment()

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 08 {

class BankAccount {
public int Balance = 0;
}

class Listing 08 {
static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create an array of tasks
Task[] tasks = new Task[10];

for (int i = 0; i < 10; i++) {
// create a new task
tasks[i] = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
// update the balance
Interlocked.Increment(ref account.Balance);
}

1
// start the new task

tasks[i].Start();

// wait for all of the tasks to complete
Task.WaitAll(tasks);

// write out the counter value
Console.WriteLine("Expected value {0}, Balance: {1}",
10000, account.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

CHAPTER 3 ' SHARING DATA

The CompareExchange() method checks to see if a variable has a given value and, if it does, changes
the value of variable. This is not as obtuse as it sounds, because this method allows you to tell if another
Task has updated a shared variable and act accordingly. Using CompareExchange allows you to mix
isolated data and then merge the isolated values with the shared data.

Listing 3-9 updates the previous example so that individual Tasks make a note of the starting
balance and work with isolated balances to perform their updates. When they have calculated their local
balances, they use CompareExchange() to update the shared value. If the shared data has not changed, the
account balance is updated; otherwise, a message is printed out. In a real program, instead of simply
noting that the shared data has changed, you could repeat the Task calculation or try a different method
to update the shared data. For example, in the listing, we could have tried to add the local balance to the
shared value.

Listing 3-9. Convergent Isolation with Interlocked. CompareExchange()

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 09 {

class BankAccount {
public int Balance = 0;
}

class Listing 09 {
static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create an array of tasks
Task[] tasks = new Task[10];

for (int i = 0; i < 10; i++) {
// create a new task
tasks[i] = new Task(() => {

// get a local copy of the shared data

int startBalance = account.Balance;

// create a local working copy of the shared data
int localBalance = startBalance;

// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
// update the local balance
localBalance++;

69

70

CHAPTER 3 ' SHARING DATA

// check to see if the shared data has changed since we started
// and if not, then update with our local value
int sharedData = Interlocked.CompareExchange(

ref account.Balance, localBalance, startBalance);

if (sharedData == startBalance) {
Console.WriteLine("Shared data updated 0K”);
} else {
Console.WriteLine("Shared data changed”);
}

1
// start the new task

tasks[i].Start();
}

// wait for all of the tasks to complete
Task.WaitAll(tasks);

// write out the counter value
Console.WriteLine("Expected value {0}, Balance: {1}",
10000, account.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Using Spin Locking

We encountered spinning in the last chapter. Typically, when waiting to acquire a regular
synchronization primitive, your Task is taken out of the schedule waits until it has acquired the primitive
and can run again. Spinning takes a different approach; the Task enters a tight execution loop,
periodically trying to acquire the primitive.

Spinning avoids the overhead of rescheduling the Task because it never stops running, but it doesn’t
allow another Task to take its place. Spinning is useful if you expect the wait to acquire the primitive to
be very short.

The System.Threading.Spinlock class is a lightweight, spin-based synchronization primitive. It has a
similar structure to other primitives in that it relies on Enter(), TryEnter(), and Exit() methods to
acquire and release the lock. Listing 3-10 shows the bank account example implemented using SpinLock.

Listing 3-10. Using the SpinLock Primitive

using System;
using System.Threading;
using System.Threading.Tasks;

CHAPTER 3

namespace Listing 10 {

class BankAccount {
public int Balance {
get;
set;

}

class Listing 10 {
static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create the spinlock
SpinLock spinlock = new SpinLock();

// create an array of tasks
Task[] tasks = new Task[10];

for (int i = 0; i < 10; i++) {
// create a new task
tasks[i] = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
bool lockAcquired = false;
try {
spinlock.Enter(ref lockAcquired);
// update the balance
account.Balance = account.Balance + 1;
} finally {
if (lockAcquired) spinlock.Exit();
}

}

1
// start the new task

tasks[i].Start();
}

// wait for all of the tasks to complete
Task.WaitAll(tasks);

// write out the counter value
Console.WriteLine("Expected value {0}, Balance: {1}",
10000, account.Balance);

SHARING DATA

71

72

CHAPTER 3 ' SHARING DATA

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

The constructor for SpinLock has an overload that enables or disables owner tracking, which simply
means that the primitive keeps a record of which Task has acquired the lock. SpinLock doesn’t support
recursive locking, so if you have already acquired the lock, you must not try to acquire it again. If you
have enabled owner tracking, attempting recursive locking will cause a
System.Threading.LockRecursionException to be thrown. If you have disabled owner tracking and try to
lock recursively, a deadlock will occur. SpinLock has three properties that can help you avoid inadvertent
recursive lock attempts, described in Table 3-4.

Table 3-4. System.Threading.SpinLock Properties

Property Description

IsHeld Return true if the lock is held by any thread.

IsHeldByCurrentThread Return true if the lock is held by the thread executing the current
Task.

IsThreadOwnerTrackingEnabled Return true if owner tracking was enabled when the primitive
instance was created.

Using Wait Handles and the Mutex Class

Wait handles are wrappers around a Windows feature called synchronization handles. Several .NET
synchronization primitives that are based on wait handles, and they all derive from the
System.Threading.WaitHandle class. Each class has slightly different characteristics, and we’ll walk
through each of them in the next chapter when we explore coordinating Tasks.

The wait handle class that has most relevance to avoiding data races and is System.Threading.Mutex.
Listing 3-11 shows the basic use of the Mutex class to solve the bank account data race problem. You
acquire the lock on Mutex by calling the WaitOne () method and release the lock by calling
ReleaseMutex().

Listing 3-11. Basic Use of the Mutex Class
using System;

using System.Threading;

using System.Threading.Tasks;

namespace Listing 11 {

CHAPTER 3

class BankAccount {
public int Balance {
get;
set;

}

class Listing 11 {
static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create the mutex
Mutex mutex = new Mutex();

// create an array of tasks
Task[] tasks = new Task[10];

for (int i = 0; i < 10; i++) {
// create a new task
tasks[i] = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
// acquire the mutex
bool lockAcquired = mutex.WaitOne();
try {
// update the balance
account.Balance = account.Balance + 1;
} finally {
// release the mutext
if (lockAcquired) mutex.ReleaseMutex();

}
1
// start the new task
tasks[i].Start();

// wait for all of the tasks to complete
Task.WaitAll(tasks);

// write out the counter value
Console.WriteLine("Expected value {0}, Balance: {1}",
10000, account.Balance);

SHARING DATA

73

74

CHAPTER 3 ' SHARING DATA

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Acquiring Multiple Locks

All classes that extend from WaitHandle inherit three methods that can be used to acquire the lock. You
have seen the WaitOne() instance method in Listing 3-11. In addition, the static WaitA11() and WaitAny()
methods allow you to acquire multiple locks with one call. Listing 3-12 demonstrates the WaitA11()
method, which causes the Task to block until all of the locks can be acquired.

The listing creates two BankAccounts and two Mutexes. Two Tasks are created that modify the balance
of one of the two accounts, and each acquires the lock from the Mutex for the account it is working with.
The third Task changes the balance of both accounts and, therefore, needs to acquire the lock from both
Mutexes to avoid starting a data race with one of the other Tasks.

Listing 3-12. Acquiring Multiple Locks with Mutex. WaitAll()

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 12 {
class BankAccount {
public int Balance {

get;
set;

}
class Listing 12 {
static void Main(string[] args) {
// create the bank account instances

BankAccount accountl = new BankAccount();
BankAccount account2 = new BankAccount();

// create the mutexes
Mutex mutexl = new Mutex();
Mutex mutex2 = new Mutex();

// create a new task to update the first account
Task taski = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {

CHAPTER 3

// acquire the lock for the account
bool lockAcquired = mutexi.WaitOne();;
try {
// update the balance
accountl.Balance++;
} finally {
if (lockAcquired) mutexi.ReleaseMutex();
}

}
B;

// create a new task to update the first account
Task task2 = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
// acquire the lock for the account
bool lockAcquired = mutex2.WaitOne();
try {
// update the balance
account2.Balance += 2;
} finally {
if (lockAcquired) mutex2.ReleaseMutex();

}
1

// create a new task to update the first account
Task task3 = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
// acquire the locks for both accounts

SHARING DATA

bool lockAcquired = Mutex.WaitAll(new WaitHandle[] { mutexi, mutex2});

try {
// simulate a transfer between accounts

accountl.Balance++;
account2.Balance--;
} finally {
if (lockAcquired) {
mutex1.ReleaseMutex();
mutex2.ReleaseMutex();

}

}
1

// start the tasks
task1.Start();
task2.Start();
task3.Start();

75

76

CHAPTER 3 ' SHARING DATA

// wait for the tasks to complete
Task.WaitAll(task1, task2, task3);

// write out the counter value
Console.WriteLine("Account1 balance {0}, Account2 balance: {1}",
accountl.Balance, account2.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadLine();

The WaitAll() method is inherited from the WaitHandle class and takes an array of WaitHandles as
the set of locks to acquire. Notice that although you can acquire multiple locks in a single step, you must
release them individually using the Mutex.ReleaseMutex() method. The WaitAny() method returns when
any of the locks have been acquired, and it returns an int that tells you the position of the acquired lock
in the WaitHandle array passed in as a parameter.

The WaitOne(), WaitAll(), and WaitAny() methods are all overridden so that you can attempt to
acquire a lock or set of locks for a given period of time; see the .NET Framework documentation for
details.

Configuring Interprocess Synchronization

Wait handles can be shared between processes. The Mutexes in the previous two listings were local,
meaning that they were only usable in one process; a local Mutex is created when you use the default
constructor.

You can also create a named system Mutex, which is the kind that can be shared between processes.
You do this by using the overloaded constructors that take a name argument. When using a named
Mutex, it is important to see if the Mutex you are looking for has already been created, because it is
possible to create several Mutexes with the same name that exist independently of one another.

You can test to see if a Mutex exists by using the static Mutex.OpenExisting() method, which takes a
string argument as the name of the Mutex you wish to create. If a Mutex with the name you have
provided exists, it is returned by the OpenExisting() method. A
System.Threading.WaitHandleCannotBeOpenedException is thrown if a Mutex has not already been created
with that name. Listing 3-13 shows how to use the OpenExisting() method and the overloaded
constructor to test for, create, and use a shared Mutex. To test this listing, you must run two or more
instances of the compiled program. Control of the Mutex will pass from process to process each time you
press the Enter key. If you compile and run the code in this listing, the program will loop forever, so you
can safely close the console window when you have had enough.

CHAPTER 3

Listing 3-13. Interprocess Mutex Use

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 13 {
class Listing 13 {
static void Main(string[] args) {

// declare the name we will use for the mutex
string mutexName = "myApressMutex";

// declare the mutext
Mutex namedMutext;

try {
// test to see if the named mutex already exists

namedMutext = Mutex.OpenExisting(mutexName);

} catch (WaitHandleCannotBeOpenedException) {
// the mutext does not exist - we must create it
namedMutext = new Mutex(false, mutexName);

}

// create the task
Task task = new Task(() => {
while (true) {

// acquire the mutex
Console.WriteLine("Waiting to acquire Mutex");
namedMutext.WaitOne();
Console.WriteLine("Acquired Mutex - press enter to release");
Console.ReadLine();
namedMutext.ReleaseMutex();
Console.WriteLine("Released Mutex");

}
B;

// start the task
task.Start();

// wait for the task to complete
task.Wait();

SHARING DATA

77

78

CHAPTER 3 ' SHARING DATA

Tip You must be careful to pick a distinctive name for your Mutex to avoid conflicting with other programs
running on the same machine. You will get some very odd behavior if you share a Mutex with someone else’s
application.

Using Declarative Synchronization
So far, I have showed you how to selectively apply synchronization to critical regions. An alternative is to
declaratively synchronize all of the fields and methods in a class by applying the Synchronization
attribute. Your class must extend System.ContextBoundObject and import the
System.Runtime.Remoting.Contexts namespace in order to be able to use the Synchronization attribute.
To demonstrate declarative synchronization with our bank account example, let’s change the
BankAccount class so that the balance can be read with the GetBalance() method and incremented with
the IncrementBalance() method, as shown in Listing 3-14. Now, all of the code statements are contained
in a single class and can be synchronized by applying the Synchronization attribute and having the
BankAccount class extend ContextBoundObject.

Listing 3-14. Using Declarative Synchronization
using System;
using System.Runtime.Remoting.Contexts;
using System.Threading.Tasks;
namespace Listing 14 {
[Synchronization]
class BankAccount : ContextBoundObject {
private int balance = 0;
public void IncrementBalance() {

balance++;
}

public int GetBalance() {
return balance;
}

}
class Listing 14 {
static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create an array of tasks
Task[] tasks = new Task[10];

CHAPTER 3 ' SHARING DATA

for (int i = 0; i < 10; i++) {
// create a new task
tasks[i] = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
// update the balance
account.IncrementBalance();

1
// start the new task
tasks[i].Start();

}

// wait for all of the tasks to complete
Task.WaitAll(tasks);

// write out the counter value
Console.WriteLine("Expected value {0}, Balance: {1}",
10000, account.GetBalance());

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadLine();

The problem with using the Synchronization attribute is that every field and method of your class,
even if they don’t modify shared data, becomes synchronized using a single lock, and this can cause a
performance problem. Declarative synchronization is a heavy-handed approach to avoiding data races
and should be used with caution.

Using Reader-Writer Locks

The synchronization primitives discussed so far consider all Tasks as equally likely to cause a data race.
That idea is reasonable, but in many situations, it is not true. Often, there will be many Tasks that only
need to read shared data and only a few that need to modify it. Lots of Tasks can read a data value
concurrently without causing a data race—only changing data causes problems.

A reader-writer lock is a common performance optimization and contains two locks—one for
reading data and one for writing data—and allows multiple reader Tasks to acquire the read lock
simultaneously. When a writer comes along and requests the write lock, it is made to wait for any active
readers to release the read lock before being allowed to proceed, at which point the reader acquires both
the read and write locks and has exclusive access to the critical region. This means that any requests by
readers or writers to acquire either lock are made to wait until the active writer has finished with the
critical region and releases the locks.

Using the ReaderWriterLockSlim Class
The System.Threading.ReaderhWriterLockSlim class provides a convenient implementation of reader-
writer locking that takes care of managing the locks. This class is a lightweight alternative for the

79

CHAPTER 3 ' SHARING DATA

heavyweight System.Threading.ReaderWriter, which Microsoft no longer recommends using. The
lightweight version is simpler to use, offers better performance, and avoids some potential deadlocks.

You acquire and release the ReaderWriterLockSlim read lock by calling the EnterReadLock() and
ExitReadLock() methods. Similarly, you acquire and release the write lock by calling EnterWriteLock and
ExitWriteLock(). The ReaderWriterLockSlim class only provides the synchronization primitives; it does
not enforce the separation between read and write operations in your code. You must be careful to avoid
modifying shared data in a Task that has only acquired the read lock. Listing 3-15 demonstrates the use
of the ReaderWriterLockSlim class.

Listing 3-15. Using the ReaderWriterLockSlim Class

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 15 {
class Listing 15 {
static void Main(string[] args) {

// create the reader-writer lock
ReaderWriterLockSlim rwlock = new ReaderWriterLockSlim();

// create a cancellation token source
CancellationTokenSource tokenSource = new CancellationTokenSource();

// create an array of tasks
Task[] tasks = new Task[5];

for (int i = 0; i < 5; i++) {
// create a new task
tasks[i] = new Task(() => {
while (true) {
// acqure the read lock
rwlock.EnterReadLock();
// we now have the lock
Console.WriteLine("Read lock acquired - count: {0}",
rwlock.CurrentReadCount);
// wait - this simulates a read operation
tokenSource.Token.WaitHandle.WaitOne(1000);
// release the read lock
rwlock.ExitReadLock();
Console.WriteLine("Read lock released - count {0}",
rwlock.CurrentReadCount);
// check for cancellation
tokenSource.Token.ThrowIfCancellationRequested();

}, tokenSource.Token);

CHAPTER 3 ' SHARING DATA

// start the new task
tasks[i].Start();

// prompt the user

Console.WriteLine("Press enter to acquire write lock");
// wait for the user to press enter
Console.ReadlLine();

// acquire the write lock
Console.WriteLine("Requesting write lock");
rwlock.EnterWritelock();

Console.WriteLine("Write lock acquired");
Console.WriteLine("Press enter to release write lock");
// wait for the user to press enter

Console.ReadlLine();

// release the write lock

rwlock.ExitWriteLock();

// wait for 2 seconds and then cancel the tasks
tokenSource.Token.WaitHandle.WaitOne(2000);
tokenSource.Cancel();

try {
// wait for the tasks to complete

Task.WaitAll(tasks);

} catch (AggregateException) {
// do nothing

}

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

The example creates five Tasks that acquire the read lock, wait for one second, and then release the
read lock, repeating this sequence until they are cancelled. As the read lock is acquired and released, a
message is printed to the console, and this message shows the number of holders of the read lock, which
is available by reading the CurrentReadCount property.

When you press the Enter key, the main application thread acquires the write lock, which is held for
two seconds and then released. You can see from the following results that once the write lock has been
requested, the number of Tasks holding the read lock starts to drop. This is because calls to
EnterReadLock() will now wait until the writer lock has been released to ensure writer exclusivity.

Download from Wow! eBook

81

Boykma
Text Box
Download from Wow! eBook

82

CHAPTER 3 ' SHARING DATA

Read lock released - count 4

Read lock acquired - count: 5

Requesting write lock

Read lock released - count 4
Read lock released - count 3
Read lock released - count 2
Read lock released - count 1
Read lock released - count 0
Write lock acquired

Press enter to release write lock

Read lock acquired - count: 1
Read lock acquired - count: 3
Read lock acquired - count: 2
Read lock acquired - count: 4
Read lock acquired - count: 5

Read lock released - count 4

If you press Enter again, the main application thread releases the write lock, which allows the Tasks
to continue their acquire/release sequence once more.

CHAPTER 3 ' SHARING DATA

Using Recursion and Upgradable Read Locks
Listing 3-15 separates the code that reads the shared data from the code that modifies it. Often, you will
want to read data and make a change only if some condition is met. You could acquire the write lock to
do this, but that requires exclusive access. Because you don’t know in advance if you actually need to
make changes, that would be a potential performance problem.

But you are thinking, “Aha! I can acquire the (nonexclusive) read lock, perform the test, and then
acquire the (exclusive) write lock if I need to make modifications.” In that case, you would produce some
code similar to the following fragment:

ReaderWriterLockSlim rwlock = new ReaderWriterLockSlim();

rwlock.EnterReadLock();

if (needToWrite) {
// acquire write lock
rwlock.EnterWritelock();
// ...pexform write operations ...
// release the write lock
rwlock.ExitWriteLock();

// release the read lock
rwlock.ExitReadLock();

Unfortunately, when you came to run this code, you would get the following exception:

Unhandled Exception: System.Threading.LockRecursionException: Write lock

may not be acquired with read lock held. This pattern is prone to deadlocks.
Please ensure that read locks are released before taking a write lock.
If an upgrade is necessary, use an upgrade lock in place of the read lock.

at System.Threading.ReaderWriterLockSlim.TryEnterhWriteLockCore(Int32

millisecondsTimeout)

Acquiring the lock on a primitive when you already have a lock is called lock recursion. The
ReaderWriterLockSlim class doesn’t support lock recursion by default, because lock recursion has the
potential to create deadlocks. Instead, you should use an upgradable read lock, which allows you to read
the shared data, perform your test, and safely acquire exclusive write access if you need it. You acquire
and release an upgradable read lock by calling the EnterUpgradeableReadLock() and
ExitUpgradeableReadLock() methods and then acquire and release the write lock (if needed) by calling
the EnterWritelLock() and ExitWriteLock() as before.

83

84

CHAPTER 3 ' SHARING DATA

Note Although it is not recommended, you can enable lock recursion in ReaderWriterLockSlim by using an
overloaded constructor. See the .NET Framework documentation for details, but don’t be surprised when your
application deadlocks.

Once the upgradable lock is acquired, requests for the write lock and further requests for the
upgradable read lock will block until ExitUpgradeableReadLock() is called, but multiple holders of the
read lock are allowed. Upgrading the lock by calling EnterWritelLock() waits for all of the current holders
of the read lock to call ExitReadLock() before the write lock is granted. Listing 3-16 demonstrates the use
of the upgradable read lock by having five Tasks that read shared data and two that use the upgradable
read lock to make changes.

Listing 3-16. Avoiding Lock Recursion by Using an Upgradable Read Lock

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 16 {
class Listing 16 {
static void Main(string[] args) {

// create the reader-writer lock
ReadexrWriterLockSlim rwlock = new ReaderWriterLockSlim();

// create a cancellation token source
CancellationTokenSource tokenSource = new CancellationTokenSource();

// create some shared data
int sharedData = 0;

// create an array of tasks
Task[] readerTasks = new Task[5];

for (int i = 0; i < readerTasks.Length; i++) {
// create a new task
readerTasks[i] = new Task(() => {
while (true) {
// acqure the read lock
rwlock.EnterReadLock();
// we now have the lock
Console.WriteLine("Read lock acquired - count: {0}",
rwlock.CurrentReadCount);

// read the shared data
Console.WriteLine("Shared data value {0}", sharedData);

CHAPTER 3 ' SHARING DATA

// wait - slow things down to make the example clear
tokenSource.Token.WaitHandle.WaitOne(1000);

// release the read lock

rwlock.ExitReadLock();

Console.WriteLine("Read lock released - count {0}",
rwlock.CurrentReadCount);

// check for cancellation
tokenSource.Token.ThrowIfCancellationRequested();

}, tokenSource.Token);
// start the new task
readerTasks[i].Start();

}

Task[] writerTasks = new Task[2];
for (int i = 0; i < writerTasks.Length; i++) {
writerTasks[i] = new Task(() => {
while (true) {
// acquire the upgradeable lock
rwlock.EnterUpgradeableReadLock();

// simulate a branch that will require a write
if (true) {
// acquire the write lock
rwlock.EnterhWritelLock();
// print out a message with the details of the lock
Console.WritelLine("Write Lock acquired - waiting readers {0},
writers {1}, upgraders {2}",
rwlock.WaitingReadCount, rwlock.WaitingWriteCount,
rwlock.WaitingUpgradeCount);

// modify the shared data
sharedData++;

// wait - slow down the example to make things clear
tokenSource.Token.WaitHandle.WaitOne(1000);

// release the write lock

rwlock.ExitWriteLock();

}

// release the upgradable lock
rwlock.ExitUpgradeableReadLock();

// check for cancellation
tokenSource.Token.ThrowIfCancellationRequested();

85

CHAPTER 3 ' SHARING DATA

}, tokenSource.Token);
// start the new task
writerTasks[i].Start();

}

// prompt the user

Console.WriteLine("Press enter to cancel tasks");
// wait for the user to press enter
Console.ReadlLine();

// cancel the tasks
tokenSource.Cancel();

try {
// wait for the tasks to complete
Task.WaitAll(readerTasks);

} catch (AggregateException agex) {
agex.Handle(ex => true);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadLine();

Only one holder of the upgradable lock is allowed at a time, which means you should partition your
requests for locks carefully to have as few requests as possible for upgradable and write locks. You may
be tempted to separate your read and write requests so that you release the read lock and then try to
acquire the write lock only if you need to make a change, as shown in the following fragment:
ReaderWriterLockSlim rwlock = new ReaderWriterLockSlim();
bool writeFlag = false;
rwlock.EnterReadLock();

if (needTolWrite) {
writeFlag = true;

// release the read lock
rwlock.ExitReadLock();
if (writeFlag) {

// acquire write lock
rwlock.EnterhWriteLock();

86

CHAPTER 3 ' SHARING DATA

// ...perform write operations ...

// release the write lock
rwlock.ExitWriteLock();

This creates a data race, because between the point at which you release the read lock and acquire
the write lock, another Task could have modified the shared data and changed the condition that you
were looking for. The only way this approach works is if there is only one Task that can change the
shared data. If that is the case, there is no performance impact in using an upgradable lock, because
there will be no other upgrade requests to contend with.

Working with Concurrent Collections

One of the most common ways of sharing data is through collection classes. Often, you will want to use
Tasks to parallel process the contents of a collection or use a collection to gather the results produced by
Tasks. Sharing a collection between Tasks creates the same kinds of data races as sharing other types.

Listing 3-17 demonstrates a collection data race. A System.Collections.Generic.Queue<int> with
1,000 items is processed by ten Tasks. While there are still items in the collection, the Tasks remove the
first item and increment a counter, and the counter is synchronized using interlocked operations.

Listing 3-17. A data Race Sharing a Collection

using System;

using System.Collections.Generic;
using System.Threading;

using System.Threading.Tasks;

namespace Listing 17 {
class Listing 17 {
static void Main(string[] args) {

// create a shared collection

Queue<int> sharedQueue = new Queue<int>();

// populate the collection with items to process

for (int i = 0; i < 1000; i++) {
sharedQueue.Enqueue(i);

}

// define a counter for the number of processed items
int itemCount = 0;

// create tasks to process the list
Task[] tasks = new Task[10];
for (int i = 0; i < tasks.Length; i++) {
// create the new task
tasks[i] = new Task(() => {

87

88

CHAPTER 3 ' SHARING DATA

while (sharedQueue.Count > 0) {
// take an item from the queue
int item = sharedQueue.Dequeue();
// increment the count of items processed
Interlocked.Increment(ref itemCount);

}

1)
// start the new task
tasks[i].Start();

// wait for the tasks to complete
Task.WaitAll(tasks);

// report on the number of items processed
Console.WriteLine("Items processed: {0}", itemCount);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

The example gives rise to two kinds of data race. The first is where the counter value exceeds 1,000,
which happens because the steps in the Queue.Dequeue() method are not synchronized so Tasks are
reading the same value several times from the head of the queue. The second is a
System.InvalidOperationException, thrown when calls to Queue.Dequeue() are made when the queue is
empty; this happens because the check to see if there are items left in the queue (sharedQueue.Count >
0) and the request to take an item from the queue (sharedQueue.Dequeue()) are not protected in a critical
region.

There are three kinds of collection in the .NET Framework, and each requires a different approach
to sharing them safely.

Using .NET 4 Concurrent Collection Classes

.NET 4 includes a set of collection classes in the System.Collections.Concurrent namespace. These
classes are type safe and synchronized using the lightweight synchronization primitives described
earlier in the chapter. You should use the new concurrent collection classes whenever you need to share
a collection during parallel programming, because the combination of type safety and lightweight
synchronization makes them safe to share and fast to use. Table 3-5 summarizes the four concurrent
collection classes, each of which is detailed in the following sections.

Note There is a fifth concurrent collection class, BlockingCollection. We will discuss this class in the next
chapter.

CHAPTER 3 ' SHARING DATA

Table 3-5. Concurrent Collection Classes

Problem Solution Listing

Safely collect data on a first-in, Use the System.Threading.Tasks.ConcurrentQueue class. 3-18
first-out basis.

Safely collect data on a first-in, ~ Use the System.Threading.Tasks.ConcurrentStack class. 3-19
last-out basis.

Safely collect data without a Use the System.Threading.Tasks.ConcurrentBag class. 3-20
specific ordering.

Safely collect key-value pairs. Use the System.Threading.Tasks.ConcurrentDictionary 3-21
class.

Tip Each of the concurrent collection classes implement a set of useful extension methods that range from
Count(), to return the number of items in the collection, through to methods to calculate averages or search for
items. See the .NET Framework documentation for details.

ConcurrentQueue

The ConcurrentQueue class implements a first in, first out (FIFO) queue, which means that when you take
items from the queue, you get them in the same order in which they were added. To place an item into a
ConcurrentQueue, you call the Enqueue() method. To take the first item in the queue, you call
TryDequeue() and to get the first item in the queue without taking it, you call TryPeek().

TryDequeue() and TryPeek() take a parameter of the collection type, modified by the out keyword
and return a bool result. If the result is true, the parameter will contain the data item. If it is false, no
data item could be obtained. Listing 3-18 shows how to use the ConcurrentQueue class to resolve the data
race demonstrated in Listing 3-17.

Listing 3-18. Using the ConcurrentQueue Class
using System;

using System.Collections.Concurrent;

using System.Threading;

using System.Threading.Tasks;

namespace Listing 18 {

class Listing 18 {

static void Main(string[] args) {

89

CHAPTER 3 ' SHARING DATA

// create a shared collection
ConcurrentQueue<inty sharedQueue = new ConcurrentQueue<ints();

// populate the collection with items to process

for (int i = 0; i < 1000; i++) {
sharedQueue.Enqueue(i);

}

// define a counter for the number of processed items
int itemCount = 0;

// create tasks to process the list
Task[] tasks = new Task[10];
for (int i = 0; i < tasks.Length; i++) {
// create the new task
tasks[i] = new Task(() => {

while (sharedQueue.Count » 0) {
// define a variable for the dequeue requests
int queueElement;
// take an item from the queue
bool gotElement = sharedQueue.TryDequeue(out queueElement);
// increment the count of items processed
if (gotElement) {
Interlocked.Increment(ref itemCount);
}

1
// start the new task

tasks[i].Start();

// wait for the tasks to complete
Task.WaitAll(tasks);

// report on the number of items processed
Console.WriteLine("Items processed: {0}", itemCount);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

The TryDequeue() and TryPeek() methods force you to code for possible failure, that is, for the
eventuality that no data item is available. Listing 3-18 checks to see if there are items in the queue by
reading the Count property. However, we can’t assume that there will still be items by the time our call to
TryDequeue() is executed, so we have to check the bool result from TryDequeue() to see if we received
data to process. Table 3-6 describes the key members of the ConcurrentQueue class.

CHAPTER 3 ' SHARING DATA

Table 3-6. Key Members of System.Collections.Concurrent.ConcurrentQueue

Member Description
Enqueue(T) Add an item of type T to the queue.
TryPeek(out T) Try to return an element from the head of the queue without removing it. Return

true if a data item was returned. The element is set to the out parameter.

TryDequeue(out T) Try to remove and return an element from the head of the queue. Return true if
a data item was returned. The element is set to the out parameter.

ConcurrentStack

The System.Collections.Concurrent.ConcurrentStack class implements a last in, first out (LIFO)
queue—taking an item from the queue returns the most recently added item. Items are added to the
stack using the Push() and PushRange() methods and inspected and retrieved using the TryPeek(),
TryPop(), and TryPopRange() methods. Listing 3-19 demonstrates the use of the ConcurrentStack
collection.

Listing 3-19. Using the ConcurrentStack Class

using System;

using System.Collections.Concurrent;
using System.Threading;

using System.Threading.Tasks;

namespace Listing 19 {
class Listing 19 {
static void Main(string[] args) {

// create a shared collection
ConcurrentStack<int> sharedStack = new ConcurrentStack<int>();

// populate the collection with items to process

for (int i = 0; i < 1000; i++) {
sharedStack.Push(i);

}

// define a counter for the number of processed items
int itemCount = 0;

// create tasks to process the list
Task[] tasks = new Task[10];
for (int i = 0; i < tasks.Length; i++) {
// create the new task
tasks[i] = new Task(() => {

91

92

CHAPTER 3 ' SHARING DATA

while (sharedStack.Count > 0) {
// define a variable for the dequeue requests
int queueElement;
// take an item from the queue
bool gotElement = sharedStack.TryPop(out queueElement);
// increment the count of items processed
if (gotElement) {
Interlocked.Increment(ref itemCount);
}

1
// start the new task

tasks[i].Start();
// wait for the tasks to complete
Task.WaitAll(tasks);

// report on the number of items processed
Console.WriteLine("Items processed: {0}", itemCount);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Table 3-7 describes the key members of the ConcurrentStack class.

Table 3-7. Key members of System.Collections.Concurrent.ConcurrentStack

Member Description
Push(T) Insert an element at the head of the stack.
PushRange(T[]) Insert multiple elements at the head of the stack.

PushRange(T[], int, int)

TryPeek(out T) Try to return an element from the head of the stack without
removing it. Return true if a data item was returned.

TryPop(out T Ity to remove and return an element from the head of the stack.
yrop ry
Return true if a data item was returned.

TryPopRange(out T[]) Try to remove and return multiple elements from the head of the
TryPopRange(out T[], int, int) stack. Return the number of data items returned.

CHAPTER 3 ' SHARING DATA

ConcurrentBag

The ConcurrentBag class implements an unordered collection, such that the order in which items are
added does not guarantee the order in which they will be returned. Items are added with the Add()
method, returned and removed from the collection with the TryTake() method, and returned without
being removed with the TryPeek () method. Listing 3-20 demonstrates use of the ConcurrentBag
collection.

Listing 3-20. Using the ConcurrentBag Class

using System;

using System.Collections.Concurrent;
using System.Threading;

using System.Threading.Tasks;

namespace Listing 20 {
class Listing 20 {
static void Main(string[] args) {

// create a shared collection
ConcurrentBagcinty sharedBag = new ConcurrentBag<ints>();

// populate the collection with items to process
for (int i = 0; i < 1000; i++) {
sharedBag.Add(1i);

// define a counter for the number of processed items
int itemCount = 0;

// create tasks to process the list
Task[] tasks = new Task[10];
for (int i = 0; i < tasks.Length; i++) {
// create the new task
tasks[i] = new Task(() => {

while (sharedBag.Count > 0) {
// define a variable for the dequeue requests
int queueElement;
// take an item from the queue
bool gotElement = sharedBag.TryTake(out queueElement);
// increment the count of items processed
if (gotElement) {
Interlocked.Increment(ref itemCount);
}

93

94

CHAPTER 3 ' SHARING DATA

1
// start the new task

tasks[i].Start();
}

// wait for the tasks to complete
Task.WaitAll(tasks);

// report on the number of items processed
Console.WriteLine("Items processed: {0}", itemCount);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadLine();

Table 3-8 describes the key members of the ConcurrentBag class.

Table 3-8. Key members of System.Collections.Concurrent.ConcurrentBag

Member Description
Add(T) Add an element to the collection.
TryPeek(out T) Try to return an element from the collection without removing it. Return true if a

data item was returned.

TryTake(out T) Try to remove and return an element from the collection. Return true if a data
item was returned.

ConcurrentDictionary

The ConcurrentDictionary class implements a collection of key-value pairs. Like the other collection
classes in the System.Collections.Concurrent namespace, ConcurrentDictionary provides methods
whose names are prefixed with Try and returns bool results if they operate successfully. Table 3-9
describes the key members of the ConcurrentDictionary class.

CHAPTER 3 ' SHARING DATA

Table3-9. Key members of System.Collections.Concurrent.ConcurrentDictionary

Member

Description

TryAdd(TKey, TVal)

TryGetValue(TKey, out Tval)

TryRemove(TKey, out TVal)

TryUpdate(TKey, TVal, Tval)

ContainsKey(TKey)

Try to add a new key-value pair to the collection. Return true if the
pair was added successfully.

Try to get the value associated with the specified key. Return true if
the value was obtained and placed in the out parameter.

Try to remove a key-value pair from the collection. The value will be
placed in the out parameter. Return true if the key-value pair was
removed successfully.

Try to update the value associated with a key. The first value
parameter will be used to update the key-value pair if the current
value in the collection is equal to the second value parameter. Return
true if the value was updated.

Return true if the collection contains a key-value pair with the
specified key.

Bear in mind that the state of the collection may change between calls to individual methods. For
example, if you call the ContainsKey() method and then call TryGetValue() using the key you have
checked for, there is no guarantee that it will still be present, so your method calls may be interleaved
with those from another parallel Task.

Listing 3-21 shows the ConcurrentDictionary class being used to implement a variant of the data
isolation pattern to allow multiple Tasks to keep track of their own account balances.

Listing 3-21. Using the ConcurrentDictionary Class

using System;

using System.Collections.Concurrent;

using System.Threading.Tasks;

namespace Listing 21 {

class BankAccount {

public int Balance {

get;
set;

}

class Listing 21 {

static void Main(string[] args) {

95

96

CHAPTER 3 ' SHARING DATA

// create the bank account instance
BankAccount account = new BankAccount();

// create a shared dictionary
ConcurrentDictionary<object, int> sharedDict

= new ConcurrentDictionary<object, int>();

// create tasks to process the list
Task<int>[] tasks = new Task<int>[10];
for (int i = 0; i < tasks.Length; i++) {

// put the initial value into the dictionary
sharedDict.TryAdd(i, account.Balance);

// create the new task
tasks[i] = new Task<int>((keyObj) => {

// define variables for use in the loop
int currentValue;
bool gotValue;

// enter a loop for 1000 balance updates

for (int j = 0; j < 1000; j++) {
// get the current value from the dictionary
gotValue = sharedDict.TryGetValue(keyObj, out currentValue);
// increment the value and update the dictionary entry
sharedDict.TryUpdate(keyObj, currentValue + 1, currentValue);

}

// define the final result
int result;
// get our result from the dictionary
gotValue = sharedDict.TryGetValue(keyObj, out result);
// return the result value if we got one
if (gotvValue) {
return result;
} else {
// there was no result available - we have encountered a problem
throw new Exception(
String.Format("No data item available for key {0}", keyObj));
}
b o1);

// start the new task
tasks[i].Start();

// update the balance of the account using the task results
for (int i = 0; i < tasks.Length; i++) {

}

account.Balance += tasks[i].Result;

CHAPTER 3 ' SHARING DATA

// write out the counter value
Console.WritelLine("Expected value {0}, Balance: {1}",
10000, account.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Using First-Generation Collections

The first-generation collection classes are those that were included in .NET since version 1.0. These
classes include two features to help with synchronization, but neither is ideal, and you should use the
new concurrent collections wherever possible.

The first synchronization helper is the static Synchronized method, which creates a wrapper around
your collection instance. The wrapper synchronizes all of the methods of the collection, rather like the
declarative synchronization demonstrated earlier in the chapter. Listing 3-22 shows the use of the
Synchronized method for a System.Collections.Queue.

Listing 3-22. Synchronizing a First-Generation Collection Class

using System;
using System.Collections;
using System.Threading.Tasks;

namespace Listing 22 {
class Listing 22 {
static void Main(string[] args) {

// create a collection
Queue sharedQueue = Queue.Synchronized(new Queue());

// create tasks to process the list
Task[] tasks = new Task[10];
for (int i = 0; i < tasks.Length; i++) {
// create the new task
tasks[i] = new Task(() => {

for (int j = 0; j < 100; j++) {
sharedQueue.Enqueue(j);
}

97

98

CHAPTER 3 ' SHARING DATA

1
// start the new task

tasks[i].Start();
}

// wait for the tasks to complete
Task.WaitAll(tasks);

// report on the number of items enqueued
Console.WriteLine("Items enqueued: {0}", sharedQueue.Count);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadLine();

The Synchronized method works in Listing 3-22 because we are using it to stop multiple enqueue
operations colliding. But while each method is synchronized, there is no support for maintaining
consistency across method calls. If you need to perform multiple operations on the collection, such as
checking that there are items in the queue and then removing one of them, the Synchronized method
won't help.

The second synchronization helper is the SyncRoot instance member, which returns an object that
you can use to perform locking with the lock keyword. Listing 3-23 demonstrates the use of SyncRoot.

Listing 3-23. Manually Synchronizing a First-Generation Collection Class
using System;
using System.Collections;
using System.Threading;
using System.Threading.Tasks;
namespace Listing 23 {
class Listing 23 {

static void Main(string[] args) {

// create a collection
Queue sharedQueue = new Queue();

// populate the collection with items to process

for (int i = 0; i < 1000; i++) {
sharedQueue.Enqueue(i);

}

// define a counter for the number of processed items
int itemCount = 0;

CHAPTER 3 ' SHARING DATA

// create tasks to process the list
Task[] tasks = new Task[10];
for (int i = 0; i < tasks.Length; it++) {
// create the new task
tasks[i] = new Task(() => {

while (sharedQueue.Count > 0) {
// get the lock using the collections sync root
lock (sharedQueue.SyncRoot) {
// check that there are still items
if (sharedQueue.Count > 0) {
// take an item from the queue
int queueElement = (int)sharedQueue.Dequeue();
// increment the count of items processed
Interlocked.Increment(ref itemCount);

1
// start the new task

tasks[i].Start();

// wait for the tasks to complete
Task.WaitAll(tasks);

// report on the number of items processed
Console.WriteLine("Items processed: {0}", itemCount);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

In Listing 3-23, we make two calls to the Count property: one to keep the Task body running and one
to check that there are still items in the queue once we have acquired sole access to the critical region.
We need the second call because, unlike the concurrent classes, the first-generation collections are not
designed to cope with interleaved parallel requests. When sharing first-generation collections between
Tasks, you have to either write additional checks inside of the critical region or catch the exceptions that
will be thrown when the state is out of kilter, for example, trying to dequeue from an empty queue.

The other issue with the first-generation collections is that they are not type safe. We have to cast
the result from the Dequeue() method to an int and deal with the exceptions that arise if a type other
than an int is added to the collection.

Using Generic Collections
Generic collections are those from the System.Collections.Generic namespace. These collections are
type safe but provide no support for synchronization. You must use one of the synchronization

99

100

CHAPTER 3 ' SHARING DATA

primitives described earlier in this chapter when sharing these classes. Wherever possible, use the
concurrent collections instead.

Common Problems and Their Causes

Sharing data safely between Tasks is one of the most error-prone aspects of parallel programming. You
will almost certainly make mistakes as you come to terms with the nuances of parallel programming and
strive to strike a balance between performance and safety. This section describes and demonstrates four
of the most common problems in the hope that you will be able to more quickly determine the cause of a
problem when it arises.

Unexpected Mutability

Types that are assumed to be immutable are built from mutable types whose states are changed by
another Task. Unexpected and inconsistent program results from the point at which the state change
occurs.

Solution

There is no programmatic solution to the Unexpected Mutability antipattern. The only way to avoid this
problem is to check the field modifiers for all types that you are relying on as being immutable to make
sure that they can’t be changed.

Example

C# does not enforce immutability of complex types; it is possible to declare a field to be readonly and
still modify the members of the type instance assigned to it. For example, the following listing shows the
type MyImmutableType, which declares a readonly field of the type MyReferenceData. The PI field of
MyReferenceData is not readonly and is changed by the main thread of the program, causing incorrect
calculations.

using System;
using System.Threading;
using System.Threading.Tasks;
namespace Mistaken_Immutability {
class MyReferenceData {
public double PI = 3.14;
}

class MyImmutableType {
public readonly MyReferenceData refData = new MyReferenceData();
public readonly int circleSize = 1;

}
class MistakenImmutability {

static void Main(string[] args) {

CHAPTER 3 ' SHARING DATA

// create a new instance of the immutable type
MyImmutableType immutable = new MyImmutableType();

// create a cancellation token source
CancellationTokenSource tokenSource = new CancellationTokenSource();

// create a task that will calculate the circumference
// of a 1 unit circle and check the result
Task taski = new Task(() => {
while (true) {
// perform the calculation
double circ = 2 * immutable.refData.PI * immutable.circleSize;
Console.WriteLine("Circumference: {0}", circ);
// check for the mutation
if (circ == 4) {
// the mutation has occurred - break
// out of the loop
Console.WriteLine("Mutation detected");
break;

// sleep for a moment
tokenSource.Token.WaitHandle.WaitOne(250);

}, tokenSource.Token);

// start the task
taski.Start();

// wait to let the task start work
Thread.Sleep(1000);

// perform the mutation
immutable.refData.PI = 2;

// join the task
task1.Wait();

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Multiple Locks

In a multiple lock scenario, multiple critical sections modify the same shared data, and each has its own
lock or synchronization primitive. Access to each critical region is synchronized, but there is no overall
coordination which means that a data race can still occur.

101

CHAPTER 3 ' SHARING DATA

Solution
Ensure that every Task that enters the critical region uses the same reference to acquire the
synchronization lock.

Example

The following example shows two locks being used to synchronize access to critical regions that access
the same shared data, in this case, the balance of our bank account example. Ten Tasks are created in
two groups of five: members of the first group uses one lock to synchronize their balance updates, and
the second group uses the other lock.

using System;
using System.Threading.Tasks;

namespace Multiple Locks {
class BankAccount {
public int Balance {

get;
set;

}
class Multiple Locks {
static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create two lock objects
object locki = new object();
object lock2 = new object();

// create an array of tasks
Task[] tasks = new Task[10];

// create five tasks that use the first lock object
for (int i = 0; i < 5; i++) {
// create a new task
tasks[i] = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
lock (lock1) {
// update the balance
account.Balance++;

1

102

CHAPTER 3 ' SHARING DATA

// create five tasks that use the second lock object
for (int i = 5; i < 10; i++) {
// create a new task
tasks[i] = new Task(() => {
// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
lock (lock2) {
// update the balance
account.Balance++;

}
B;
}

// start the tasks

foreach (Task task in tasks) {
task.Start();

}

// wait for all of the tasks to complete
Task.WaitAll(tasks);

// write out the counter value
Console.WriteLine("Expected value {0}, Balance: {1}",
10000, account.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Lock Acquisition Order

You may run into a lock acquisition order issue if you acquire multiple locks in a nested code block but
do so in a different order in two or more critical regions. The following fragment demonstrates a nested
block:

lock (lockObj1) {
lock (lockObj2) {
...critical region...
}

If you repeat this nested acquisition to protect another critical region but don’t acquire the locks in
the same order (i.e., acquire lockObj2 and then lockObj1), you create a potential deadlock where neither
of the two Tasks (or any other Task that will wish to acquire either lock) can continue.

103

104

CHAPTER 3 ' SHARING DATA

Solution

If you are using wait-handle-based primitives, the best solution is to use the WaitAll() method
demonstrated in the “Acquiring Multiple Locks” section of this chapter. This method will acquire the
lock on multiple wait handles in a single step, which avoids the deadlock.

If you are using another kind of primitive, the only solution is to ensure that you always acquire the
locks in the same order. A simple trick is to name the primitive instances sequentially (Lock1, lock2, etc.)
and always acquire the lowest ordered name first. Ensuring that you don’t duplicate primitive instance
names in your code is a lot easier than debugging a deadlock.

Example

The following example creates two objects used with the lock keyword. Two Tasks are created, and they
acquire one of the locks, wait for 500 ms, and then acquire the second lock. The lock acquisition order is
different for each Task and deadlock occurs.

using System;
using System.Threading;
using System.Threading.Tasks;
namespace Lock Acquisition Order {
class Lock_Acquisition_Order {
static void Main(string[] args) {
// create two lock objects

object lockl = new object();
object lock2 = new object();

// create a task that acquires lock 1

// and then lock 2

Task taski = new Task(() => {

lock (lock1) {
Console.WritelLine("Task 1 acquired lock 1");
Thread.Sleep(500);
lock (lock2) {
Console.WritelLine("Task 1 acquired lock 2");

}

}
1

// create a task that acquires lock 2
// and then lock 1
Task task2 = new Task(() => {
lock (lock2) {
Console.WritelLine("Task 2 acquired lock 2");
Thread.Sleep(500);

CHAPTER 3 ' SHARING DATA

lock (lock1) {
Console.WriteLine("Task 2 acquired lock 1");
}

}
B;

// start the tasks
task1.Start();
task2.Start();

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Orphaned Locks

The .NET synchronization primitives require you to explicitly acquire and release the lock. An orphaned
lock is one that has been acquired but, because of an exception or poor programming, will never be
released.

Because the lock is never released, any Tasks that try to acquire the lock will wait indefinitely.

Solution

Ensure that you do not return from a method before releasing a lock and handle exceptions by releasing
your lock in the finally block of a try. . .catch. . .finallysequence. Alternatively, use the lock
keyword (although this may offer poor performance compared with one of the lightweight
synchronization primitives).

Example

The following example uses a Mutex to demonstrate an orphaned lock. The first Task created repeatedly
acquires and releases the Mutex. The second Task acquires the Mutex and then throws an exception, so
the Mutex is never released. The first Task deadlocks waiting to acquire the Mutex and cannot move
forward. The Mutex remains orphaned even when the second Task has finished and its exception has
been processed.

using System;

using System.Threading;

using System.Threading.Tasks;
namespace Orphaned_Locks {

class Orphaned_Locks {

static void Main(string[] args) {

105

CHAPTER 3 ' SHARING DATA

// create the sync primitive
Mutex mutex = new Mutex();

// create a cancellation token source
CancellationTokenSource tokenSource = new CancellationTokenSource();

// create a task that acquires and releases the mutex
Task taski = new Task(() => {
while (true) {
mutex.WaitOne();
Console.WriteLine("Task 1 acquired mutex");
// wait for 500ms
tokenSource.Token.WaitHandle.WaitOne(500);
// exit the mutex
mutex.ReleaseMutex();
Console.WriteLine("Task 1 released mutex");

}, tokenSource.Token);

// create a task that acquires and then abandons the mutex
Task task2 = new Task(() => {
// wait for 2 seconds to let the other task run
tokenSource.Token.WaitHandle.WaitOne(2000);
// acquire the mutex
mutex.WaitOne();
Console.WriteLine("Task 2 acquired mutex");
// abandon the mutex
throw new Exception("Abandoning Mutex");
}, tokenSource.Token);

// start the tasks
task1.Start();
task2.Start();

// put the main thread to sleep
tokenSource.Token.WaitHandle.WaitOne(3000);

// wait for task 2
try {
task2.Wait();
} catch (AggregateException ex) {
ex.Handle((inner) => {
Console.WriteLine(inner);
return true;

1

106

CHAPTER 3 ' SHARING DATA

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Summary

In this chapter, we tackled the difficult topic of sharing data between tasks. Of the problems that you are
likely to encounter as you write parallel programs, problems of this type are the most commonly
occurring. Taking the time to make sure you understand how your data is shared between your tasks can
save many hours of debugging. In the next chapter, we’ll look at how you can coordinate several tasks to
build more complex parallel programs.

107

CHAPTER 4

Coordinating Tasks

Listing 4-1. Task Continuation

using System;
using System.Threading.Tasks;

namespace Listing 01 {

class BankAccount {
public int Balance {
get;
set;

}

class Listing 01 {
static void Main(string[] args) {

Task<BankAccount> task = new Task<BankAccount>(() => {
// create a new bank account
BankAccount account = new BankAccount();
// enter a loop
for (int i = 0; i < 1000; i++) {
// increment the account total
account.Balance++;

// return the bank account
return account;

1

task.ContinueWith((Task<BankAccount> antecedent) => {
Console.WriteLine("Final Balance: {0}", antecedent.Result.Balance);

1

// start the task
task.Start();

109

110

CHAPTER 4 " COORDINATING TASKS

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Doing More with Tasks

One of the most useful features of the TPL is the flexible way you can coordinate what groups of Tasks do
to build complex parallel programs. In this chapter, we’ll look at the main approaches to coordination.

The first two are task continuations and child tasks. Continuations let you create chains of Tasks that
are executed one after the other. Child tasks are run in the body of another Task and let you break down
work into smaller pieces in order to increase concurrency. Listing 4-1 demonstrates a simple task
continuation.

We’ll also build on the previous chapter to apply what you learned about synchronization; there are
some advanced synchronization primitives that can be used to manage how Tasks interact with one
another. This chapter describes these primitives and shows you how to use them.

A core building block in many parallel programs is the Parallel Producer/Consumer pattern, which
has one group of Tasks creating items which are then processed by a second group of Tasks. You'll use
this pattern time and time again. The .NET Framework includes a class that makes implementing this
pattern very simple, and this chapter shows you how to create and customize this important
programming model—if you only read one part of this chapter closely, make it this one.

This chapter finishes up by showing you how to implement a custom task scheduler. The task
scheduler is responsible for taking the Tasks that you create and having them executed by the classic
threads that underpin the TPL. This is the only part of the book where you see the classic threads, and
you’ll need to have some knowledge of how they work to follow along. But this is very much an optional
(and advanced) topic. You can use the default TPL task scheduler without having any needing any
experience with threads and, in fact, that’s exactly what I recommend you do.

Using Task Continuations

Task continuations allow you to chains of Tasks, which are performed in order, so when one Task in the
chain finishes, the next one begins.

In a simple continuation, each Task in the chain is followed by one other Task, which can be useful
but not deeply so. The true power of continuations arises with multitask and selective continuations.
Multitask continuations schedule several Tasks when one finishes, or schedule one Task when several
finish. They create the potential for fine-grained parallelism, where steps that were performed
sequentially inside a larger Task body can now be performed in parallel. Selective continuations allow
you to schedule Tasks based on the status of the previous Task in the chain, allowing you to create
complex, yet natural, sets of Tasks to represent complex application states.

The following sections show you how to create and manage different types of continuations,
building on what we learned in the previous chapter, as summarized in Table 4-1.

CHAPTER 4 " COORDINATING TASKS

Table 4-1. Task Continuations

Problem Solution Listing
Create a simple Use the Task.ContinueWith() method for each Task continuation. 4-1 and
continuation. 4-2
Create selective Use the Task.ContinueWith() method, and specify a value from the 4-4
continuations. TaskContinuationOptions enumeration.

Create many-to-one Use the TaskFactory.ContinueWhenAll() and 4-5 and
and any-to-one Task.Factory.ContinuelhenAny() methods. 4-6
continuations.

Canceling Use a CancellationToken when using the ContinueWith() method 4-7
continuations. and, optionally, the NotOnCanceled value from the

TaskContinuationOptions enumeration.

Handle exceptionsin Use selective continuations with the OnlyOnFaulted and 4

task continuations. NotOnFaulted values from the TaskContinuationOptions 4-
enumeration or propagate exceptions by handling and re-throwing
them in continuations.

Creating Simple Continuations
Listing 4-1, at the start of this chapter, demonstrates a simple task continuation. Creating a simple
continuation is a two step process:

1. Create a new Task instance.

2. Call the ContinueWith() method on the new Task, supplying a
System.Action<Task> delegate as the method parameter.

Note In Listing 4-1 and throughout this chapter, we will be using lambda expressions to create anonymous
Action delegates. See Chapter 2 for more information about lambda expressions.

Performing these steps creates two Tasks. The first Task is called the antecedent. The second Task,
returned by the ContinueWith() method, is called the continuation.

Once both Tasks have been created, calling the antecedent Start () method schedules the Task as
usual and, when it has been completed, automatically schedules the continuation Task. Note that I used
the word “schedules” here; other Tasks may be executed between the antecedent Task completing and
the continuation Task being performed.

In Listing 4-1, the antecedent increments the balance of a BankAccount, and the continuation prints
out the final balance. But look closely, and you will see something interesting: the antecedent is defined
to be a Task<BankAccount>, so the Task body returns the BankAccount instance when the Task completes.

111

112

CHAPTER 4 " COORDINATING TASKS

The Task.ContinueWith() method takes a System.Action<Task> argument and uses this to pass the
antecedent Task to the continuation, meaning that all of the methods and properties of the antecedent
Task are available to you in your continuation code. Listing 4-1 uses this feature to get the BankAccount
instance from the antecedent’s Result property.

Using Task.ContinueWith<T>() allows you to create continuation Tasks that return a result, just like
you did with stand-alone Tasks in the previous chapter. The result type of a continuation can differ from
that of the antecedent. Listing 4-2 demonstrates a continuation that obtains a BankAccount instance from
the antecedent Task and returns double the value of the Balance property as its own result. Notice that,
in order to get the result from the continuation, we declare a Task<int> to hold the result from the
Task.ContinueWith<int> () method so that we can read the Result property.

Listing 4-2. Returning Results with Continuation Tasks

using System;
using System.Threading.Tasks;

namespace Listing 02 {

class BankAccount {
public int Balance {
get;
set;

}
class Listing 02 {
static void Main(string[] args) {

Task<BankAccount> task = new Task<BankAccount>(() => {
// create a new bank account
BankAccount account = new BankAccount();
// enter a loop
for (int i = 0; i < 1000; i++) {
// increment the account total
account.Balance++;

// return the bank account
return account;

1

Task<int> continuationTask
= task.ContinueWith<int>((Task<BankAccount> antecedent) => {
Console.WriteLine("Interim Balance: {0}", antecedent.Result.Balance);
return antecedent.Result.Balance * 2;

};

// start the task
task.Start();

CHAPTER 4 " COORDINATING TASKS

Console.WriteLine("Final balance: {0}", continuationTask.Result);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadLine();

Note The Task returned from the Task.ContinueWith() method cannot be started using the Task.Start()
method. It will be scheduled to run as a continuation when an antecedent has completed.

There are five overloaded versions of the ContinueWith() method. The most complete version takes
four arguments: ContinueWith(Action(Task), CancellationToken, TaskContinuationOptions,
TaskScheduler).

The Action(Task) is the task body and is required for all of the method versions. The
CancellationToken is optional; see the “Canceling Continuations” section later in this chapter for details.
The TaskContinationsOptions enumeration is described in Table 4-2 and allows you to create selective
continuations. The TaskScheduler is described later in the “Using a Custom Task Scheduler” section of
this chapter. When using the simpler overloads, default values are used for the ContinuationOptions and
TaskScheduler while the CancellationToken is omitted.

Creating One-to-Many Continuations

An antecedent Task can have multiple continuations; that is to say that more than one Task can be
automatically scheduled when the antecedent Task has completed. You call ContinueWith() for each
continuation you need to create. And you can create chains of continuations by giving each of your
continuations its own continuation. To do so, you just call the Continuelith() method on the Tasks
returned by your previous calls ContinueWith().

Listing 4-3 demonstrates multiple and chained continuations through a variation of our bank
account example. The antecedent task creates a BankAccount, increments the balance, and returns it as
the result. Two second-generation continuations are created: one doubles the balance from the
antecedent, and the other halves the balance. Each of the second-generation Tasks has a third-
generation continuation that prints out its antecedent result, in this case, the final balance. One set of
continuations is built up in stages while the others are created in a single statement.

Listing 4-3. Using Multiple Generations of Continuation

using System;
using System.Threading.Tasks;

namespace Listing 03 {

Download from Wow! eBook

113

Boykma
Text Box
Download from Wow! eBook

114

CHAPTER 4 " COORDINATING TASKS

class BankAccount {
public int Balance {
get;
set;

}

class Listing 03 {
static void Main(string[] args) {

Task<BankAccount> rootTask = new Task<BankAccount>(() => {
// create a new bank account
BankAccount account = new BankAccount();
// enter a loop
for (int i = 0; i < 1000; i++) {
// increment the account total
account.Balance++;

// return the bank account
return account;

};

// create the second-generation task, which will double the antecdent balance
Task<int> continuationTask1
= rootTask.ContinueWith<int>((Task<BankAccount> antecedent) => {
Console.WriteLine("Interim Balance 1: {0}", antecedent.Result.Balance);
return antecedent.Result.Balance * 2;

1

// create a third-generation task, which will print out the result
Task continuationTask2
= continuationTask1.ContinueWith((Task<int> antecedent) => {
Console.WriteLine("Final Balance 1: {0}", antecedent.Result);

1;

// create a second and third-generation task in one step

rootTask.ContinueWith<inty ((Task<BankAccount> antecedent) => {
Console.WriteLine("Interim Balance 2: {0}", antecedent.Result.Balance);
return antecedent.Result.Balance / 2;

}).ContinuelWith((Task<int> antecedent) => {
Console.WriteLine("Final Balance 2: {0}", antecedent.Result);

D;

// start the task
rootTask.Start();

CHAPTER 4 " COORDINATING TASKS

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Creating Selective Continuations

By default, continuation Tasks are automatically scheduled when the antecedent Task completes. We
can be selective about scheduling continuations by using the values of the
System.Threading.Tasks.TaskContinuationOptions enumeration when calling the Task.ContinueWith()
method. Table 4-2 details the enumeration values.

Table 4-2. Key Values of the System.Threading. Tasks.TaskContinuationOptions Enumeration

Enumeration Value

Description

None

OnlyOnRanToCompletion

NotOnRanToCompletion

OnlyOnFaulted

NotOnFaulted

OnlyOnCancelled

NotOnCancelled

This is equivalent to not specifying a value; that is, the continuation will be
scheduled to run when the antecedent completes.

The continuation will be scheduled if the antecedent completed successfully;
that is, the antecedent is not cancelled and does not throw an unhandled

exception.

The continuation will be scheduled if the antecedent is cancelled or throws
an unhandled exception.

The continuation will be scheduled if the antecedent throws an unhandled
exception.

The continuation will be scheduled if the antecedent does not throw an
unhandled exception.

The continuation will be scheduled if the antecedent is cancelled.

The continuation will be scheduled if the antecedent is not cancelled.

Listing 4-4 demonstrates using the OnlyOnFaulted and NotOnFaulted values. The antecedent Task
contains a code statement that throws a System.Exception. If the statement is commented out, the
second continuation Task is scheduled on completion of the antecedent. If the line is left active, and the
Exception is thrown, and the first continuation Task is scheduled.

115

116

CHAPTER 4 " COORDINATING TASKS

Listing 4-4. Continuations Based on Exceptions

using System;
using System.Threading.Tasks;

namespace Listing 04 {
class Listing 04 {
static void Main(string[] args) {

// create the first generation task

Task firstGen = new Task(() => {
Console.WriteLine("Message from first generation task");
// comment out this line to stop the fault
throw new Exception();

1

// create the second-generation task - only to run on exception
Task secondGenl = firstGen.ContinueWith(antecedent => {
// write out a message with the antecedent exception
Console.WritelLine("Antecedent task faulted with type: {0}",
antecedent.Exception.GetType());
}, TaskContinuationOptions.OnlyOnFaulted);

// create the second-generation task - only to run on no exception

Task secondGen2 = firstGen.ContinueWith(antecedent => {
Console.WriteLine("Antecedent task NOT faulted");

}, TaskContinuationOptions.NotOnFaulted);

// start the first generation task
firstGen.Start();

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Tip The continuation that runs onlyOnFaulted reads the Exception property of the antecedent. If this was not
the case, the exception would have remained unhandled. See the “Handling Exceptions” section for more
information about exceptions in continuation chains.

CHAPTER 4 " COORDINATING TASKS

Creating Many-to-One and Any-To-One Continuations

The continuations we have seen so far have been one-to-one or one-to-many; that is, one antecedent
has one or more continuations. You can also perform many-to-one continuations using the
ContinueWhenAll() and ContinueWhenAny() methods of the System.Threading.Tasks.TaskFactory class.
You obtain an instance of TaskFactory through the static Task.Factory property.

The ContinuelhenAll() and ContinueWhenAny() methods both take an array of Tasks argument. —
ContinuelhenAll() schedules a continuation to be performed when all of the Tasks in the array have
completed, whereas ContinellhenAny() schedules a continuation to be performed when any single Task
in the array has completed. Listing 4-5 demonstrates a simple multitask continuation applied to the
Isolation example from the previous chapter.

Listing 4-5. A Multitask Continuation

using System;
using System.Threading.Tasks;

namespace Listing 05 {

class BankAccount {
public int Balance {
get;
set;

}
class Listing 05 {
static void Main(string[] args) {

// create the bank account instance
BankAccount account = new BankAccount();

// create an array of tasks
Task<int>[] tasks = new Task<int>[10];

for (int i = 0; i < 10; i++) {
// create a new task
tasks[i] = new Task<int>((stateObject) => {

// get the state object
int isolatedBalance = (int)stateObject;

// enter a loop for 1000 balance updates
for (int j = 0; j < 1000; j++) {
// update the balance
isolatedBalance++;

117

118

CHAPTER 4 " COORDINATING TASKS

// return the updated balance
return isolatedBalance;

}, account.Balance);

// set up a multitask continuation
Task continuation = Task.Factory.ContinuellhenAll<ints(tasks, antecedents =» {
// xun through and sum the individual balances
foreach (Task<int> t in antecedents) {
account.Balance += t.Result;
}

H

// start the atecedent tasks
foreach (Task t in tasks) {
t.Start();

// wait for the contination task to complete
continuation.Wait();

// write out the counter value
Console.WriteLine("Expected value {0}, Balance: {1}", 10000, account.Balance);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

In the listing, there are ten antecedent Tasks, each of which updates its own isolated bank account
balance. The TaskFactory.ContinuelhenAll() method is used to create a multitask continuation that is
scheduled when all of the antecedents have completed. In Listing 4-5, the continuation Task reads the
Result property of each antecedent Task and adds it to the account balance.

The syntax of the ContinuelWhenAll() method is slightly awkward if you are using lambda
expressions because the array of antecedent Tasks appears twice, once as the first argument to the
method and again as the input to the lambda expression.

The other oddity of the ContinuelhenAll() syntax is the way in which you specify the results of the
antecedent Tasks and the result that you want for the continuation Task. The format is as follows:

Task<TAType>[] antecedents;
Task<TCType> continuation;

continuation = Task<TCType>.Factory.ContinueWhenAll<TAType> (antecedents,
antecedentsParam => {

... task body...
1;

CHAPTER 4 " COORDINATING TASKS

Table 4-3 shows the main permutations of Task results and the generic versions of Task and
ContinuelhenAll() or ContinueWhenAny() that you must use to get them.

Table 4-3. Antecedent and Continuation Type Calls

Antecedent Result Continuation Result Generic Form

None None Task.Factory.ContinelWhenAll()
Task.Factory.ContinelhenAny()

None TCType Task<TCType>.Factory.ContinelWhenAll()
Task<TCType>.Factory.ContineWhenAny()

TAType None Task.Factory.ContinuelWhenAl1<TAType>()
Task.Factory.ContinuelWhenAny<TAType>()

TAType TCType Task<TCType>.Factory.ContinueWhenAll<TAType> ()
Task<TCType>.Factory.ContinueWhenAny<TAType> ()

The ContinuelWhenAny() method works in a very similar way to ContinueWhenAll(), except that the
continuation Task will be scheduled to run as soon as any of the antecedent Tasks has completed. The
delegate argument for the ContinueWhenAny () method is the antecedent Task that completed first. Listing
4-6 demonstrates this kind of continuation. A set of ten antecedent Tasks uses a random number
generator to wait for a period of time, and the first Task to wake up finishes and becomes the antecedent
to the continuation Task.

Listing 4-6. Using TaskFactory.ContinueWhenAny()
using System;
using System.Threading;
using System.Threading.Tasks;
namespace Listing 06 {
class Listing 06 {

static void Main(string[] args) {

// create an array of tasks
Task<int>[] tasks = new Task<int>[10];

// create a cancellation token source
CancellationTokenSource tokenSource = new CancellationTokenSource();

// create the random number generator
Random rnd = new Random();

for (int i = 0; i < 10; i++) {

119

CHAPTER 4 " COORDINATING TASKS

// create a new task
tasks[i] = new Task<int>(() => {
// define the variable for the sleep interval
int sleepInterval;
// acquire exclusive access to the random
// number generator and get a random value
lock (rnd) {
sleepInterval = rnd.Next(500, 2000);

}
// put the task thread to sleep for the interval
tokenSource.Token.WaitHandle.WaitOne(sleepInterval);
// check to see the current task has been cancelled
tokenSource.Token.ThrowIfCancellationRequested();
// return the sleep interval as the result
return sleepInterval;

}, tokenSource.Token);

// set up a when-any multitask continuation

Task continuation = Task.Factory.ContinueWhenAny<int>(tasks,
(Task<int> antecedent) =» {

// write out a message using the antecedent result

Console.WriteLine("The first task slept for {0} milliseconds",

antecedent.Result);

1

// start the atecedent tasks

foreach (Task t in tasks) {
t.Start();

}

// wait for the contination task to complete
continuation.Wait();

// cancel the remaining tasks
tokenSource.Cancel();

// wait for input before exiting

Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Canceling Continuations

The techniques to handle cancellations for single Tasks, which we covered in the previous chapter, can
be applied to continuations. The Task.ContinueWith(), TaskFactory.ContinueWhenAll(), and
TaskFactory.ContinuelWhenAny () methods all have overloaded versions that accept a CancellationToken,

which you can obtain by creating an instance of CancellationTokenSource.

120

CHAPTER 4 " COORDINATING TASKS

Listing 4-7 demonstrates canceling continuations. An antecedent Task is created and waits using a
CancellationToken wait handle. When the user presses the enter key, the CancellationTokenSource, and
therefore the antecedent Task, are cancelled.

Listing 4-7. Cancelling Continuations

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 07 {
class Listing 07 {
static void Main(string[] args) {

// create a cancellation token source
CancellationTokenSource tokenSource
= new CancellationTokenSource();

// create the antecedent task
Task task = new Task(() => {
// write out a message
Console.WriteLine("Antecedent running");
// wait indefinately on the token wait handle
tokenSource.Token.WaitHandle.WaitOne();
// handle the cancellation exception
tokenSource.Token.ThrowIfCancellationRequested();
}, tokenSource.Token);

// create a selective continuation
Task neverScheduled = task.ContinueWith(antecedent =» {

// write out a message

Console.WriteLine("This task will never be scheduled");
}, tokenSource.Token);

// create a bad selective contination
Task badSelective = task.ContinueWith(antecedent => {

// write out a message

Console.WriteLine("This task will never be scheduled");
}, tokenSource.Token, TaskContinuationOptions.OnlyOnCanceled,
TaskScheduler.Current);

// create a good selective contiuation

Task continuation = task.ContinueWith(antecedent => {
// write out a message
Console.WriteLine("Continuation running");

}» TaskContinuationOptions.OnlyOnCanceled);

// start the task
task.Start();

121

122

CHAPTER 4 " COORDINATING TASKS

// prompt the user so they can cancel the token
Console.WriteLine("Press enter to cancel token");
Console.ReadlLine();

// cancel the token source

tokenSource.Cancel();

// wait for the good continuation to complete
continuation.Wait();

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Each of the three continuation Tasks behaves in a different way. The neverScheduled Task has been
created with the same CancellationToken as the antecedent and so is never scheduled to be run.

The second Task, called badSelective, is created using the OnlyOnCanceled value from the
TaskContinuationOptions enumeration. Unfortunately, it is created using the same CancellationToken as
the antecedent, so the options and the token can never be in a state where the Task will be scheduled.
Tasks that rely on the OnlyOnCanceled value should not share a CancellationToken with their antecedent.
The final Task, named continuation, shows a selective continuation that will run properly when the
antecedent is cancelled.

Waiting for Continuations

Waiting for continuation Tasks works in just the same way as for single Tasks; you can use the Task
instances created by the ContinueWith(), ContinelWhenAll(), and ContinuelWhenAny() methods with the
Task.Wait() and Task.WaitAll() methods.

Waiting on a Task does not mean waiting on its continuations. Each Task is scheduled separately,
and a call to Task.Wait() on an antecedent will return when the antecedent itself has completed. If you
want to wait for a continuation chain to complete, you should wait on the last continuation in the
sequence.

Handling Exceptions

There are no special features for propagating exceptions through a continuation chain. Any exceptions
thrown by any Task in a continuation chain must be processed, or they will be treated as unhandled
exceptions when the finalizer for the Task is performed. See the previous chapter for details of
processing Task exceptions. Listing 4-8 illustrates the problem with exceptions in chains.

Listing 4-8. Unhandled Exceptions in Continuation Chains

using System;
using System.Threading.Tasks;

namespace Listing 08 {

class Listing 08 {

CHAPTER 4

static void Main(string[] args) {

// create a first generation task

Task gen1l = new Task(() => {
// write out a message
Console.WriteLine("First generation task");

1

// create a second-generation task

Task gen2 = genl.ContinueWith(antecedent => {
// write out a message
Console.WriteLine("Second generation task - throws exception");
throw new Exception();

B;

// create a third-generation task

Task gen3 = gen2.ContinueWith(antecedent => {
// write out a message
Console.WriteLine("Third generation task");

1

// start the first gen task
genl.Start();

// wait for the last task in the chain to complete
gen3.Wait();

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

COORDINATING TASKS

The second-generation Task throws an exception, but the third-generation Task still runs. The main
thread waits for the last Task in the chain to complete and prompts the user to press the Enter key. The
program then exits, causing the finalizer to be called, at which point the exception from the second-

generation continuation is propagated, producing the following output:

123

CHAPTER 4 " COORDINATING TASKS

First generation task
Second generation task - throws exception
Third generation task

Press enter to finish

Unhandled Exception: System.AggregateException: A Task's exception(s) were not
observed either by Waiting on the Task or accessing its Exception property. As a result,
the unobserved exception was rethrown by the finalizer thread. --->
System.Exception: Exception of type 'System.Exception' was thrown.
at Listing 08.Listing 08.<Main>b__1(Task antecedent)
at System.Threading.Tasks.Task.<>c_ DisplayClassb.<ContinueWith>b__a(Object obj)
at System.Threading.Tasks.Task.InnerInvoke()
at System.Threading.Tasks.Task.Execute()
--- End of inner exception stack trace ---

at System.Threading.Tasks.TaskExceptionHolder.Finalize()

The best way to handle this kind of problem is to have each continuation Task check the status of
the antecedent and handle the exception. You can rethrow the same exception to propagate it
throughout the continuation chain. Doing so will cause all of the tasks in a chain to be scheduled and
executed, but it does reduce the chance of an unhandled exception. Listing 4-9 demonstrates this check-
and-propagate approach.

Listing 4-9. Propagating Exceptions Along a Continuation Chain

using System;
using System.Threading.Tasks;

namespace Listing 09 {
class Listing 09 {

static void Main(string[] args) {

124

CHAPTER 4 " COORDINATING TASKS

// create a first generation task

Task gen1l = new Task(() => {
// write out a message
Console.WriteLine("First generation task");

B;

// create a second-generation task

Task gen2 = genl.ContinueWith(antecedent => {
// write out a message
Console.WriteLine("Second generation task - throws exception");
throw new Exception();

1

// create a third-generation task
Task gen3 = gen2.ContinuelWith(antecedent => {
// check to see if the antecedent threw an exception
if (antecedent.Status == TaskStatus.Faulted) {
// get and rethrow the antecedent exception
throw antecedent.Exception.InnerException;
}
// write out a message
Console.WriteLine("Third generation task");

D;

// start the first gen task

geni.Start();

try {
// wait for the last task in the chain to complete
gen3.Wait();

} catch (AggregateException ex) {
ex.Handle(inner =» {
Console.WriteLine("Handled exception of type: {0}", inner.GetType());
return true;
D;
}

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

By having the continuation process the exceptions thrown by the antecedent, we can catch
exceptions thrown by the last Task in the chain and be sure to avoid unhandled exceptions. Note that the
Exception property of an antecedent returns an instance of AggregateException. The InnerException
property is read in the continuation Task to avoid nested instances of AggregateException, unpacking
the nesting in the exception handler would also work. See the previous chapter for details of how to
process instances of AggregateException

125

126

CHAPTER 4 " COORDINATING TASKS

The same issue exists when performing multitask continuations. If any of the antecedent Tasks have
thrown an exception that you don’t process, that exception becomes unhandled and will cause
problems later. Processing antecedent exceptions with the ContinueiWhenAll() method is simply a matter
of checking each antecedent, such as with the following fragment:

Task[] tasks;

Task.Factory.ContinuelWhenAll(tasks, antecedents => {
foreach (Task t in antecedents) {
if (t.Status == TaskStatus.Faulted) {
// ...process or propagate...
}
}

//...task contination code...

1

Handling exceptions when using the ContinuelWhenAny() method is more difficult. The continuation
has one antecedent, but one of the other Tasks from the previous generation may throw an exception
and this might well happen after the continuation has been executed. The best way to avoid unhandled
exceptions in this situation is to combine a selective ContinuelWhenAny() continuation with a
ContinueWhenAll() that exists purely to process exceptions, as in the following fragment:

Task[] tasks;

Task.Factory.ContinuelhenAny(tasks, antecedent => {
// ...task continuaton code...
}, TaskContinuationOptions.NotOnFaulted);

Task.Factory.ContinuelhenAll(tasks, antecedents => {
foreach (Task t in antecedents) {
if (t.Status == TaskStatus.Faulted) {
// ...process exceptions...
}

}
};

Creating Child Tasks

A child Task, sometimes known as a nested Task, is one that is created inside the Task body of another.
The Task in which the child is created is known as the parent. There are two kinds of child Task—
detached and attached. A detached Task, as demonstrated in Listing 4-10, has no special relationship
with its parent; the child will be scheduled and can be performed concurrently with the parent but has
no impact on the parent itself.

CHAPTER 4 " COORDINATING TASKS

Table 4-4. Child Tasks

Problem Solution Listing
Create a detached Create a new Task within the body of an existing one. 4-10
child Task.

Create an attached Create a new Task within the body of an existing one, specifying the 4-11
child Task. AttachedToParent value from the TaskCreationOptions enumeration

Create a Call the ContinuelWith() method of the attached child, specifying the = 4-11

continuation of an

attached child.

AttachedToParent value from the TaskContinuationOptions
enumeration

Listing 4-10. A Simple Child Task

using System;

using System.Threading;
using System.Threading.Tasks;

namespace Listing 10 {

class Listing 10 {

static void Main(string[] args) {

// create the parent task
Task parentTask = new Task(() => {

B;

// create the first child task
Task childTask = new Task(() => {

B;

// write out a message and wait
Console.WriteLine("Child task running");
Thread.Sleep(1000);
Console.WriteLine("Child task finished");
throw new Exception();

Console.WriteLine("Starting child task...");
childTask.Start();

// start the parent task
parentTask.Start();

// wait for the parent task
Console.WriteLine("Waiting for parent task");
parentTask.Wait();

Console.WriteLine("Parent task finished");

127

CHAPTER 4 " COORDINATING TASKS

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Attached child tasks are much more interesting and do have a special relationship with their
parents. There are three parts to the relationship:

e The parent Task waits for attached child Tasks to complete before it completes.
e The parent Task throws any exceptions thrown by attached child Tasks.
e The status of the parent Task depends on the status of attached child Tasks.

You create an attached child by specifying the AttachedToParent value from the System.Threading.
Tasks.TaskCreationOptions enumeration as a constructor argument. This establishes the relationship
with the parent Task. Listing 4-11 demonstrates an attached child Task.

Listing 4-11. An Attached Child Task

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 11 {
class Listing 11 {
static void Main(string[] args) {

// create the parent task
Task parentTask = new Task(() => {

// create the first child task

Task childTask = new Task(() => {
// write out a message and wait
Console.WriteLine("Child 1 running");
Thread.Sleep(1000);
Console.WriteLine("Child 1 finished");
throw new Exception();

}, TaskCreationOptions.AttachedToParent);

// create an attached continuation
childTask.ContinueWith(antecedent => {
// write out a message and wait
Console.WriteLine("Continuation running");
Thread.Sleep(1000);
Console.WriteLine("Continuation finished");

b

128

CHAPTER 4 " COORDINATING TASKS

TaskContinuationOptions.AttachedToParent
| TaskContinuationOptions.OnlyOnFaulted);

Console.WritelLine("Starting child task...");
childTask.Start();

1

// start the parent task
parentTask.Start();

try {
// wait for the parent task

Console.WriteLine("Waiting for parent task");

parentTask.Wait();

Console.WriteLine("Parent task finished");
} catch (AggregateException ex) {

Console.WriteLine("Exception: {0}", ex.InnerException.GetType());
}

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

The Wait() call on the parent Task will not return until the parent and all of its attached children
have finished. You will see that the child Task throws an exception, which is packaged up by the parent
Task and thrown again, allowing us to catch it when calling a trigger method on the parent. The
exception will be a nested AggregateException; in other words, the original exception will have been
packaged into an AggregateException by the child, and that will be packaged again into another
AggregateException by the parent. The third part of the relationship relates to Task status. When a parent
Task has finished executing and is waiting for its attached children to finish, its status will be
TaskStatus.WaitingForChildrenToComplete.

You can extend the scope of the attached child relationship to Task continuations by using the
TaskContinuationOptions.AttachedToParent value as an argument when calling the ContinueWith()
method on an attached child Task. Listing 4-11 demonstrates how this done and shows how you can
combine values from the TaskContinuationOptions enumeration to create continuations that are both
selective and attached.

Using Synchronization to Coordinate Tasks

In this section, we revisit the topic of synchronization primitives, this time using them to coordinate
activity between and amongst groups of Tasks.

We want one group of Tasks (called the supervisors) to exert some direction over another group of
Tasks (called the workers). A synchronization primitive is used to mediate between the two groups and
allows them to communicate. The communication between the supervisors and the workers is limited to
two messages—go and wait.

129

CHAPTER 4 " COORDINATING TASKS

The synchronization primitive keeps track of a condition. Worker Tasks check with the primitive to
see if the condition has been satisfied. If it has, they are told to go and will continue their work. If the
condition has not been satisfied, they are made to wait until it is.

The details of the condition vary from one type of primitive to another, but what they all share in
common is that they are satisfied by when the supervisors signal the primitive

In effect, the workers are waiting for signals from the supervisors channeled through the
synchronization primitive. Worker Tasks wait for the signals by calling the primitive’s Wait() method (or
WaitOne() for classic primitives). the Wait() method blocks (does not return) until the expected signals
have been received and the primitive condition has been satisfied. When a primitive tells a worker Task
that has been waiting that it may now proceed because the condition has been satisfied, the primitive is
said to wake, notify, or release the waiting Task.

You could write your own code to allow supervisors to signal workers, but I recommend that you
don’t. First, writing synchronization primitives correctly is very hard , and the odds are that you will
make mistakes unless you are very experienced in parallel programming. Second, the primitives
included in the .NET class library cover the vast majority of situations that parallel programmers
encounter and are implemented using a broadly consistent interface. If the type of condition you need
your primitive to manage should change, it is a relatively simple thing to switch from one standard
primitive to another. Table 4-5 summarizes the main uses for the most commonly used primitives.

Table 4-5. Coordinating Tasks

Problem Solution Listing
Implement a cooperative multi-phase = Use the System.Threading.Barrier class. 4-12,4-13,
algorithm. and 4-14
Coordinate Tasks so that multiple Use the System.Threading.CountDownEvent class. 4-15

supervisors signal the primitive
before the workers are released

Coordinate Tasks so that one signal Use the System.Threading.ManualResetEventSlim 4-16
releases all workers. class.
Coordinate Tasks so that one signal Use the System.Threading.AutoResetEvent class. 4-17

releases one worker.

Coordinate Tasks so that one signal Use the System.Threading.SemaphoreSlim class. 4-18
releases a specified number of
workers.

130

For some primitives, both classic and lightweight versions are available. The lightweight versions
have names that end with “slim,” such as ManualResetEventSlim. The lightweight versions have better
performance characteristics for most uses when compared with the classic versions, because a call to
Wait() on alightweight primitive is initially handled by spinning, which is ideally suited to short waiting
periods. See Chapter 2 for a description of spinning. The lightweight versions also support waiting using
a CancellationToken, which is something that I find endlessly useful. I use the lightweight
implementations for preference and recommend that you do the same.

CHAPTER 4 " COORDINATING TASKS

Barrier

When using the System.Threading.Barrier primitive, the supervisors and the workers are the same
Tasks, making Barrier useful for coordinating Tasks performing a multiphase parallel algorithm.
Multiphase algorithms are broken down into several stages (called phases), where all of the Tasks
participating in the work must reach the end of one phase before the next one can begin. This behavior
is useful if the results produced in one phase are required as inputs for the next.

When a Task calls the SignalAndWait() method, the primitive is signaled (as though the Task were a
supervisor), and the condition is checked (as though the Task were a worker). The condition for the
Barrier class is satisfied when all of the Tasks participating in the algorithm have called the
SignalAndWait() method. If a Task calls the method before the required number of calls has been made,
it is made to wait. The number of calls is specified in the class constructor and can be altered using the
AddParticipant() and RemoveParticipant() methods.

The Tasks performing the algorithm call the SignalAndWait() method when they reach the end of a
phase. Not only does the Barrier release any waiting Tasks when the current phase ends, but it resets
automatically, meaning that subsequent calls to SignalAndWait () will make Tasks wait until the counter
reaches 0 again and another phase is complete.

When creating a new instance of Barrier, you can specify a System.Action that will be performed at
the end of each phase and before the Tasks are notified that they should start the next one. you can see
an example of this in the listing below. Table 4-6 summarizes key members of the Barrier class.

Table 4-6. Selected Members of the System.Threading.Barrier Class

Member Description

AddParticipant() Increment the number of calls that must be made to
AddParticipants(int) SignalAndWait() before a phase completes.
RemoveParticpant() Decrement the number of calls that must be made to

RemoveParticpants(int)

SignalAndWait()

SignalAndWait(CancellationToken)
SignalAndWait(Int32)
SignalAndWait(TimeSpan)
SignalAndWait(Int32, CancellationToken)
SignalAndWait(TimeSpan, CancellationToken)

CurrentPhaseNumber

SignalAndWait() before a phase completes.

Signal the primitive that the current Task has
completed the current phase, and wait indefinitely
for the other Tasks to do the same.

Function like SignalAndWait(), but give up waiting
for the other Tasks if they have not all signaled the
primitive before the specified time has passed or the
specified cancellation token is cancelled.

Report the current phase number, incremented each
time the SignalAndWait() method has been called the
number of times specified in the constructor.

131

CHAPTER 4 " COORDINATING TASKS

Continued

Member Description

ParticipantCount Return the number of calls to the SignalAndWait()
method that will mark the end of a phase and release
any waiting Tasks.

ParticipantsRemaining Return the number of participants that have yet to

signal the end of the current phase.

132

Listing 4-12 demonstrates how to create and use the Barrier class. When the Barrier instance is
created, two constructor arguments are supplied: the number of Tasks that must call SignalAndWait()
before the primitive condition is met and a System.Action(Barrier) that will be called each time the
condition is met (the listing uses a lambda expression to define System.Action).

In the example, we create an array of BankAccounts and a set of Tasks that perform a simple
multiphase algorithm against using the accounts. In the first phase, the Tasks enter a loop to add
random amounts to the account they are working with and then signal the Barrier to indicate they have
reached the end of the current phase.

The Barrier then executes the constructor Action, which sums the individual balances into the
totalBalance variable. The second phase of the algorithm begins, where each Task reduces the balance
of its account by 10 percent of the difference between the current balance and the total balance, a
procedure that would not have been possible prior to all Tasks completing the first phase. At the end of
the phase, the Tasks signal the Barrier again, which marks the end of the second phase and triggers the
constructor action again.

Listing 4-12. Using the Barrier Class
using System;
using System.Threading;
using System.Threading.Tasks;
namespace Listing 12 {
class BankAccount {
public int Balance {

get;
set;

}
class Listing 12 {

static void Main(string[] args) {

CHAPTER 4 " COORDINATING TASKS

// create the array of bank accounts

BankAccount[] accounts = new BankAccount[5];

for (int i = 0; i < accounts.Length; i++) {
accounts[i] = new BankAccount();

// create the total balance counter
int totalBalance = 0;

// cxeate the barrier
Barrier barrier = new Barrier(5, (myBarrier) =» {
// zero the balance
totalBalance = 0;
// sum the account totals
foreach (BankAccount account in accounts) {
totalBalance += account.Balance;
}

// write out the balance
Console.WriteLine("Total balance: {0}", totalBalance);

H

// define the tasks array
Task[] tasks = new Task[5];

// loop to create the tasks
for (int i = 0; i < tasks.Length; i++) {
tasks[i] = new Task((stateObj) => {

// create a typed reference to the account
BankAccount account = (BankAccount)stateObj;

// start of phase

Random rnd = new Random();

for (int j = 0; j < 1000; j++) {
account.Balance += rnd.Next(1, 100);

}
// end of phase

// tell the user that this task has has completed the phase
Console.WriteLine("Task {0}, phase {1} ended",
Task.CurrentId, barrier.CurrentPhaseNumber);

// signal the barrier
barrier.SignalAndWait();

// start of phase

// alter the balance of this Task's account using the total balance
// deduct 10% of the difference from the total balance
account.Balance -= (totalBalance - account.Balance) / 10;

// end of phase

133

134

CHAPTER 4 " COORDINATING TASKS

// tell the user that this task has has completed the phase
Console.WritelLine("Task {0}, phase {1} ended",
Task.CurrentId, barrier.CurrentPhaseNumber);

// signal the barrier
barrier.SignalAndWait();

)
accounts[i]);

// start the task
foreach (Task t in tasks) {
t.Start();

// wait for all of the tasks to complete
Task.WaitAll(tasks);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

Signaling the Barrier at the end of the final phase is not essential; in Listing 4-12, I wanted to
calculate the final total balance. Listing 4-12 shows you how to make use of the Barrier class, but omits
one major hazard. There is a deadlock if a Task doesn’t signal the Barrier, because it throws an
exception. The current phase will never end, and the waiting Tasks will never be released.

There are two ways to deal with exceptions in this situation. The first is to abandon the Task that has
thrown the exception but carry on with the other Tasks. You can do this by creating a selective
continuation with the OnlyOnFaulted value and calling the RemoveParticipant() method, which
decreases the number of calls to SignalAndWait() that Barrier requires to mark the end of a phase. This
approach works as long as you can continue without the result that the abandoned Task would have
otherwise provided. Listing 4-13 demonstrates this technique.

Listing 4-13. Dealing with Exceptions by Reducing Participation
using System;
using System.Threading;
using System.Threading.Tasks;
namespace Listing 13 {
class Listing 13 {

static void Main(string[] args) {

// create a barrier
Barrier barrier = new Barrier(2);

// create a task that will complete
Task.Factory.StartNew(() => {
Console.WriteLine("Good task starting phase 0");
barrier.SignalAndWait();
Console.WritelLine("Good task starting phase 1");
barrier.SignalAndWait();
Console.WriteLine("Good task completed");

1

// create a task that will throw an exception
// with a selective continuation that will reduce the
// particpant count in the barrier
Task.Factory.StartNew(() => {
Console.WritelLine("Bad task 1 throwing exception");
throw new Exception();

}).ContinueWith(antecedent => {
// reduce the particpant count

Console.WriteLine("Reducing the barrier participant count");

barrier.RemoveParticipant();
}» TaskContinuationOptions.OnlyOnFaulted);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

COORDINATING TASKS

The second technique is to use a CancellationToken when creating the Tasks and use a version of
the Barrier.SignalAndWait () method that takes a CancellationToken as an argument. A selective

continuation Task cancels the token, which causes calls to SignalAndWait() to throw an

OperationCancelledException, stopping all of the Tasks from continuing. This technique works if you
don’t want any of the Tasks to continue if any of them throw an exception. Listing 4-14 demonstrates this
technique. Remember that the exception that was thrown in the first place is unhandled and will have to

be dealt with using one of the techniques described in Chapter 2.

Listing 4-14. Dealing with Exceptions Using Cancellation
using System;
using System.Threading;
using System.Threading.Tasks;
namespace Listing 14 {
class Listing 14 {

static void Main(string[] args) {

// create a barrier
Barrier barrier = new Barrier(2);

135

CHAPTER 4 " COORDINATING TASKS

// create a cancellation token source
CancellationTokenSource tokenSource
= new CancellationTokenSource();

// create a task that will complete

Task.Factory.StartNew(() => {
Console.WriteLine("Good task starting phase 0");
barrier.SignalAndiWait(tokenSouxce.Token);
Console.WritelLine("Good task starting phase 1");
barrier.SignalAndWait(tokenSource.Token);

}, tokenSource.Token);

// create a task that will throw an exception
// with a selective continuation that will reduce the
// particpant count in the barrier
Task.Factory.StartNew(() => {
Console.WritelLine("Bad task 1 throwing exception");
throw new Exception();

}, tokenSource.Token).ContinueWith(antecedent => {
// reduce the particpant count
Console.WriteLine("Cancelling the token");
tokenSource.Cancel();

}, TaskContinuationOptions.OnlyOnFaulted);

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

CountDownEvent

The System.Threading.CountDownEvent is similar to Barrier in that it requires a number of calls to a
method to satisfy the primitive condition. But unlike Barrier, CountDownEvent separates signaling from
waiting.

Calls to the CountDownEvent.Wait() method block until the Signal() method has been called the
number of times specified in the constructor; each call to Signal() decrements a counter. Once the
counter reaches zero, any waiting Tasks are released. At this point, the event represented by the
CountDownEventClass is said to be signaled or set.

Once the event is set, calls to the Wait() method will not cause the Task to wait. CountDownEvent
must be manually reset, by calling the Reset () method. Once the event has been reset, we start over
again. Calls to Wait () will block until the Signal() method has been called the required number of times.
This is in contrast to the Barrier class, which resets automatically.

You can call the AddCount () or TryAddCount() methods to increment the counter but only if the
event is not set. If you call AddCount () after the event has set without first calling Reset(),an exception
will be thrown. Table 4-7 details the key members of the CountDownEvent class.

136

CHAPTER 4 " COORDINATING TASKS

Table 4-7. Selected Members of the System. Threading. CountDownEvent Class

Member Description

AddCount() Increment the condition counter.

AddCount(int)

Reset() Reset the event using the original counter value or the value
Reset(int) specified.

Signal() Decrement the condition counter by one or by the amount
Signal(int) specified.

TryAddCount() Try to increment the condition counter, and return true if the
TryAddCount (int) counter is incremented.

Wait() Wait indefinitely for the event to be set.
Wait(CancellationToken) Wait for the event to be set, for a period of time to pass, or for a
Wait(int) cancellation token to be cancelled.

Wait(TimeSpan)

Wait(int, CancellationToken)
Wait(TimeSpan, CancellationToken)

CurrentCount

InitialCount

IsSet

Return the number of times that Signal() must be called before
the event is set.

Return the initial value of the condition counter.

Return true if the event is set; false otherwise.

Listing 4-15 demonstrates using CountDownEvent. A set of five supervisor Tasks is created, each of
which sleeps for a random amount of time and then calls Signal(). The sixth Task, a worker, calls the
CountDownEvent.Wait() method, which blocks until each of the Tasks have signaled the CountDownEvent,

setting the event.

Listing 4-15. Using the CountDownEvent Primitive

using System;

using System.Threading;

using System.Threading.Tasks;
namespace Listing 15 {

class Listing 15 {

static void Main(string[] args) {

137

CHAPTER 4 " COORDINATING TASKS

// create a CountDownEvent with a condition
// counter of 5
CountdownEvent cdevent = new CountdownEvent(5);

// create a Random that we will use to generate
// sleep intervals
Random rnd = new Random();

// create 5 tasks, each of which will wait for
// a random period and then signal the event
Task[] tasks = new Task[6];
for (int i = 0; i < tasks.Length; i++) {
// create the new task
tasks[i] = new Task(() => {
// put the task to sleep for a random period
// up to one second
Thread.Sleep(rnd.Next(500, 1000));
// signal the event
Console.WriteLine("Task {0} signalling event", Task.CurrentId);
cdevent.Signal();
D;
};

// create the final task, which will rendezous with the other 5
// using the count down event
tasks[5] = new Task(() => {
// wait on the event
Console.WriteLine("Rendezvous task waiting");
cdevent.Wait();
Console.WriteLine("Event has been set");

B;

// start the tasks
foreach (Task t in tasks) {
t.Start();

Task.WaitAll(tasks);
// wait for input before exiting

Console.WriteLine("Press enter to finish");
Console.ReadlLine();

The example shows how one group (the five supervisors) directs the behavior of another group (the
single worker). The worker is made to wait until the supervisors have all reached a given state and have
signaled the primitive. It is important to note that although we created five supervisors, we could have

138

CHAPTER 4 " COORDINATING TASKS

achieved the same effect by having one supervisor call Signal() five times. Synchronization primitives
care about which methods are called, not how they are called.

ManualResetEventSlim

The System.Threading.ManualResetEventSlim class provides a simpler approach than CountDownEvent. A
single call to Set() signals the event, and any waiting Tasks are released. New calls to Wait() don’t block
until the Reset() method is called. Table 4-8 summarizes the key members of this primitive.

Table 4-8. Key Members of the System.Threading. ManualResetEvent Class

Member Description

Set() Set the event, releasing any waiting Tasks. While the event is set,
calls to Wait() do not block until the Reset() method is called.

Reset() Reset the event.

Wait() 1 hi h 1 i1 th . h ifi
Wait(CancellationToken) (;a s to this met od block until t e event is set, the speci ied
Wait(int) time period has passed, or the specified token is cancelled.
Wait(TimeSpan)

Wait(int, CancellationToken)
Wait(TimeSpan, CancellationToken)
IsSet
Return true if the event is set and false otherwise.

SpinCount . . .

P Get and set the number of spins that a call to Wait() will result
in before a normal wait occurs. See Chapter 2 for more
information about spinning.

Note The ManualResetEventSlim class is the lightweight equivalent to
System.Threading.ManualResetEvent.

Listing 4-16 demonstrates the use of the ManualResetEventSlim class. Two Tasks are created: one
worker that repeatedly waits on the event and one supervisor that sets and unsets the event. While the
event is set, calls to the Wait() method do not block, and the worker Task proceeds without waiting.
When the event is reset, calls to Wait() block until the supervisor sets the event once again.

Tip The default constructor creates an instance of ManualResetEventS1im with the event initially unset, but you
can explicitly specify the initial state of the event by using the overloaded version of the constructor.

139

CHAPTER 4 " COORDINATING TASKS

Listing 4-16. Using the ManualResetEventSlim Class

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 16 {
class Listing 16 {
static void Main(string[] args) {

// create the primtive
ManualResetEventSlim manualResetEvent
= new ManualResetEventSlim();

// create the cancellation token source
CancellationTokenSource tokenSource
= new CancellationTokenSource();

// create and start the task that will wait on the event
Task waitingTask = Task.Factory.StartNew(() => {
while (true) {
// wait on the primitive
manualResetEvent.Wait(tokenSource.Token);
// print out a message
Console.WriteLine("Waiting task active");

}, tokenSource.Token);

// create and start the signalling task
Task signallingTask = Task.Factory.StartNew(() => {
// create a random generator for sleep periods
Random rnd = new Random();
// loop while the task has not been cancelled
while (!tokenSource.Token.IsCancellationRequested) {
// go to sleep for a random period
tokenSource.Token.WaitHandle.WaitOne(xrnd.Next (500, 2000));
// set the event
manualResetEvent.Set();
Console.WriteLine("Event set");
// go to sleep again
tokenSource.Token.WaitHandle.WaitOne(xnd.Next (500, 2000));

140

CHAPTER 4 " COORDINATING TASKS

// reset the event
manualResetEvent.Reset();
Console.WritelLine("Event reset");
}
// if we reach this point, we know the task has been cancelled
tokenSource.Token.ThrowIfCancellationRequested();
}, tokenSource.Token);

// ask the user to press return before we cancel
// the token and bring the tasks to an end
Console.WriteLine("Press enter to cancel tasks");
Console.ReadlLine();

// cancel the token source and wait for the tasks
tokenSource.Cancel();
try {
Task.WaitAll(waitingTask, signallingTask);
} catch (AggregateException) {
// discard exceptions
}

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

AutoResetEvent

AutoResetEvent is similar to ManualResetEventSlim, but the event is reset automatically after each call to
the Set () method, and only one waiting worker Task is released each time the event is set. There is no
lightweight alternative to AutoResetEvent, and being a classic primitive, it has no method that allows
waiting using a CancellationToken. Table 4-9 describes the key members of the AutoResetEvent class.

Table 4-9. Key Members of the System.Threading.AutoResetEvent Class

Member Description

Set() Set the event, releasing one waiting Task.

WaitOne . . L PR .

Waiton eE?Lnt) Wait until the event is signaled or the specified time period has passed.
WaitOne(TimeSpan)

141

CHAPTER 4 " COORDINATING TASKS

Listing 4-17 demonstrates the use of the AutoResetEvent class. The constructor requires you to
specify whether the event is initially set. We create three worker Tasks, each of which calls the WaitOne()
method of the AutoResetEvent. A fourth Task, the supervisor, sets the event every 500 milliseconds. Each
time the event is set, one waiting worker Task is released. If you run the program, you will see long
sequences where a given worker Task is never released, or seems to be the one constantly being
released—the AutoResetEvent class makes no guarantees about which waiting Task will be released
when the event is set, and you should be careful not to make assumptions about the order in which
workers are released when using this class.

Listing 4-17. Using the AutoResetEvent Class

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Listing 17 {
class Listing 17 {
static void Main(string[] args) {

// create the primtive
AutoResetEvent arEvent = new AutoResetEvent(false);

// create the cancellation token source
CancellationTokenSource tokenSource
= new CancellationTokenSource();

// create and start the task that will wait on the event
for (int i = 0; i < 3; i++) {
Task.Factory.StartNew(() => {
while (!tokenSource.Token.IsCancellationRequested) {

// wait on the primtive
arEvent.WaitOne();
// print out a message when we are released
Console.WriteLine("Task {0} released", Task.CurrentId);

}

// if we reach this point, we know the task has been cancelled
tokenSource.Token.ThrowIfCancellationRequested();
}, tokenSource.Token);

142

CHAPTER 4 " COORDINATING TASKS

// create and start the signalling task
Task signallingTask = Task.Factory.StartNew(() => {
// loop while the task has not been cancelled
while (!tokenSource.Token.IsCancellationRequested) {
// go to sleep for a random period
tokenSource.Token.WaitHandle.WaitOne(500);
// set the event
arEvent.Set();
Console.WriteLine("Event set");
}
// if we reach this point, we know the task has been cancelled
tokenSource.Token.ThrowIfCancellationRequested();
}, tokenSource.Token);

// ask the user to press return before we cancel
// the token and bring the tasks to an end
Console.WriteLine("Press enter to cancel tasks");
Console.ReadlLine();

// cancel the token source and wait for the tasks
tokenSource.Cancel();

// wait for input before exiting
Console.WriteLine("Press enter to finish");
Console.ReadlLine();

SemaphoreSlim

The System.Threading.SemaphoreSlim class allows you to specify how many waiting worker Tasks are
released when the event is set, which is useful when you want to restrict the degree of concurrency
among a group of Tasks. The supervisor releases workers by calling the Release() method. The default
version releases one Task, and you can specify how many Tasks are released by providing an integer
argument. The constructor requires that you specify how many calls to the Wait() method can be made
before the event is reset for the first time. Specifying 0 resets the event immediately, and any other value
sets the event initially and then allows the specified number of calls to the Wait() method to be made
without blocking before the event is reset.

Note The SemaphoreSlim class is the lightweight equivale