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Abstract. New (96, 20, 4)-symmetric design has been constructed, unique
under the assumption of an automorphism group of order 576 action. The
correspondence between a (96, 20, 4)-symmetric design having regular auto-
morphism group and a difference set with the same parameters has been used
to obtain difference sets in Þve nonabelian groups of order 96. None of them
belongs to the class of groups that allow the application of so far known con-
struction (McFarland, Dillon) for McFarland difference sets.

1. Introductory definitions and assertions

A symmetric block design with parameters (v, k,λ) is a Þnite incidence structure
D = (V,B,I) consisting of |V| = v points and |B| = v blocks, where each block
is incident with k points and any two distinct points are incident with exactly λ
common blocks. An automorphism of a symmetric block design D is a permutation
on V which sends blocks to blocks. The set of all automorphisms of D forms its full
automorphism group denoted by AutD.
A (v, k,λ) difference set is a k-subset ∆ ⊆ Γ in a group Γ of order v provided

that the multiset of �differences�
©
xy−1 | x, y ∈ ∆, x 6= yª contains each nonidentity

element of Γ exactly λ times. A difference set is called abelian (cyclic, nonabelian)
if Γ has the respective property. The development of a difference set ∆ ⊆ Γ is the
incidence structure dev∆ = (Γ, {∆g | g ∈ Γ} ,∈).
The following theorem (for the proof see [1], p. 299) refers to the close relation

between difference sets and symmetric block designs.
Theorem 1.1. Let Γ be a Þnite group of order v and ∆ a proper, non-empty
k-subset of Γ. Then ∆ is a (v, k,λ) difference set in Γ if and only if dev∆ is a
symmetric (v, k,λ) design on which Γ acts regularly (by right multiplication).

An automorphism ϕ ∈ AutΓ is called a multiplier of ∆ if ϕ(∆) = g1∆g2 for
some g1, g2 ∈ Γ. When ϕ(∆) = ∆g for some g ∈ Γ, ϕ is called a right multiplier.
All multipliers of ∆ form a group with the subgroup of right multipliers. Up to
isomorphism the latter group is determined by the following theorem ([1], p.310).

Theorem 1.2. Let ∆ be a difference set in a group Γ and let M denote the group
of all right multipliers of ∆. Then, M ∼= N(Γ)/Γ, where N(Γ) is the normalizer of
Γ in Autdev∆.
Obviously, any right multiplier of ∆ is an automorphism of the design dev∆.
Two difference sets ∆1 (in Γ1) and ∆2 (in Γ2) are isomorphic if the designs

dev∆1 and dev∆2 are isomorphic; ∆1 and ∆2 are equivalent if there exists a group
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isomorphism ϕ : Γ1 → Γ2 such that ϕ(∆1) = ∆2g for a suitable g ∈ Γ2. It is clear
that equivalent difference sets ∆1 and ∆2 give rise to isomorphic symmetric designs
dev∆1 and dev∆2.

2. More preliminaries

(96, 20, 4)-symmetric designs belong to the series with parameters

(1) v = qd+1(1 +
qd+1 − 1
q − 1 ), k = qd q

d+1 − 1
q − 1 and λ = qd q

d − 1
q − 1 ,

where q is any prime power and d is any positive integer ([1], p.982 with q = 4
and d = 1). The series was constructed in two different ways. Wallis [12] gave the
construction based on the existence of affine designs. Later, construction due to
McFarland [9] was given through difference sets in groups G of order v and of the
form G = E×K, where E denotes the elementary abelian group of order qd+1 and
K is an arbitrary group. Difference sets with parameters (1) are called Mc Farland
difference sets. Very important generalization of the result of McFarland was given
by Dillon, [5]. He proved McFarland�s construction to work out for any group G of
order v which contains an elementary abelian subgroup of order qd+1 in its center.
Using the well-known coset enumeration method [8], here we perform a construc-

tion of one new (96, 20, 4)-symmetric design ([1], [3], [4]) under the assumption of
a large automorphism group acting transitively on it. The fact that its full au-
tomorphism group contains subgroups acting regularly on the design leads to the
construction of difference sets in Þve nonabelian groups of order 96. Checking upon
the centers of these groups reveal that they do not satisfy the necessary condition
for the appliance of the construction by Dillon.
We mostly employ the terminology and notation of [1]. The examples with

detailed construction of difference sets from symmetric designs having regular au-
tomorphism group can be found in [11] and [7].

3. Construction of the design

For a starter let us give a brief summary of the coset enumeration method that
we use for symmetric design construction, [8].
Let G ≤ AutD be a group acting on a symmetric design D deÞned in Section

1. Then G-orbits on V denoted by P 1, . . . , Pm and G-orbits on B denoted by
B1, . . . ,Bm form a tactical decomposition of D, [2]. The construction of D begins
with determining the parameters

¯̄
P j
¯̄
= pj and

¯̄
Bi
¯̄
= bi, j, i ∈ {1, . . . ,m} of such

a decomposition. In general, as possible bi and pj we take into consideration the
divisors of |G| for which equations Pm

i=1 bi =
Pm

j=1 pj = v hold. SpeciÞc group
action puts further restrictions upon these numbers.
Next, we have to Þnd all possible distributions of the point set V on the block

set B, respecting their selected partitions. These distributions are represented by
matrices T = [ρij ] called orbit matrices or orbit structures, where ρij is the number
of points from the orbit P j incident with any block from the orbit Bi. Entries in
T must satisfy the following well known relations:

mP
j=1

ρij = k, i = 1, . . . ,m;

mP
j=1

1

pj
ρ2

ij = λ+
k − λ
bi

, i = 1, . . . ,m and
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mP
j=1

1

pj
ρijρlj = λ, i, l = 1, . . . ,m, i 6= l.

The Þnal step is to Þnd precisely which ρij points from the point orbit P j =n
P j

1 , . . . , P
j
pj

o
lie on particular block from the block orbit Bi. This procedure is

called indexing because we usually identify the selected points with their indices
from the set {1, 2, . . . , pj} (and represent G as a permutation group on this set).
Indexing has to be performed in such a manner that λ-balancing is achieved. For
each orbit Bi, 1 ≤ i ≤ m, it is enough to index a representative block, minding
the fact that Bi is stabilized by a subgroup Gi ≤ G (unique up to conjugation),¯̄
G : Gi

¯̄
= bi. The otherBi-blocks are then obtained asG-images of the constructed

representative. Indexing all Bi-block representatives (1 ≤ i ≤m) concludes the
construction.

Now let�s specify G to be a group of order 576, in terms of generators and
relations given as

(2)
G = ha, b, c, d, e, f | a4 = b4 = [a, b] = c2 = [a, c] = [b, c] = d3 = 1,

[a, d] = [b, d] = (cd)2 = e3 = 1, e−1ae = b, e−1be = a3b3,
[c, e] = [d, e] = 1, f2 = (af)2 = (bf)2 = [c, f ] = (df)2 = [e, f ] = 1i.

We consider G-action on (96, 20, 4)-symmetric design, hereafter denoted byD, so
that its subgroup G1 = ha, b, c, di ≤ G of order 96 acts transitively on D, namely in
one orbit of length 96 stabilized by subgroup he, fi ∼= Z6. To this action corresponds
a unique orbit structure of order m = 1, ρ11 = 20. Thus for our construction we
need a permutation representation of the G -generators of degee 96. The one used
here is provided by J. Hrabÿe de Angelis computer program and given in Table I.

TABLE I. The Generating Permutations (Degree 96)

generator a �> (no Þxed point)
(1 2 3 4)(5 11 12 13)(6 24 26 32)(7 25 35 20)(8 14 27 41)(9 16 29 50)
(10 17 30 42)(15 21 22 40)(18 31 51 62)(19 53 54 38)(23 46 71 48)
(28 49 52 66)(33 64 72 37)(34 65 76 84)(36 43 44 45)(39 67 78 77)
(47 96 88 81)(55 70 86 56)(57 82 73 69)(58 63 59 61)(60 93 87 85)
(68 80 89 94)(74 79 91 83)(75 95 90 92);

generator b �> (no Þxed point)
(1 5 6 7)(2 11 24 25)(3 12 26 35)(4 13 32 20)(8 15 28 33)(9 38 58 67)
(10 36 56 34)(14 21 49 64)(16 19 63 78)(17 43 55 65)(18 46 47 80)
(22 52 72 27)(23 81 68 62)(29 53 59 77)(30 44 70 76)(31 71 96 89)
(37 41 40 66)(39 50 54 61)(42 45 86 84)(48 88 94 51)(57 74 95 60)
(69 83 75 85)(73 91 92 87)(79 90 93 82);

generator c �> (no Þxed point)
(1 8)(2 14)(3 27)(4 41)(5 15)(6 28)(7 33)(9 18)(10 82)(11 21)(12 22)(13 40)
(16 31)(17 73)(19 71)(20 37)(23 54)(24 49)(25 64)(26 52)(29 51)(30 69)
(32 66)(34 93)(35 72)(36 79)(38 46)(39 68)(42 57)(43 91)(44 83)(45 74)
(47 58)(48 53)(50 62)(55 92)(56 90)(59 88)(60 84)(61 81)(63 96)(65 87)
(67 80)(70 75)(76 85)(77 94)(78 89)(86 95);

generator d �> (no Þxed point)
(1 9 10)(2 16 17)(3 29 30)(4 50 42)(5 38 36)(6 58 56)(7 67 34)(8 82 18)
(11 19 43)(12 53 44)(13 54 45)(14 73 31)(15 79 46)(20 39 84)(21 91 71)
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(22 83 48)(23 40 74)(24 63 55)(25 78 65)(26 59 70)(27 69 51)(28 90 47)
(32 61 86)(33 93 80)(35 77 76)(37 60 68)(41 57 62)(49 92 96)(52 75 88)
(64 87 89)(66 95 81)(72 85 94);

generator e �> ( 6 Þxed points)
(2 5 20)(3 6 26)(4 7 11)(12 13 32)(14 15 37)(16 38 39)(17 36 84)(19 50 67)
(21 41 33)(22 40 66)(23 81 48)(24 35 25)(27 28 52)(29 58 59)(30 56 70)
(31 46 68)(34 43 42)(44 45 86)(47 88 51)(49 72 64)(53 54 61)(55 76 65)
(57 93 91)(60 73 79)(62 80 71)(63 77 78)(69 90 75)(74 95 83)(85 87 92)
(89 96 94);

generator f �> ( 8 Þxed points)
(2 4)(5 7)(9 10)(11 20)(12 35)(13 25)(14 41)(15 33)(16 42)(17 50)(18 82)
(19 84)(21 37)(22 72)(23 87)(24 32)(29 30)(31 57)(34 38)(36 67)(39 43)
(40 64)(44 77)(45 78)(46 93)(47 90)(48 85)(49 66)(51 69)(53 76)(54 65)
(55 61)(56 58)(59 70)(60 71)(62 73)(63 86)(68 91)(74 89)(75 88)(79 80)
(81 92)(83 94)(95 96); ¤

Let V = {1, 2, . . . , 96} be the set of points of our designD. As aD-representative
block we take a subgroup he, fi ≤ G stabilized one. Therefore, it is to be composed
from he, fi-point orbits as a whole. Using Table I these orbits are easily obtained
to be:
{1},{8},{9,10},{18,82},{3,6,26},{27,28,52},{14,15,21,33,37,41},
{16,34,38,39,42,43},{17,19,36,50,67,84},{2,4,5,7,11,20},{22,40,49,64,66,72},
{23,48,81,85,87,92},{12,13,24,25,32,35},{29,30,56,58,59,70},{31,46,57,68,91,93},
{44,45,63,77,78,86},{47,51,69,75,88,90},{53,54,55,61,65,76},{60,62,71,73,79,80},
and {74,83,89,94,95,96}.
There are exactly 1729 possibilities for composing (indexing) 20 points of a pos-

sible D-base block out of them. All the possibilities can be λ-balance tested in
a short computer time and inappropriate combinations rejected. The resulting
representative blocks give rise to symmetric designs which are then checked upon
isomorphism with the help of program Nauty [10]. Because all the designs prove
to be mutually isomorphic, the Þnal result of the described construction procedure
(up to isomorphism) is one selfdual symmetric design which we present by its base
block:

(3) D : 1,3,6,9,10,16,18,23,26,34,38,39,42,43,48,81,82,85,87,92

The other blocks of the design can be obtained by producing all ha, b, c, di-images
of the block (3). The order | AutD |= 576 of the full automorphism group of D is
discerned from the output of Nauty as well. Consequently, AutD ∼= G and we can
sumarize the foregoing in the following theorem.

Theorem 3.1. There is exactly one (96, 20, 4)-symmetric design with the automor-
phism group G = ha, b, c, d, e, fi of order 576, given by (2), acting on the design so
that the subgroup ha, b, c, di ≤ G acts regularly on it. AutD ∼= G.
Remark 3.1. Design D is not isomorphic to any of the six symmetric (96, 20, 4)
designs considered in [3], Section 7, since AutD is not isomorphic to any of them
corresponding full automorphism groups. In [3], the only design having full auto-
morphism group of order 576 is the one denoted by E. It is known that AutE has



ONE (96, 20, 4)-SYMMETRIC DESIGN AND RELATED NONABELIAN DIFFERENCE SETS 5

abelian subgroup of order 96 acting regularly on E. On the other hand, all regular
subgroups of AutD are nonabelian; this we show in Section 4. We thank the referee
for the suggestion to turn our attention to the results presented in [3].

4. Construction of difference sets

Aiming to produce difference set with parameters (96, 20, 4) we checked all the
subgroups of G ∼= AutD of order 96 (seven up to isomophism!) upon the regularity
of their action on D. It turned out that the required property of regular action on
D had exactly Þve of them: G1 and, say, G2, . . . , G5. We Þnd these groups to be
isomorphic to the following nonabelian groups, respectively:

H1 =

x, y, z, w | x4 = y4 = [x, y] = 1, z3 = [x, z] = [y, z] = 1,

w2 = [x,w] = [y,w] = (zw)2 = 1
®
,

H2 =

x, y, z, w | x4 = y4 = [x, y] = 1, z3 = 1, z−1xz = y, z−1yz = x3y3,

w2 = (xw)2 = (yw)2 = [z,w] = 1
®
,

H3 =

x, y, z, w | x4 = y4 = [x, y] = 1, z3 = [x, z] = 1, y−1zy = z2,

w2 = (xw)2 = (yw)2 = [z,w] = 1
®
,

H4 =

x, y, z, w | x4 = y4 = [x, y] = 1, z3 = [x, z] = [y, z] = 1,

w2 = (xw)2 = (yw)2 = [z,w] = 1
®
, and

H5 =

x, z, w, t, s | x4 = z3 = [x, z] = 1, w2 = [x,w] = (zw)2 = 1,

t2 = (xt)2 = (zt)2 = [w, t] = 1,
s2 = [x, s] = [z, s] = [w, s] = [t, s] = 1

®
.

Corresponding isomorphisms ωi : Hi → Gi ≤ G, i = 1, . . . , 5, are deÞned by the
relations:

ω1(x) = a,ω1(y) = b,ω1(z) = d,ω1(w) = c,

ω2(x) = a,ω2(y) = b,ω2(z) = de,ω2(w) = cf,

ω3(x) = a,ω3(y) = bc,ω3(z) = d,ω3(w) = cf,

ω4(x) = a,ω4(y) = b,ω4(z) = d,ω4(w) = cf, and
ω5(x) = a,ω5(z) = d,ω5(w) = c,ω5(t) = g1,ω5(s) = g2.

The representations:
cf = (1 8)(2 41)(3 27)(4 14)(5 33)(6 28)(7 15)(9 82)(10 18)
(11 37)(12 72)(13 64)(16 57)(17 62)(19 60)(20 21)(22 35)(23 65)
(24 66)(25 40)(26 52)(29 69)(30 51)(31 42)(32 49)(34 46)(36 80)
(38 93)(39 91)(43 68)(44 94)(45 89)(47 56)(48 76)(50 73)(53 85)
(54 87)(55 81)(58 90)(59 75)(61 92)(63 95)(67 79)(70 88)(71 84)
(74 78)(77 83)(86 96),

de =(1 9 10)(2 38 84)(3 58 70)(4 67 43)(5 39 17)(6 59 30)
(7 19 42)(8 82 18)(11 50 34)(12 54 86)(13 61 44)(14 79 68)
(15 60 31)(16 36 20)(21 57 80)(22 74 81)(23 66 83)(24 77 65)
(25 63 76)(26 29 56)(27 90 88)(28 75 51)(32 53 45)(33 91 62)
(35 78 55)(37 73 46)(40 95 48)(41 93 71)(47 52 69)(49 85 89)
(64 92 94)(72 87 96), and

bc =(1 15 6 33)(2 21 24 64)(3 22 26 72)(4 40 32 37)
(5 28 7 8)(9 46 58 80)(10 79 56 93)(11 49 25 14)(12 52 35 27)
(13 66 20 41) (16 71 63 89)(17 91 55 87)(18 38 47 67)(19 96 78 31)
(23 61 68 50)(29 48 59 94)(30 83 70 85)(34 82 36 90)(39 62 54 81)
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(42 74 86 60)(43 92 65 73)(44 75 76 69)(45 95 84 57)(51 53 88 77)

are easily obtained from Table I. g1, g2 ∈ G are the elements with the following
permutation representations:

g1 = (1 11)(2 5)(3 13)(4 12)(6 25)(7 24)(8 21)(9 43)(10 19)(14 15)
(16 36)(17 38)(18 91)(20 26)(22 41)(23 69)(27 40)(28 64)(29 45)(30 54)
(31 79)(32 35)(33 49)(34 63)(37 52)(39 70)(42 53)(44 50)(46 73)(47 87)
(48 57)(51 74)(55 67)(56 78)(58 65)(59 84)(60 88)(61 76)(62 83)(66 72)
(68 75)(71 82)(77 86)(80 92)(81 85)(89 90)(93 96)(94 95),

g2 = (1 26)(2 32)(3 6)(4 24)(5 35)(7 12)(8 52)(9 59)(10 70)(11 20)
(13 25)(14 66)(15 72)(16 61)(17 86)(18 88)(19 39)(21 37)(22 33)(23 89)
(27 28)(29 58)(30 56)(31 81)(34 44)(36 76)(38 77)(40 64)(41 49)(42 55)
(43 84)(45 65)(46 94)(47 51)(48 80)(50 63)(53 67)(54 78)(57 92)(60 91)
(62 96)(68 71)(69 90)(73 95)(74 87)(75 82)(79 85)(83 93).

Given facts and Theorem 1.1 allow us to obtain difference set in each group Hi

taking D as a starting structure. Namely, if P denotes any point from the set V of
the points of D, the regularity of Hi-action on V insures

{P g | g ∈ Hi} = V and g1, g2 ∈ Hi, g1 6= g2 ⇐⇒ P g1 6= P g2 , i = 1, . . . , 5.

Thus, for each i ∈ {1, . . . , 5} we can Þrst identify the elements of V with the
elements of Hi, and then take as difference set ∆i a subset of Hi corresponding to
any D-block, for instance the base block (3). Different D-blocks lead to equivalent
difference sets. One simple identiÞcation, determined by the choice of P, arises from
the assignments

V 3 P ↔ identity element in Hi and V 3 P g ↔ g ∈ Hi.
Taking now P ≡ 1, that is, the initial identiÞcation

1↔ identity element in Hi (which we denote by 1 as well),
then following the Hi-action on D (Table I) together with using the appropriate
isomorphism ω−1

i : Gi → Hi, we transcribe the base block (3) of D into inequivalent
difference sets ∆i ⊆ Hi, i = 1, . . . , 5.

∆1,2,4 = 1 + y2 + z + z2 + yz + y3z2 + zw + z2w
+x(z + yz2 + y2z2w + y3z2w)
+x2(1 + y2 + yzw + y3z2w)
+x3(z2 + y3z + yzw + y2zw);

∆3 = 1 + y2 + z + z2 + yz2w + y3zw + zw + z2w
+x(z + y3z + yzw + y2z2w)
+x2(1 + y2 + yz2 + y3z)
+x3(z2 + yz2 + y2zw + y3z2w);

∆5 = 1 + z + z2 + zw + z2w + zt+ s+ z2ts
+x(z + z2t+ zws+ zwts)
+x2(1 + z2wt+ s+ zwts)
+x3(z2 + z2wt+ z2ws+ zts).

In a customary manner, they are denoted as the elements of the integral group
ring ZHi, where
Hi =

©
xpyjzkwl | p, j = 0, . . . , 3; k = 0, 1, 2; l = 0, 1ª , i = 1, . . . , 4;

H5 =
©
xpzjwktlsm | p = 0, . . . , 3; j = 0, 1, 2; k, l,m = 0, 1

ª
. For the difference sets

obtained the relations dev∆i
∼= D, i = 1, . . . , 5, hold.
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As compared to the construction of
³
qd+1(1 + qd+1−1

q−1 ), qd qd+1−1
q−1 , qd qd−1

q−1

´
dif-

ference sets by McFarland and Dillon ([9], [5]), we point out that the center of
none of the groups Hi, i = 1, . . . , 5, contains elementary abelian subgroup E16 of
order qd+1 = 16. Namely, Z(H1) ∼= Z4 × Z4, Z(H2) ∼= {1}, Z(H3) ∼= E4, Z(H4) ∼=
Z2 × Z6, Z(H5) ∼= E4.
Three different groups appear as groups of the right multipliers of∆i, i = 1, . . . , 5.

Denoting these groups byMi, i = 1, . . . , 5, on the grounds of Theorem 1.2 and using
[6] we get:
M1

∼= Z6,M2
∼= Z3,M3

∼= Z2,M4
∼= Z6, and M5

∼= Z2.
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