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Impact of the Adepantin studies  

The impact of the design method and Adepantins in the research of antimicrobial peptides have 

been significant. Below, we briefly mention several studies as examples.  In the study from 2012 

[1] authors highlighted the innovative potential of Adepantins, grounded in the structure–activity 

relationships of naturally occurring AMPs.  In the 2015 study [2] authors discussed the challenges 

in designing de novo structures based on physiochemical parameters (descriptors) and correlating 

them with biological activities through mathematical models, with Adepantins serving as 

exemplary designs. In 2019 study [3] authors delved into the D-descriptor as a hydrophobicity-

based calculation method [4], explaining its function and method of calculation in more detail. A 

recent review from 2022 listed twelve promising peptide drug candidates, nine of which were 

designed by the Group of D.J., reflecting the impact of Adepantins' design principles [5]. The 

design of these nine peptides used our home-made algorithms, which we described in [4,6–9]. 

Furthermore, in 2023, authors emphasized the significance of sequence moments, noting that 

Adepantin-1, despite being derived from amphibian AMPs, does not resemble any natural AMP 

[10]. Additionally, the design of Adepantins has inspired the development of online servers 

predicting peptide function based on sequence. Examples include the design of Lys-rich peptides 

[11], the construction of the ENNAVIA server for predicting antiviral activity [12], the HAPPENN 

server for predicting the hemolytic activity of therapeutic peptides [13], and the ENNAACT server 

for predicting the antitumor activity [14].   

Tools constructed in Prof. Davor Juretić laboratory  

We have constructed several free-to-use online servers: Membrane Protein Secondary Structure 

Prediction Server - SPLIT 3.5 (http://split.pmfst.hr/split/), Membrane Protein Secondary Structure 

Prediction Server - SPLIT 4.0 (http://split4.pmfst.hr/split/4/), Therapeutic index estimator for frog-

derived helical antimicrobial peptides (http://split4.pmfst.hr/split/dserv1/), Mutator algorithm for 

suggesting amino acid substitutions likely to improve the selectivity index of anuran or anuran-

like peptides (http://split4.pmfst.hr/mutator/), MIC-Predictor server for predicting minimal 

inhibitory concentration (MIC) of Rana-box anuran peptides 

(http://splitbioinf.pmfst.hr/micpredictor/). Our goal was to provide powerful, fast, and user-

friendly bioinformatics tools for those with minimal knowledge of rational design methods for 

constructing peptide antibiotics. The copy-paste functionality for inputting peptide sequences is so 

straightforward that even high school students can use it for in-silico antibiotic design projects. 

Additionally, we constructed the Database of Anuran Defense Peptides – DADP 

(http://split4.pmfst.hr/dadp/) [15]. This highly cited database helps users select parent peptides 

suitable for substitutions that enhance task-specific activities.  

Our approach was firstly a) collecting an original database containing a certain class of peptides 

or proteins, secondly b) inventing some novel theoretical concept appropriate for the study of the 

database entries, thirdly c) constructing the user-friendly scientific server for free analysis of 

sequences by using new theoretical tool, and fourthly d) publishing the paper containing the link 

to the server, detailed description of all former steps and the superiority proofs regarding previous 

similar bioinformatic tools. 

 

http://split.pmfst.hr/split/
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Details of CPP-Ad-1a construction 

The CPP-Ad-1a was constructed using results from several online services, as explained in Juretić 

et al., 2022.  The probability that the peptide is a cell-penetrating peptide was determined using 

the MLCPP server (old link: http://www.thegleelab.org/MLCPP/, new link: https://balalab-

skku.org/mlcpp2/ [16]. We found antimicrobial peptide probabilities with the CAMPR3 Support 

Vector Machine algorithm on the server ( http://www.camp.bicnirrh.res.in/predict [17]) and with 

AmpGram (http://biongram.biotech.uni.wroc.pl/AmpGram/ [18]). The ACPred server 

(http://codes.bio/acpred/ [19]) was used to classify peptides as anticancer (ACP) or non-anticancer 

(NACP) with a given probability but the mACPred server (old link: 

http://thegleelab.org/mACPpred/ [20], new link: https://balalab-skku.org/mACPpred2/ [21]) was 

used to find the probability of anticancer activity. For antiviral prediction we used servers 

ENNAVIA (https://research.timmons.eu/ennavia  [12], FIRM-AVP (old link: https://msc-

viz.emsl.pnnl.gov/AVPR, new link: https://github.com/pmartR/FIRM-AVP [22]) and Meta-iAVP 

(http://codes.bio/meta-iavp [23]). The iAMPpred and Antifungipept servers were used for the 

antifungal prediction (http://cabgrid.res.in:8080/amppred/server.php   [24] and 

https://www.chemoinfolab.com/antifungal/ [25,26]). Results for the prediction of anti-

inflammatory activity were collected by the AIPpred server (old link: 

http://www.thegleelab.org/AIPpred/ [27]), PreAIP server 

(http://kurata14.bio.kyutech.ac.jp/PreAIP/  [28]) and the score output of the AntiInflam server (old 

link: http://metagenomics.iiserb.ac.in/antiinflam/ [29]). The probability that the peptide has 

hemolytic activity was calculated by the HAPPENN server (https://research.timmons.eu/happenn 

[13]). The toxicity prediction was performed by the ToxinPred server ( 

https://webs.iiitd.edu.in/raghava/toxinpred/ [30,31]). The amphiphilic character of the peptide was 

assessed by the SPLIT 3.5 server (http://split.djpept.com/split/ [32]). The predominantly 

disordered structure was indicated by the flDPnn server ( 

http://biomine.cs.vcu.edu/servers/flDPnn/ [33]). 

We used mean values of predicted probabilities for antimicrobial, anticancer, antiviral, and 

antifungal activity and mean value of predicted scores by AIPpred, PreAIP, and AntiInflam 

servers. Total score was calculated as: (CPP probability + mean antimicrobial probability + mean 

anti-cancer probability + mean antiviral probability + mean antifungal probability + mean anti-

inflammatory score - (hemolytic activity probability + toxicity score)/2. The subtracted number 

was added as a positive reward for low toxicity. Among 176 peptides with calculated total score 

there were eight natural sequences, 40 peptides that were synthesized and tested in experiments, 

and 128 peptides designed by D.J. but never tested in experiments. We selected and ranked 20 

peptides with the highest overall score for predicted multifunctional activity and low toxicity. All 

of them were designed by D.J. Eight top-scoring peptides are hybrids with the RRWFRRRRRR 

sequence or analogues of that sequence as the CPP part of their N or C terminal. That decapeptide 

was found in a natural sequence from the hypothetical protein OLQ14316.1 which belongs to the 

coral dinoflagellate symbiont Symbiodinium microadriaticum. Identical decapeptide 

R(122)RWFRRRRRR(131) can be also found in the sequence of an uncharacterized protein 

A0A5P1FK94 from the asparagus plant (Asparagus officinalis). The search motivation was a 

desire to find novel short nontoxic cell-penetrating peptides, by using the optimized penetrating 

analog RKKRWFRRRRPKWKK as a query [34]. High CPP activity and high uptake efficiency 

http://www.thegleelab.org/MLCPP/
https://balalab-skku.org/mlcpp2/
https://balalab-skku.org/mlcpp2/
http://www.camp.bicnirrh.res.in/predict
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https://balalab-skku.org/mACPpred2/
https://research.timmons.eu/ennavia
https://msc-viz.emsl.pnnl.gov/AVPR
https://msc-viz.emsl.pnnl.gov/AVPR
https://github.com/pmartR/FIRM-AVP
http://codes.bio/meta-iavp
http://cabgrid.res.in:8080/amppred/server.php
https://www.chemoinfolab.com/antifungal/
http://www.thegleelab.org/AIPpred/
http://kurata14.bio.kyutech.ac.jp/PreAIP/
http://metagenomics.iiserb.ac.in/antiinflam/
https://research.timmons.eu/happenn
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were predicted for the RRWFRRRRRR decapeptide. Thus, it can potentially serve as a cargo 

carrier for antibiotics and anticancer molecules for different intracellular targets in human cells. 

For instance, intracellular bacterial pathogens are difficult to eradicate with conventional 

antibiotics, mainly due to the membrane permeability barrier [35], [36].  

The hybrid peptide RRWFRRRRRR-Adepantin-1a is 19th in its overall score among 20 best 

peptides, and it has a perfect score for predicted antimicrobial and antiviral activity. Thus, it merits 

further theoretical and experimental investigations.   

The links used in the development of Ad-1a and CPP-Ad-1a were accessed in August 2022 and 

all links were verified in July 2024. Note that both old (non-functional) and new (functional) links 

are provided for some of the servers.  
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Figure S1. 2D hydrophobic moments calculated by Heliquest server ( https://heliquest.ipmc.cnrs.fr/cgi-

bin/ComputParams.py ) 
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Figure S2a.  Center of mass distance from the membrane center of charged (yellow) and hydrophobic 

(magenta) residues for Adepantin-1 (left column), Adepantin-1a (middle column) and CPP-Adepantin-1a 

(right column) in AA-1 simulations with POPE:POPG membrane.  

 

  

  

Figure S2b.  Center of mass distance from the membrane center of charged (yellow) and hydrophobic 

(magenta) residues for CPP part only (amino acids 1-10) (left column) and Ad1a part only (amino acids 

11-33) (right column) in AA-1 CPP-Ad1a simulations with POPE:POPG membrane.  

  



   
 

Figure S2c.  Center of mass distance from the membrane center of charged (yellow) and hydrophobic 

(magenta) residues for Adepantin-1 (left column), Adepantin-1a (middle column) and CPP-Adepantin-1a 

(right column) in AA-1 simulations with POPC membrane. 

  



 

Figure S3a. Time evolution of secondary structures of peptides in AA-1 simulations, obtained using the 

DSSP program [37,38]. 

 



 

Figure S3b. Time evolution of secondary structures of peptides in AA-12 Ad-1 simulations, obtained 

using the DSSP program [37,38]. 

 

 

 



 

 

Figure S3c.  Time evolution of secondary structures of peptides in AA-12 Ad-1a simulations, obtained 

using the DSSP program [37,38]. 

 

 

 



 

 

Figure S3d.  Time evolution of secondary structures of peptides in AA-12 CPP-Ad-1a simulations, 

obtained using the DSSP program [37,38]. 

  



  

  

  
Figure S4a.  Density profiles calculated with Gromacs density tool of hydrophobic (magenta) and positively 

charged LYS or ARG residues (yellow) in AA-1 simulations (case 1), averaged over denoted time intervals. 

1st row: Ad-1, 2nd row: Ad-1a, 3rd row: CPP-Ad-1a. Left column: At early stages of interaction of the 

peptide with the membrane (90 – 100 ns interval), peptide is oriented in such a way that positively charged 

Lysine residues are closer to the anionic upper leaflet surface than hydrophobic residues, supporting the 

role of electrostatic interactions in initial binding. Right column: at later stages (last stages in simulations) 

hydrophobic residues are closer to the central plane of the membrane revealing the turnover of the 

peptide over time and importance of hydrophobic interactions with carbohydrate lipid chains after initial 

electrostatic binding.  

  



  

  
Figure S4b.  Density profiles in AA-1 simulations (case 1) of CPP-Ad-1a peptide, averaged over denoted 

time intervals. 1st row: CPP only (amino acids 1-10) 2nd row: Ad-1a only (amino acids 11-33). See 

description in Figure S4a. 

  



  

  

  
Figure S4c. Density profiles in AA-1 simulations (case 2), averaged over denoted time intervals. 1st row: 

Ad-1, 2nd row: Ad-1a, 3rd row: CPP-Ad-1a.  See description in Figure S4a. 

  



  

  
Figure S4d.  Density profiles in AA-1 simulations (case 2) of CPP-Ad-1a peptide, averaged over denoted 

time intervals. 1st row: CPP only (amino acids 1-10) 2nd row: Ad-1a only (amino acids 11-33). See 

description in Figure S4a. 

  



 

  

  
Figure S5a.  Number of clusters, number of peptides in largest cluster and cluster size distribution in AA-

12 simulations of Adepantin-1. 

 

 

  



 

  
 

 
 

Figure S5b.  Number of clusters, number of peptides in largest cluster and cluster size distribution in AA-

12 simulations of Adepantin-1a. 

 

  



  

  
Figure S5c.  Number of clusters, number of peptides in largest cluster and cluster size distribution in AA-

12 simulations of CPP-Adepantin-1a. 

 

  



  

  
Figure S5d.  Number of clusters, number of peptides in largest cluster and cluster size distribution in CG-

12 simulations of Adepantin-1. 

 

  



  

  
Figure S5e.  Number of clusters, number of peptides in largest cluster and cluster size distribution in CG-

12 simulations of Adepantin-1a. 

 

  



  

  
Figure S5f.  Number of clusters, number of peptides in largest cluster and cluster size distribution in CG-

12 simulations of CPP-Adepantin-1a. 

 

 

 

  



 

   
 

t = 0 ns t = 100 ns t = 300 ns t = 700 ns 

 

Figure S6a. Characteristic states during interaction of CPP-Ad-1a peptide with POPC membrane in AA-1 

simulation. 

 

 

 

 

 
 Ad-1 POPC t = 500 ns Ad-1a POPC t = 100 ns  CPP-Ad-1a POPC t = 100 ns 

 

Figure S6b. Last states of interaction of 12 peptides with POPC membrane in AA-12 simulations. It is 

observed that peptides Ad-1 and Ad-1a do not bind to the neutral POPC membrane, unlike CPP-Ad-1a, 

which shows a certain tendency for binding. Compare with Figure S2c. 

 

  



 

 

Figure S7. Total number of contacts for each residue with other residues, calculated over the final 100 ns 

of simulations involving 12 peptides. Left: Results from AA-12 Ad-1, right: AA-12 Ad-1a. 

 



 

Figure S8. Distance matrices showing the smallest distances between residue pairs across all twelve 

peptides (a total of 23 * 12 = 276 residues), calculated over the final 100 ns of simulations. Left: Results 

from AA-12 Ad-1, right: AA-12 Ad-1a. 

  



 

 

Figure S9a. Visual representation of the clustering of Ad-1 in AA-12 simulation case1. Ad-1 shows a 

greater tendency to form larger clusters when binding to the POPE:POPG membrane compared to Ad-1a 

peptides (Compare with Figure S9b).   



 

Figure S9b. Visual representation of the clustering of Ad-1a in AA-12 simulation case1. Ad-1a shows a 

tendency to form more smaller clusters when binding to the POPE:POPG membrane compared to Ad-1 

peptides (Compare with Figure S9a).  



 

Figure S9c. Visual representation of the clustering of CPP-Ad-1a in AA-12 simulations case1. Clusters 

formed by CPP-Ad-1a peptides have a different spatial distribution and are not as dense as those of Ad-1 

and Ad-1a peptides. 



Table S1. 3D Hydrophobic moments in simulations AA-1 case1.  

 Abs value of 3DHM vector (ÅkT/e) Angle between 3DHM vector and +z axis (° )* 

Diel. const 78.5 20.0 20.0 20.0 78.5 20.0 20.0 20.0 

 

Timestamp 

(ns) 
0  100 600 1000 0  100 600 1000 

Ad-1 15.6 60.3 35.4 29.0 82.4 50.0 37.7 112.0 

 

Timestamp 

(ns) 
0 500 1600 3000 0 500 1600 3000 

Ad-1a 19.5 75.1 52.4 48.7 96.3 69.1 20.0 93.8 

 

Timestamp 

(ns) 
0 100 400 3000 0 100 400 3000 

CPP-Ad-1a** 49.9 147.8 81.2 81.9 89.7 70.9 71.7 69.8 

1-10** 8.7 - - 44.3 59.4 - - 13.5 

11-33** 12.8 - - 22.8 145.0 - - 107.3 
*If the angle is greater than 90 degrees, the vector is oriented towards the membrane.  
** The last three rows' results are from the same simulation AA-1 CPP-Ad-1a. 1-10 refers to the first ten amino acids (CPP part), 
and 11-33 refers to the remaining part of the peptide CPP-Ad-1a. 
 

  



 

Table S2. Electrostatic dipole moment vectors for the configurations shown in Fig 2 in the article. 

 Abs value of electrostatic dipole moment vector (Debye) 

Diel. Const. 78.5 20.0 20.0 20.0 

 

Timestamp 0 ns 100 ns 600 ns 1000 ns 

Ad-1 5.7 23.4 18.0 13.1 

 

Timestamp 0ns 500 ns 1600 ns 3000 ns 

Ad-1a 5.5 21.2 15.7 15.8 

 

Timestamp 0 ns 100 ns 400 ns 3000 ns 

CPP-Ad-1a*** 11.4 28.9 14.9 13.4 

1-10*** 1.7 8.4 7.9 9.0 

11-33*** 5.5 10.0 6.8 7.5 

*** Last three rows results are from the same simulation AA-1 CPP-Ad1a. 1-10 refers to the first ten amino acids (CPP part), 11-
33 refers to the remaining part of the peptide CPP-Ad1a. 
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