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Abstract: The research literature presents divergent opinions regarding the role of dis-
sipation in living systems, with views ranging from it being useless to it being essential
for driving life. The implications of universal thermodynamic evolution are often over-
looked or considered controversial. A higher rate of entropy production indicates faster
thermodynamic evolution. We calculated enzyme-associated dissipation under steady-
state conditions using minimalistic models of enzyme kinetics when all microscopic rate
constants are known. We found that dissipation is roughly proportional to the turnover
number, and a log-log power-law relationship exists between dissipation and the catalytic
efficiency of enzymes. “Perfect” specialized enzymes exhibit the highest dissipation levels
and represent the pinnacle of biological evolution. The examples that we analyzed sug-
gested two key points: (a) more evolved enzymes excel in free-energy dissipation, and
(b) the proposed evolutionary trajectory from generalist to specialized enzymes should
involve increased dissipation for the latter. Introducing stochastic noise in the kinetics
of individual enzymes may lead to optimal performance parameters that exceed the ob-
served values. Our findings indicate that biological evolution has opened new channels for
dissipation through specialized enzymes. We also discuss the implications of our results
concerning scaling laws and the seamless coupling between thermodynamic and biological
evolution in living systems immersed in out-of-equilibrium environments.

Keywords: evolution; specialized enzymes; entropy production; kinetic constants; scaling
laws; catalytic efficiency; turnover number; dissipation; generalist enzymes; stochastic noise

1. Introduction
1.1. What Is the Relationship Between Universal (Thermodynamic) and Biological Evolution?

Evolution is predominantly associated with biological evolution, the most familiar
type [1]. However, non-equilibrium spatiotemporal evolution is a powerful unifying
concept across various scientific disciplines. Ludwig Boltzmann laid the groundwork
for linking thermodynamics and biological evolution [2]. In 1922, Alfred Lotka argued
for the idea [3] that is described today as the maximum entropy production principle
as long as the store of the available energy is not exhausted [4,5]. Half a century after
Boltzmann, the brilliant physicist Erwin Schrödinger introduced his famous notion that
“life feeds on negative entropy” [6]. In present-day terminology, we would describe his
insight as life’s ability to harvest high-free-energy entities (photons, organic compounds)
from its environment and convert them into the proton-motive force and chemical affinities
before exporting their dissipated remains (waste products and heat) to the environment.
That general intuition later became quantitative, primarily due to the contributions of
Terrell L. Hill [7], Hong Qian [8], and others, including the Nobel laureate Ilya Prigogine.
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The general evolution criterion [9] and the universal evolution criterion for nonlinear
thermodynamics [10] pertain to the range of far-from-equilibrium macroscopic physics,
from small- to large-scale dissipative processes and structures.

Thermodynamics regards all driven systems as mechanisms for channeling and dissi-
pating energy [11,12], without distinguishing between animate and inanimate systems. It is
not unthinkable to associate thermodynamic evolution with energy-dissipative processes.
Simon Black astutely observed in 1978 [13] that life is one of many natural processes per-
forming a dissipative role. He suggested that accelerating the dissipation of free energies
accounts for the immense catalytic power of enzymes. Still, a debate continues regard-
ing the connection between the thermodynamic aspects of biological evolution and the
acceptance of thermodynamic evolution (often referred to as physical, cosmic, or universal
evolution) in life sciences.

The “evolution-coupling hypothesis” was mentioned in papers and one book pub-
lished by the author from 2003 to 2021 [14–18]. It refers to the proposal that the origin
of enzymes’ prodigious catalytic power [19] is a synergy between thermodynamic and
biological evolution. The biological evolution of enzymes is firmly established, but that
is not the case with the thermodynamic evolution of enzymes or postulated synergy. Dis-
tinguished researchers in the field of enzyme evolution are not familiar with the concept
of thermodynamic evolution. This concept is well known to researchers exploring crystal
growth, transport processes in chemically reacting flow systems, plasma physics, geology,
planetary sciences and climatology, the evolution of nanoparticles, self-assembly evolution,
and star and galaxy formation astrophysics. For instance, the entropy production rate
per unit area governs pattern formation during crystallization [20], while the evolution
behavior of entropy production is relevant for controlling the work of heat engines [21].
The thermodynamic evolution is often examined during molecular dynamics simulations.
One such example is the MD simulation of metamorphic protein [22].

Evolution, as a physical concept, is an energy transfer process subject to the principle
of least action [23]. Robert Endres [24] used the stochastic least action principle to show
how it can predict a system’s evolution in terms of thermodynamics. Without external
driving forces, the thermodynamic evolution, as an energy transfer process, leads toward
an equilibrium [25]. The surrounding forces drive the evolution by diminishing potential
energy gradients and causing dissipative flows. Physical evolution is the response to the
thermodynamic imperative of dissipating gradients. In the presence of strong enough
driving forces, the spontaneous emergence of ordered structures results in more entropy
production [26]. The thermodynamic concept of dissipative structures’ evolution far from
equilibrium involves internal nonlinear dissipative processes and the matter and energy
fluxes into and out of an open subsystem [27]. Life is a far-from-equilibrium thermodynamic
phenomenon that is adept at selecting and establishing quasi-stable dissipation patterns
when order and entropy advance together [28]. We can conclude the previous paragraphs
by clarifying that thermodynamic evolution is the physical foundation of the evolutionary
theory regardless of whether the system is abiotic or contains biotic components [11].
However, we do not question the laws of biological evolution insofar as these laws agree
with the laws of thermodynamics. Our goal is to explore the contribution of thermodynamic
forces and corresponding dissipative fluxes to the performance gains of enzymes that
occurred during their biological evolution.

1.2. On the Joint Evolution of Enzymes, Dissipative Fluxes, and Catalytic Performance Parameters

We utilize the traditional approach to free-energy dissipation in enzymatic reactions [7].
Entropy production per unit of time is labeled as
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pressed in RT units. When there is only a single driving force, the product of the force X and
flux J defines the dissipation function as ϕ = X·J. Under isothermal conditions (molar-scale
macroscopic description), dissipation equals the absolute temperature T multiplied by the
entropy production
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. Identifying partial dissipation with the bilinear expression JkXk

for the elementary process k is universally accepted in chemistry and biochemistry. The
summation of such bilinear forms to calculate overall entropy production is essential in con-
necting microscopic and macroscopic thermodynamics [29]. We can view the total entropy
production of the system at any given time as a measure of the rate of thermodynamic
evolution and the system’s distance from thermodynamic equilibrium.

In the context of enzymes in living cells, entropy produced during catalysis is exported
to the environment. Under homeostatic conditions, there is an almost perfect balance
between the power harvested by the cell and the exported dissipation. Thus, short-term
periods of homeostasis can be approximated with the steady-state condition when the
thermodynamic evolution of the environment is faster due to the presence of life [30]
and dwarfs the speed of biological evolution. During catalysis, enzyme conformation
changes cyclically, but there is no permanent change in the structure. Also, changes
in the concentrations of substrates and products are quickly rectified to maintain the
cell’s preferred levels. We can compare the intensity of free-energy transduction among
mitochondria, chloroplasts, bacteria, and an equivalent volume of a Sun-like star. The
energy rate density is many orders of magnitude higher for living systems [31–34]. For
more extended periods (eons), living systems evolve much faster than mature stars. Thus,
we can ask whether there is an explicit connection between their evolution and the increase
in dissipation in their environment.

We can simplify and focus the question by considering what biological evolution
has achieved in the enzyme’s performance parameters and in perfecting their dissipation
abilities. From a biochemical perspective, the metabolism distinguishes living cells from
viruses and complex inanimate systems. The metabolism regulates the interaction with
the environment, the selection of what enters and exits the cell, and almost all internal
processes. Without enzymes, there would be no metabolism. Our understanding of how
enzymes function has made impressive advances, but the question of how enzymes en-
hance the speed of chemical reactions by many orders of magnitude is still the subject of
lively discussion [35–37]. During past decades, kinetic and free-energy descriptions of how
enzymes work have been supplemented with dynamics [38,39] and stochastic thermody-
namics [40,41], while the role of dissipation (if any) remained controversial [42,43]. The
search for universal kinetics–dissipation relationships and the evolution of enzymes within
the context of increased dissipation and catalytic specificity has remained mainly outside
the focus of mainstream research. However, many essential biochemical reactions occur
far from thermodynamic equilibrium, implying high dissipation [44]. Heat and entropy
increase in the environment as the universal byproduct of all biological phenomena [45].

Almost 50 years ago, Roy Jensen postulated that the evolution of enzymes with high
catalytic power and specificity arose from primitive enzymes possessing broad specificity
and low activity [46]. The dissipation of enzymes is also subject to evolution. For one
example of evolution-related enzymes, we found an intriguing, almost linear increase
in overall dissipation for more evolved enzymes (closer to perfect specialized enzymes)
with a higher evolutionary distance to a putative common ancestor. We also examined the
laboratory evolution example [47] and found that a specialist mutant enzyme exhibited
double the total dissipation and higher kcat compared to its generalist relative. Thus, the
extension of Jensen’s proposal [46] is possible within the framework of dissipation. The
dynamical aspects of enzymes’ specificity developed through various dissipative fluxes.
We discussed in previous publications [16,19,48,49] how rate-limiting steps during catalytic
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cycling and enzyme–substrate or enzyme–product interactions depend on the physical
movements of electrons, protons, atoms, and peptide loops.

The simplest kinetic models describe cyclic reactions with one, two, or three interme-
diate conformational states between the substrate interacting with the free enzyme and the
product release step connected to the recovery of the free enzyme. Frequently measured ki-
netic parameters include the turnover number kcat and catalytic efficiency kcat/Km [50]. The
implicit assumption is that energy dissipation is not the primary concern. Overall dissipa-
tion can be measured as released heat [51–53] or calculated if all microscopic rate constants
are known in the forward and reverse directions [7]. The steady-state assumption is essen-
tial to simplify the calculations of catalytic performance parameters and dissipation [19].
The rarity of such measurements and calculations impedes finding regular relationships
between kinetic performance parameters and corresponding entropy production.

Enzymes performing substrate-to-product conversion can always be associated with
an overall entropy production, no matter how far they work from the thermodynamic
equilibrium [7]. There have been studies of dissipation for individual enzymes when chosen
enzymes or molecular nanomotors were of particular interest [19,54–56]. Also, there have
been dissipation studies for essential biochemical pathways in microbial metabolism [43,57],
but we could not find anything in between. Thus, we sought to collect a database containing
experimentally determined or estimated complete sets of microscopic rate constants for the
simplest kinetic models. The database included 51 enzymes associated with 58 reactions
for the case of the reversible cyclic Michaelis–Menten mechanism (see Supplementary
Materials). We assumed a quasi-steady chemiostatic state and calculated all kinetic and
thermodynamic parameters of interest, including overall dissipation ϕ and performance
parameters such as the turnover number and catalytic efficiency.

Next, we examined the relationships between the enzyme’s performance parameters
(kinetics) and associated dissipation. The catalytic constant kcat and net flux J can differ
by an order of magnitude. Thus, for fixed force X in the XJ expression, it is still far from
given that the dissipation must be proportional to kcat. There is no physical reason to
expect that the net flux J or overall entropy production will be some functions of kcat

or kcat/Km. However, we shall show the proportionality between dissipation and the
catalytic constants of enzymes from our database. The unexpected finding is the power-law
proportionality in the log-log representation of ϕ versus catalytic efficiency kcat/Km. Why
would catalytic efficiency ever be proportional to dissipation when all physical definitions
of thermodynamic efficiency lead to the conclusion of inverse proportionality to dissipation?
Our recent publication [19] explained this paradox. The paradox does not exist, because the
biochemical definition of catalytic efficiency is not equal to the definition of thermodynamic
efficiency. The biological evolution resulted in an extensive range of kcat and kcat/Km

values [58].
We also used synthetic data after introducing stochastic noise. Examining the relation-

ship between dissipation and catalytic specificity for each enzyme-catalyzed reaction is
possible with the artificial data. The manner of introducing stochastic noise influences the
results [19]. For this work, we first chose to show that almost perfect proportionality exists
between dissipation and kcat/Km for all 58 reactions for the cases when, in each simulation
step, the stochastic noise was different but identical for each forward microscopic rate con-
stant. Secondly, our work demonstrates that the maximum entropy production requirement
led to higher optimal kcat or kcat/Km from the observed performance parameters when we
introduced stochastic noise only in the enzyme–substrate association and enzyme–product
dissociation rate while the total force remained fixed.

Overall, our results have several repercussions. The first opens a new avenue for
exploring the molecular origin of scaling laws [59]. We shall mention in the Discussion how
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serious the remaining challenges are in proceeding with research toward that goal. Our
work’s second and most important outcome is demonstrating how universal (thermody-
namic) and particular biological evolution helped each other. It is hardly a coincidence that
the most evolved enzymes [60,61] (named “perfect” or highly specialized enzymes) are as-
sociated with the highest dissipation. The performance gains of enzymes during biological
evolution correlate with their dissipation due to a system’s evolution in terms of thermody-
namics. This result supports the interrelationship between physical (thermodynamic) and
biological evolution, which we call the evolution-coupling hypothesis.

2. Materials and Methods
2.1. Statistical Analysis and Software Tools

We used Excel and Python (https://www.python.org/) tools for regression analysis.
We obtained the same results for the best-fit function, the determination coefficient, and
the confidence interval for the exponent of the best-fit power function by utilizing corre-
sponding tools in Excel and Python. For sensitivity analysis, we used the Python bootstrap
re-sampling tool. The enzyme performance parameters and dissipation results from our
dataset (see Dataset S1 in the Supplementary Materials) are not normally distributed. Thus,
we used a non-parametric Mann–Whitney U test from Python to judge whether the as-
sociation of specialized enzymes with higher dissipation was statistically significant. We
employed the Excel and Paint tools for the construction of figures. We created FORTRAN
programs to simulate the transitions among steady states for all 58 enzyme-catalyzed
reactions from our dataset in cases of (a) standard state with all parameters derived or
estimated from experiments (see Dataset S1 in the Supplementary Materials), (b) forward
variations simulation (see below), and (c) trade-off simulation (see below).

2.2. Equations for kcat, kcat/Km, and the Dissipation Function

We used well-known equations [62,63] for forward (S → P) Michaelis constants and
maximal activities in the case of two-, three-, and four-state cyclic kinetic mechanisms
(Figure 1). Substrate and product concentrations are mostly not explicitly present in the
following equations because they were multiplied by the second-order rate constants. For
the two-state reversible cycle (Figure 1A)

kcat = k3 and
kcat

Km
=

k1k3

[S](k2 + k3)
(1)

For the three-state cyclic kinetic mechanism (Figure 1B)

kcat =
k5

1 + k4
k3
+ k5

k3

and
kcat

Km
=

k1k3k5

[S](k2k4 + k2k5 + k3k5)
(2)

For the four-state cyclic kinetic mechanism [64] (Figure 1C)

kcat =
k3

1 + k3
k7
+ k3

k5

(
1 + 1

K2

)(
1 + 1

K3

k5
k7

) (3)

and
kcat

Km
=

k1k3k5k7
[S](k2k4k6 + k2k4k7 + k2k5k7 + k3k5k7)

(4)

https://www.python.org/
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Figure 1. Reversible kinetic schemes for transitions among functionally important enzyme conforma-
tions. We assumed predominantly counterclockwise cycling among states E (1), ES (2), EP or EZ (3),
and EP (3 or 4). Forward kinetic constants are k1, k3, k5, and k7. The reverse kinetic constants are k2,
k4, k6, and k8. (A) Two-state scheme. (B) Three-state scheme. (C) Four-state scheme. We multiplied
the second-order rate constants by the substrate or product concentration to obtain k1 and k4 in panel
(A), k1 and k6 in panel (B), and k1 and k8 in panel (C). In this way, all rate constants are expressed in
the units of inverse seconds (first-order rate constants).

All of these equations are strictly valid only for uni-uni enzymatic reactions. However,
Karamitros et al. [47] used the same four-state parameters, kcat and Km (Equations (3) and
(4)), when one substrate enters the reaction and two products exit it. These authors utilized
the symbol k1 for the second-order substrate-binding constant, which is k1/[S] in our
notation (see Section 3.1). Thus, we also used those equations for the four-state catalysis
mechanism of carbonic anhydrases, soluble inorganic pyrophosphatase, and kynureninases
when two products enter or exit the reaction. We often used the maximal reaction rates and
the Michaelis constant in the forward and reverse directions for two-state reversible kinetic
models to find all four microscopic rate constants (see Section 2.4).

With all of the microscopic rate constants known, we followed Terrell L. Hill [7] in
finding the expressions for the single-cycle forces and fluxes in a steady state. The two-state
expressions for net reaction flux J and the thermodynamic force X are

J =
k1k3 − k2k4

k1 + k2+k3 + k4
and X = RTln

k1k3

k2k4
= RTlnK (5)

respectively, where K = K1·K2 is the equilibrium constant. The three-state expressions are

J =
k1k3k5 − k2k4k6

k1(k3 + k4 + k5) + k2k4 + k2k5+k3k5 + k6(k2 + k3 + k4)
(6)

and
X = RTln

k1k3k5

k2k4k6
= RTlnK (7)

with K = K1·K2·K3.
The four-state expressions are

J =
k1k3k5k7 − k2k4k6k8

Σ1 + Σ2 + Σ3 + Σ4
(8)
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with
Σ1 = k2k4k6 + k2k4k7 + k2k5k7 + k3k5k7

Σ2 = k1k5k7 + k4k6k8 + k1k4k6 + k1k4k7

Σ3 = k1k3k7 + k2k6k8 + k3k6k8 + k1k3k6

Σ4 = k2k4k8 + k1k3k5 + k3k5k7 + k2k5k7

and
X = RTln

k1k3k5k7

k2k4k6k8
= RTlnK (9)

where K = K1·K2·K3·K4.
The dissipation function φ is then the J·X product in each case. We used the convention

of treating all microscopic rate constants equally as first-order constants (see Section 3.1).
The identity and concentration of the substrate and product or products can be found in
the Dataset S1 Excel file and source codes from the Supplementary Materials.

2.3. Introducing Normal Noise in Microscopic Rate Constants

In forward variations, we multiplied each of the observed or estimated forward rate
constants ki with the Box–Muller transform [65]:

gi =
√
−2lns1cos (2πs2) + 1.0 (10)

where s1 and s2 are random numbers chosen from the unit interval (0, 1) by the standard
FORTRAN generator random_number. The shift +1.0 gives prominence to positive numbers
for modified rate constants. Since rate constants ki > 0, we used only positive gi values for
the simulations. The simulations had 1000 to 30,000 steps, resulting in the same number
of rows in the program’s output. Rows with negative random numbers were replaced
with the first previous row with a positive random number. In all reactions that we
examined, there was an almost perfect linear increase (the determination coefficient close
to 1.0) in the enzyme efficiency kcat/Km (vertical axis) as a function of the dissipation/(RT)
variable (horizontal x-axis). The state probabilities, information entropy, Michaelis constant,
equilibrium constants, and force did not change during the simulations that we named
forward variations. The constancy of the equilibrium constants Ki was imposed from
the outset. The slope of the best-fit line for the efficiency versus dissipation function
decreased from close to 90 degrees to approximately 45 degrees as the overall dissipation
decreased for 58 reactions from our dataset (see Results chapter and Dataset S1 in the
Supplementary Materials).

In trade-off variations, we allowed for the compensatory changes in the equilibrium
constants for the enzyme–substrate association and the last reaction step of the enzyme–
product dissociation. We also kept the total force constant X in these simulations. We did
not derive the general proof that the maximum in the entropy production can always be
found, but we did find that maximum in all 58 reactions from our dataset (see Results
and Dataset S1). We had to increase the substrate concentration to reach the maximum
in four reactions (see Results). Once the steady state with maximum dissipation is found,
all other (optimal) parameters can be compared with their estimated or observed values.
Either the catalytic constant or enzyme efficiency is higher for the maximal dissipation
state. The maximal kcat/Km for trade-off variations is associated with similar or smaller
dissipation from the observed value (see Results for one example). We deposited the
programs required to build the figures on GitHub (https://github.com/DJureticSplit/
PERF-ENZYMES) (accessed on 27 March 2025). See the Supplementary Materials for
examples of source codes performing calculations of all parameters using the experimental
results and simulation types that we named forward and trade-off variations. These source
codes are freely available for download.

https://github.com/DJureticSplit/PERF-ENZYMES
https://github.com/DJureticSplit/PERF-ENZYMES
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2.4. The Dataset Collection

The complete set of microscopic kinetic constants in the forward and reverse directions
has occasionally been measured or estimated for some enzymes with simple uni-uni kinetic
mechanisms. To the best of our knowledge, there has never been a systematic effort to
collect a complete set of ki values for as many enzymes as possible. Moreover, the interest in
publishing all ki values for studied enzymes has waned over the decades, possibly because
the kcat and Km kinetic constants (macroscopic kinetics data) were considered sufficient for
the kinetic analysis. Free-energy profile determination requires the knowledge of all ki val-
ues. However, free-energy profile construction remains challenging. It involves combining
complex experimental techniques with sophisticated computational optimizations [64].

To collect our database, Dataset S1 (see the Supplementary Materials), we first used
many different keywords and phrases in searches of Google Scholar or PubMed, combined
with the word “enzyme”. Examples include “characterization”, “simulation”, “catalytic
properties”, “catalytic rate”, “rate constants”, “microscopic rate constants”, “energy pro-
file”, “kinetic analysis”, “kinetics of”, “catalytic properties”, “catalytic steps”, “catalytic
cycle”, “kinetic and thermodynamic”, “evolution of”, and others. After searching through
hundreds or thousands of papers, none of the keywords or phrases helped find more than
two to four of the articles cited in Dataset S1 [16,19,47,54,64,66–91]. Searching for some
enzyme classes, such as mutases, epimerases, isomerases, and racemases, could improve
the search strategy due to the simplicity of their catalytic mechanisms and the low total
number of ki constants (see Figure 1). The focus on two-state reaction cycles (Figure 1A)
also helped obtain the desired results, due to the possibility of extracting the complete set
of four ki constants from the Vm and Km parameters determined in both directions [73].

A good strategy was to examine publications by experts who appreciated the insights
that complete kinetic characterization offers into enzymes’ evolution and the nature of
their catalytic mechanism. To mention just a few of them, W. John Albery and Jeremy R.
Knowles [60], Kenneth A. Johnson [50], and Michel D. Toney [64] took up the challenge
of extracting information about enzymatic free-energy profiles from the determination of
microscopic rate constants. In one search example, we used a combination of keywords,
phrases, and enzyme class names for the Google Scholar search (“enzyme”, “computer
simulations”, “kinetic parameters”, and “isomerase”) to find 378 hits within the default
setting. A promising feature was that our recent paper [19] was the first hit because it
contains a complete set of microscopic rate constants for 10 enzymes. McIntyre et al.’s
paper [69] was the 19th hit, and we selected nine enzymes with determined rate constants
from that publication in our Dataset S1. The next best example was finding four enzyme
variants with determined ki values. We used the phrase “cyclophilin rate constants” in
the PubMed default search to find 63 hits. The 12th hit was Holliday et al.’s paper [78],
which estimated all forward and reverse ki values for the cyclophilins CypA, CypB, CypC,
and GeoCyp. We may have missed some papers containing the required data in these and
related searches. The BRENDA enzyme database [92] (Braunschweig enzyme database)
is a rich source for enzymatic reactions. There is no obvious way to search in BRENDA
for all instances when a complete set of microscopic rate constants has been determined
or estimated. None of the items from Dataset S1 was first found in BRENDA or other
databases. No more than 30 research papers served as the origin for the parameters that we
collected in the Dataset S1 Excel table.

We did not intend to collect the required data exclusively for soluble proteins. Our
database has one example of the enzyme “walking” in one dimension (kinesin-1) and sev-
eral examples of immobilized enzymes. We considered them equivalent to soluble proteins
for our analysis. Therefore, we also used measured microscopic rate constants for our
calculations for such cases. Membrane proteins likely succumb to the same thermodynamic
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drive as soluble proteins. Increased complexity in calculating the performance parameters
and overall dissipation for membrane enzymes influenced our choice to consider a similar
analysis beyond the present manuscript’s scope.

2.5. The Phylogenetic Tree Construction

We collected 36 mature β-lactamase sequences in the MEGA7 tool for molecular evo-
lutionary genetics analysis [93]. The aim was to reconstruct the evolutionary relationships
among mature sequences (without signal peptides) of Staphylococcus aureus PC1, Escherichia
coli RTEM, Bacillus cereus β-lactamase 1, and the remaining 33 β-lactamases. The UniProt
database did not yet exist when Richard P. Ambler published the sequences for three
β-lactamases [94]: PC1, RTEM, and Lac1. We identified the UNIPROT sequences P00807
and P62593 for the primary structures of PC1 and RTEM, respectively. Gaps and errors
in Ambler’s original sequence for mature Lac1 were corrected [95] before phylogenetic
tree construction. The maximum likelihood method in MEGA7 was based on the JTT
matrix-based model [96]. Initial trees for the heuristic search were obtained automatically
by applying the neighbor-joining and BioNJ algorithms to a matrix of pairwise distances
estimated using a JTT model. We then selected the topology with a superior log-likelihood
value. There were a total of 169 positions in the final dataset after the elimination of gaps
and missing data. Henriette Christensen and coauthors referred to three lactamases that
we highlighted with the red title “Ambler sequence” (see Results) in their seminal 1990
paper about the determination of rate constants in the Michaelis–Menten 3-state kinetic
scheme [97]. We calculated backward rate constants in the second and third catalytic
steps by assuming that they were very low compared to the corresponding forward rate
constants [16]. These preparatory steps enabled the exploration of whether an increased
dissipation and evolutionary distance from a putative common ancestor of all β-lactamases
accompany evolutionary gains in performance parameters.

3. Results
3.1. The Database

There are many different datasets for the performance parameters of enzymes, but we
are not aware of any dedicated to enzymes with all forward and reverse microscopic rate
constants known. We used different search strategies to collect as many enzyme-catalyzed
reactions from published papers containing such data as possible (see Section 2.4). However,
the need for the complete set of observed or estimated microscopic rate constants severely
restricted the outcome. We additionally limited the search to cyclic enzyme reactions
without branching, involving two, three, or four conformational states (Figure 1).

Nevertheless, the presented database (see Table 1 and Figure 2 in the main text and
Dataset S1 in the Supplementary Materials) contains 58 reactions catalyzed by 51 enzymes
and 9 mutated enzymes, which belong to four out of the seven main enzyme classes in
the IUBMB enzyme classification system for EC numbers. There are 13 enzymes named
isomerases, 12 racemases, 8 mutases, and 4 epimerases, all belonging to the EC 5 family
of isomerases. Kinesin-1 (black point in Figure 2) is also classified as an isomerase (EC
5.6.1.3) because its motor function is based on the cyclical changes in protein conformation.
There are 30 reactions involving only two conformational states of enzymes, and 14 reac-
tion mechanisms with three states (Figure 1A,B). The remaining 14 reactions go through
four states: free enzyme E, enzyme–substrate complex ES, intermediate complex EZ, and
enzyme–product complex EP (Figure 1C).
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Table 1. Catalytic efficiency, catalytic constant, net flux, force, and overall dissipation for 58 enzyme-catalyzed reactions. Reactions are ordered with the symbol “#”
from the most to the least dissipation. The correlation among kcat/Km and ϕ/(RT) values (highlighted numbers) is the central result of this paper. We refer the
reader to the Supplementary Materials for additional details.

# Enzyme & kcat/Km
(Ms)−1

kcat
(s−1)

J
(s−1)

X/(RT) ϕ/(RT)
(s−1) # Enzyme kcat/Km

(Ms)−1
kcat

(s−1)
J

(s−1)
X/(RT) ϕ/(RT)

(s−1)
1 CAII 83,600,000 805,433 421,874 1.81 125,000 30 GeoCyp 847,000 36.85 33.75 2.73 92.19
2 KSI 302,000,000 35,031 13,756 8.43 115,900 31 ALaO 295,908 6.8 6.58 9.83 64.72
3 CAII-T200H 67,700,000 209,682 33,593 1.87 62,920 32 EpiT 10,333 341 28 1.03 28.9
4 CAI 24,810,000 77,746 15,691 1.81 28,370 33 NSAAR 2857 20 10.1 2.34 23.67
5 Lac1 26,030,200 1905 1757 8.27 14,526 34 iPGM 104,762 22 8.75 2.32 20.29
6 RTEM 23,513,000 975 873 7.74 6757 35 ALiO 8890 1.602 1.276 10.01 12.77
7 sgPPase 70,427,239 812 625 9.95 6214 36 API 50,333 100 10.7 1.08 11.58
8 GPI * 21,721,831 1550 855 3.42 2928 37 RPI 15,143 33.3 5.16 2.12 10.93
9 GAL 1,918,000 730 152 7.6 1154 38 RacE2mut 14,081 81.67 4.36 2.24 9.76

10 coliMgPPase 44,481,928 147 128 8.71 1116 39 TIProRC * 1996 12.13 1.64 3.54 5.82
11 yeastPPase 29,765,749 189 122 7.74 946 40 LYSROEN 318 3.5 2.39 2.4 5.73
12 MR 1,080,105 632 317 2.52 798 41 TIProR * 2300 2.783 1.989 2.26 4.485
13 PC1 10,100,000 60.8 60.6 11.37 689 42 KYNase_66 34,526 0.74 0.602 7.03 4.233
14 FH 6,355,555 1833 508 1.35 687 43 RacE2 5311 32.4 1.39 2.84 3.958
15 KSI-D38E 2,769,512 129 73 8.97 655 44 ATAmut2 1427 1.87 0.986 2.07 2.037
16 KIN 2,225,553 106 41.4 13.73 569 45 KYNase_93D9 * 38,565 0.67 0.424 4.77 2.022
17 RPE 1,605,047 305 191 2.91 554 46 ATAmut1 4875 1.95 1.123 1.59 1.785
18 dPGM 1,650,000 330 179 2.37 423 47 TM0831 * 17.9 2.156 0.244 2.53 0.618
19 PMI 595,000 800 161 2.27 365 48 ATA 217 0.5 0.216 2.06 0.444
20 AROH 589,474 50.4 12.8 22.59 289 49 FAProR * 18.9 0.597 0.164 1.32 0.216
21 CypC 471,129 115 99.6 2.71 270 50 HcmABwt 481 0.05 0.048 3.43 0.163
22 ALF 5,086,315 52.6 51.8 5.14 266 51 SerR 31 0.31 0.056 2.62 0.148
23 CypB 379,186 103 90.1 2.73 246 52 TAM 37.8 0.0209 0.0135 8.47 0.114
24 EpiI 100,400 502 92.6 2.65 245 53 HcmAmut 10.9 0.02 0.0165 4.05 0.0666
25 TPI 542,518 714 209 1.16 242 54 NSAARN 3.89 0.07 0.023 2.86 0.0659
26 ALS 3,255,879 40.2 39.4 6.05 239 55 EpiTmut 15.9 4.9 0.0474 0.94 0.044
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Table 1. Cont.

# Enzyme & kcat/Km
(Ms)−1

kcat
(s−1)

J
(s−1)

X/(RT) ϕ/(RT)
(s−1) # Enzyme kcat/Km

(Ms)−1
kcat

(s−1)
J

(s−1)
X/(RT) ϕ/(RT)

(s−1)
27 CypA 936,569 97.3 87.0 2.73 238 56 GI * 0.0365 0.029 0.0097 2.36 0.023
28 AR 172,197 1692 827 1.80 229 57 HcmIcm 1.8182 0.001 0.00094 5.21 0.0049
29 yPGM 747,211 380 93.4 1.03 96.2 58 GI3 * 0.00018 0.00012 0.000015 2.96 0.000044

* Generalist or bifunctional enzymes. All others are specialized enzymes. & Abbreviations: CAII = carbonic anhydrase II, KSI = ketosteroid isomerase, CAII-T200H = T200H mutant of
carbonic anhydrase II, CAI = carbonic anhydrase I, Lac1 = β-lactamase Lac1, RTEM = β-lactamase RTEM, sgPPase = soluble inorganic pyrophosphatase, GPI = glucose-6-phosphate
isomerase, GAL = β-galactosidase, coliMgPPase = soluble inorganic pyrophosphatase with Mg2+, yeastPPase = yeast soluble inorganic pyrophosphatase, MR = mandelate racemase, PC1
= β-lactamase PC1, FH = fumarate hydratase, KSI-D38E = D38E mutant of ketosteroid isomerase, KIN = kinesin-1, RPE = ribulose-5-phosphate epimerase, dPGM = phosphoglycerate
mutase dPGM, PMI = mannose 6-phosphate isomerase, AROH = chorismate mutase, CypC = cyclophilin C, ALF = fructose 1,6-bisphosphate aldolase, CypB = cyclophilin B, EpiI =
isoleucine 2-epimerase, TPI = triosephosphate isomerase, ALS = sedoheptulose 1,7-biphosphate aldolase, CypA = cyclophilin A, AR = alanine racemase, yPGM = phosphoglycerate
mutase, GeoCyp = cyclophilin GeoCyp, ALaO = altro-octulose 1,8-bisphosphate aldolase, EpiT = D-psicose 3-epimerase, NSAAR = n-succinyl amino acid racemase, iPGM =
phosphoglycerate mutase iPGM, ALiO = arabinose-5-phosphate aldolase, API = arabinose-5-phosphate isomerase, RPI = ribose-5-phosphate isomerase, RacE2mut = glutamate racemase
mutant R25A, TIProRC = proline racemase from the archaeon T. litoralis, LYSROEN = lysine racemase, TIProR = proline racemase from the archaeon T. litoralis with L-proline substrate,
KYNase_66 = kynureininase mutant 2, RacE2 = glutamate racemase, ATAmut2 = (R)-selective amine transaminase mutant 2, KYNase_93D9 = kynureininase mutant 1, ATAmut1
= (R)-selective amine transaminase mutant 1, TM0831 = TM0831 racemase, ATA = (R)-selective amine transaminase, FAProR = proline racemase from the archaeon F. acidiphilum,
HcmABwt = 2-hydroxyisobutyryl-CoA-mutase, SerR = serine racemase, TAM = tyrosine aminomutase, HcmAmut = 2-hydroxyisobutyryl-CoA-mutase mutant I90V, NSAARN =
n-succinyl amino acid racemase acting on L-acetyl-D-asparagine substrate, EpiTmut = D-psicose 3-epimerase mutant R215K, GI = glucose isomerase Sweetzyme T®, HcmIcm =
2-hydroxyisobutyryl-CoA-mutase acting on isobutyryl-CoA, GI3 = glucose isomerase Sweetzyme IT®.
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Figure 2. Multi-colored results for the main enzyme classes (EC numbers). Enzyme names are
available in Table 1. Corresponding references are available in Dataset S1. (A) We illustrate a roughly
linear relationship between entropy production (dissipation) and catalytic constant (kcat) for 58
enzyme-catalyzed reactions from our database. (B) The right-hand panel exhibits the power-law
relationship with the 0.73 exponent between the dissipation and enzyme efficiency (kcat/Km) for the
same reaction set. The determination coefficient values of 0.89 (A) and 0.92 (B) indicate a good-to-
solid fit in a linear regression model for the log-transformed data. The 95% confidence interval (CI)
for the exponent is (0.87, 1.05) for (A) and (0.67, 0.78) for (B). These results mean that the exponent is
reliably close to 0.96 (A) and 0.73 (B), with high confidence that the relationship between enzyme
performance and dissipation follows a power law with an exponent in this range. The sensitivity
analysis using the bootstrap method yielded a mean exponent of 0.731, a standard deviation of 0.033,
and a 95% CI range of 0.67–0.80 for the (B) regression line. The diffusion limit range (pink rectangle)
from (B) starts from 108 (Ms)−1. It highlights several specialized enzymes (see the main text) that
reached the pinnacle of their evolutionary development for their catalytic efficiency and associated
high entropy production. Seven generalist enzymes are among those catalyzing the 20 reactions with
the lowest dissipation (less than 6 s−1 dissipation/RT), and only one is among the enzymes catalyzing
the 20 reactions with the highest dissipation. The chosen colors are red for isomerases (EC 5.2.1.8,
5.3.1.-, and 5.3.3.1), green for racemases (EC 5.1.1.-, and 5.1.2.2), dark olive green for epimerases (EC
5.1.1.21, and 5.1.3.-), olive for mutases (EC 5.4.2.1, 5.4.3.6, and 5.4.99.-), pink for kynureninases (EC
3.7.1.3), psychedelic purple for β-galactosidases (EC 3.2.1.23), purple for β-lactamases (EC 3.5.2.6),
yellow for fumarate hydratases (EC 4.2.1.2), orange for carbonic anhydrases (EC 4.2.1.1), bronze
for soluble inorganic pyrophosphatases (EC 3.6.1.1), blue for (R)-selective amine transaminases (EC
2.6.1.21), and black for kinesin-1 (EC 5.6.1.3).

Reported microscopic rate constants were observed or estimated in experiments with
isolated enzymes by choosing the optimal conditions for each enzyme. Accordingly, it was
impossible to avoid different conditions for each enzyme, such as temperature, pH, and
substrate-to-product ratio. All transitions between enzyme conformational states were treated
as first-order processes. For example, for the binding transition E + S → ES, we used k1 = k∗1[S],
where k1 is the first-order rate constant (in s−1 units), k∗1 is the second-order rate constant (in
M−1s−1 units), and [S] is the concentration of the substrate (in moles). The same notation
was used for product-binding transitions. This is why the substrate concentration is present
in kcat/Km expressions (Equations (1), (2) and (4)). Substrate or product concentrations
were multiplied by the second-order rate constants to obtain, for instance, four forward rate
constants (k1, k3, k5, and k7) and four backward rate constants (k2, k4, k6, and k8) in the
s−1 units (Figure 1C). The associated equilibrium rate constants K1 = k1/k2, . . ., K4 = k7/k8

represent a non-equilibrium situation for the out-of-equilibrium system. The simple scheme
in Figure 1C has several exceptions when two products exit the cycle (see Section 2.2). We
calculated the performance parameters kcat and Km using equations for forward reactions
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(see Section 2.2). The calculated kinetic parameters were similar to the published values in the
papers where we found the microscopic rate constants. Our choice of product concentration
ensured the forward direction for each reaction. The driving force X and corresponding net
flux J were then both positive. That choice resulted in a range of X/(RT) values from 1 to 23.
The range of J values extended from a minimal 10−4 (for glucose isomerase) to a maximal
4 × 105 s−1 (for carbonic anhydrase II). The total dissipation was calculated [7] and expressed
in inverse seconds, as described in the Section 2.2.

We assumed a non-equilibrium steady state for each of the 58 reactions with constant
enzyme, substrate, and product concentrations and a fixed driving force X (Table 1 and
Dataset S1). Examples of highly driven far-from-equilibrium reactions with X/RT greater
than 10 are for the ALiO, PC1, KIN, and AROH enzymes (abbreviations are defined
in Table 1). The single-cycle enzymes from the database cannot perform free-energy
transduction [7]. They are not interconnected in a metabolic network, because we selected
them from different life domains (mostly from bacteria). Still, each enzyme opens a specific
channel for the dissipative production of essential metabolites. Single-cycle enzymes are
crucial facilitators and regulators of metabolic energy flow, even though they ultimately
dissipate all free energy as heat. The database contains several exceptions to soluble
enzymes. Kinetic data that we used for glucose isomerase and β-galactosidase are for
immobilized enzymes [40,90,91]. Kinesin-1 mainly performs one-dimensional motion
along microtubules [75].

3.2. The Regular Relationships Between Dissipation and the Performance Parameters of Enzymes

To test for the presence of power-law scaling

Dissipation
RT

= α

{
kcat

Km

}β

(11)

we started with the null hypothesis that no significant relationship exists between log10
kcat
Km

and log10
Dissipation

RT . We next performed the linear regression on log-transformed data for
columns A (x-values kcat/Km) and C (y-values dissipation/RT) from Dataset S1 (correspond-
ing to columns highlighted with a gray background in Table 1). The regression results were
as follows: intercept log(α) = −1.82, slope (β) = 0.728, R2 (goodness of fit determination
coefficient) = 0.922. The p-value for the slope was 0.000, far below the 0.05 threshold, allowing
us to reject the null hypothesis. The relationship between log10

kcat
Km

and log10
Dissipation

RT was
statistically significant. In other words, the data from Dataset S1 (columns A and C) exhibit a
statistically significant power-law scaling with a high degree of fit.

We performed the same statistical analysis for the log-transformed data from columns
B and C (corresponding to the kcat and ϕ/(RT) columns in Table 1). The regression analysis
results for the relationship between log10 kcat (x-variable) and log10

Dissipation
RT (y-variable)

were as follows: intercept log(α) = 0.149, slope (β) = 0.962, and R2 = 0.893. The hypothesis of
no significant linear relationship between variables x and y (null model) was rejected, with
the p-value = 0.000 for the slope. The data exhibit a power-law scaling of approximately
y = x0.962, with a very good fit.

Figure 2 illustrates the power-law proportionality between dissipation and perfor-
mance parameters for 58 reactions catalyzed by soluble enzymes. The best-fit lines look
similar in the log-log graphs from both panels in Figure 2. However, for most reactions, the
enzyme efficiency values kcat/Km are several orders of magnitude higher than the dissipa-
tion values. In contrast, the dissipation and the catalytic constant values (kcat at the x-axis)
are similar. This is due to the high specificity of enzyme–substrate interactions, which leads
to small values of the Michaelis–Menten constant Km. The dissipation values in Figure 2
range from extremely small to exceptionally high for enzymes that are explicitly named



Entropy 2025, 27, 365 14 of 30

isomerases (red points), racemases (green points), mutases (olive points), and epimerases
(dark olive green points).

At the lower end of the spectrum are reactions catalyzed by enzymes producing less
than 10 s−1 dissipation/(RT). The Km values that we found for such enzymes (Dataset S1)
indicate that most are not highly specific for their substrate. For instance, the generalist
and versatile enzymes exhibiting low dissipation in Figure 2 are proline racemases from
archaea (EC 5.1.1.4, green points) [83], the HsKYNase_93D9 variant of human kynureninase
(EC 3.7.1.3, pink point) [47], TM0831 racemase (EC 5.1.1.-, green point) [86], and glucose
isomerases (EC 5.3.1.5, red points) [90,91].

The points for the most evolved specialist (perfect) enzymes are close to or inside
the diffusion-limited region of Figure 2B when kcat/Km is similar to or ≥108 (Ms)−1 (the
right-hand highlighted region of Figure 2B). Such reactions and associated enzymes exhibit
high dissipation/(RT) values between 6000 and 125000 s−1. From our database, carbonic
anhydrase II from human red blood cells (EC 4.2.1.1, orange points), ketosteroid isomerase
from Commamonas testosteroni (EC 5.3.3.1, red point), and soluble inorganic pyrophosphatase
from Streptococcus gordonii (EC 3.6.1.1, chocolate point) are specialized enzymes with the
highest enzyme efficiency and dissipation. Within our limited data (Dataset S1), no clear
preference exists for extremes in dissipation or enzyme efficiency in any of life’s kingdoms.
Still, we found low dissipation for the bifunctional proline racemases derived from an
ancestral archaeal enzyme [83].

Our dissipation and enzyme performance parameters data (Table 1 and Dataset S1) are
not normally distributed. We applied the non-parametric test to determine the significance
of the distribution of dissipation numbers among specialized and generalist enzymes.
The null hypothesis was that the numbers (dissipation values) are distributed randomly
between two enzyme classes. However, the p-value of 0.008 supports the non-randomness
of the data allocation and suggests a statistically significant difference. Thus, there is strong
statistical evidence that the category of specialized enzymes is associated with higher
entropy production (see Section 2.1).

The linear regression model for the log-transformed data demonstrated a good fit for the
power functions y = 1.4·x0.96 (Figure 2A, R2 = 0.89) and y = 0.015·x0.73 (Figure 2B, R2 = 0.92).
The calculated confidence intervals for the exponent are relatively narrow (see the legend in
Figure 2). The sensitivity analysis (re-sampling the data multiple times and re-running the
regression) showed minimal sensitivity. It confirmed the robustness of the exponent estimate
at 0.96 and 0.73 for dissipation’s dependence on the catalytic constant and enzyme efficiency,
respectively. A 95% confidence interval (0.67–0.80) for the exponent from bootstrap analysis
indicated that the power law for the dissipation–efficiency dependence with the 0.73 exponent
(Figure 2B) is stable even under variations in the data.

3.3. Can Regular Dissipation–Performance Relationships Be Obtained for Individual Reactions
After Introducing the Stochastic Noise to Obtain Synthetic Data?

We assumed that all 58 of the studied enzyme–ligand systems can jump among quasi-
steady states in stochastic ways. Stochastic models are a simple way to create artificial data
for individual reactions and to imitate biological mechanisms that harness molecular noise
to create variable beneficial outcomes [19,98]. Stochastic fluctuations are always present
in biological situations with a small number of molecules interacting in small volumes.
The random noise that we introduced in microscopic rate constants does not imitate actual
fluctuations in any biological situation. Instead, it is a theoretical method to examine the
influence of random variations. The simplest assumption is an equal effect of variations on
all forward rate constants. We refer to “forward variations” when we use that assumption.

For fixed equilibrium constants, Ki, when overall force was also fixed, we called
Gaussian noise (see Section 2.3 and FORTRAN source codes from Supplementary Material).
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We then multiplied each forward kinetic constant for a chosen reaction with a random
number from normal noise. An almost perfect linear proportionality between dissipation
and enzyme efficiency exists for all 58 reactions, and it does not depend on the choice of
enzyme or the number of conformational states in the cyclic scheme. Juretić and Bonačić
Lošić [19] found the mathematical reasons why an excellent proportionality should always
be expected upon introducing the noise as described above. Next, we examined the
maximal values in all parameters. Each parameter of interest (forward rate constants ki

(odd i), catalytic constant kcat, enzyme efficiency kcat/Km, dissipation/RT) significantly
increased above the experimental value (four to five times). This theoretical result does not
have any special physical meaning. All the same, catalytic optimizations do not contradict
any physical law if similar or equal noise is introduced in each catalytic step.

We can also examine the assumption that the substrate–enzyme association and
enzyme–product dissociation step in the presence of noise are subject to the trade-off regu-
lation due to concerted protein dynamics. These are “trade-off variations”. We introduced
the stochastic noise, but only in the enzyme–substrate and enzyme–product equilibrium
constants, while total force remained fixed, and we looked for the maximum entropy
production states. Several observations followed after exploring all 58 reactions from our
dataset within the framework of the trade-off variations. Firstly, the maximum in the
dissipation always exists. Furthermore, compared to the dissipation calculated from the
observed data, the maximum always has a higher value. There is a 1% or less difference
between the maximal dissipation and the dissipation calculated from the experimental
data for six reactions (GI, NSAARN, API, EpiI, FH, and ssPPase). Thus, in some cases,
the maximum entropy production requirement comes close to reproducing the observed
kinetic and thermodynamic parameters. Still, there are three reactions with about 10 times
higher dissipation and 17 to 22 times higher optimal kcat (HcmABwt, GeoCyp, and ALF).
Secondly, the optimal enzyme efficiency values for maximal dissipation are higher than the
observed value for 24 reactions (Eff-enzyme reactions) but smaller than that for 34 reactions
(Tur-enzyme reactions). The optimal kcat (from the maximal dissipation requirement) is
smaller for all Eff-enzyme reactions than the observed catalytic constant. The reverse holds
for the Tur-enzyme reactions when optimal kcat > kexp

cat . Our division of all enzymes into
two classes (see Table 2 and Dataset S1) can serve as a guide when deciding whether to
improve enzymes’ turnover number (Tur-enzymes) or their efficiency (Eff-enzymes). Thus,
improving some enzyme performance parameters using the physical principle of maximum
entropy production depends on an informed choice of appropriate reactions, the kinetic
parameter (for optimization), and the selection manner for an optimal steady state.

For example, we asked whether noise introduction can improve the performance of
medically important human kynureninase. The generalist variant HsKYNase_93D9 and
the specialized variant HsKYNase_66 [47] were the starting points for our simulations (two
pink points near label 1 for the kcat axis in Figure 2A, and near label hundred thousand
100 for the kcat/Km axis in Figure 2B). Panels A and C in Figure 3 illustrate the significant
increase in the kcat/Km that can be gained in theory after paying the “price” of increased
dissipation when the same noise is introduced in all forward rate constants. The generalist
variant is the Eff-type enzyme. Thus, it exhibits a better response in the kcat/Km values after
such forward variations. Figure 3B,D illustrate a different behavior between the generalist
and specialized kynureninase variants when noise introduction is restricted to the enzyme–
substrate association constant k1 and enzyme–product dissociation constant k7. The fixed
force restriction and trade-off variations then lead to the maximum entropy production
and an optimal kcat/Km (the pink point), which is either double the observed efficiency for
the generalist mutant or smaller than the observed value for the specialized mutant.
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Table 2. Fold changes (regarding Table 1 values) in optimized kcat and kcat/Km for maximal dissipation that we obtained in trade-off simulations.

# Enzyme & kcat/Km
Fold

kcat
Fold

J
(s−1) X/(RT) ϕ/(RT)

max (s−1) # Enzyme kcat/Km
Fold

kcat
Fold

J
(s−1)

X/(RT) ϕ/(RT)
max (s−1)

1 CAII 2.85 0.85 516,052 4.12 2.1 × 106 30 GeoCyp 0.13 21.9 362 2.73 989
2 KSI 2.23 0.78 15,963 8.43 134,498 31 ALaO 0.34 1.07 6.86 9.83 67.5
3 CAII-T200H 3.77 0.67 45,786 1.87 85,759 32 EpiT 1.20 0.60 29.6 1.03 30.6
4 CAI 1.98 0.63 18,986 1.81 34,328 33 NSAAR 0.74 1.75 11.2 2.34 26.3
5 Lac1 0.33 1.56 2364 8.27 18,719 34 iPGM 0.89 1.17 8.84 2.32 20.5
6 RTEM 0.21 2.05 1365 7.74 10,570 35 ALiO 1.98 0.98 1.30 10.01 13.0
7 sgPPase 0.95 1.02 625 9.95 6218 36 API 1.08 0.78 10.9 1.08 11.7
8 GPI * 0.75 1.60 931 3.42 3185 37 RPI 1.44 0.58 5.73 2.12 12.1
9 GAL 0.94 2.62 165 7.60 1253 38 RacE2mut 3.18 0.29 6.54 2.24 14.6
10 coliMgPPase 0.44 1.31 145 8.71 1263 39 TIProRC * 1.68 0.47 2.01 3.54 7.14
11 yeastPPase 0.56 1.30 131 7.74 1013 40 LYSROEN 0.49 2.86 3.50 2.40 8.41
12 MR 1.40 0.88 329 2.52 829 41 TIProR * 0.39 3.64 3.54 2.26 7.98
13 PC1 0.06 2.55 60.6 11.37 1519 42 KYNase_66 0.64 1.23 0.637 7.03 4.48
14 FH 0.88 1.29 513 1.35 694 43 RacE2 3.45 0.28 1.94 2.84 5.50
15 KSI-D38E 3.41 1.00 126 11.97 1507 44 ATAmut2 0.67 1.93 1.15 2.07 2.37
16 KIN 1.30 0.85 42.3 13.73 580 45 KYNase_93D9 * 1.86 0.95 0.438 4.77 2.09
17 RPE 0.66 2.27 240 2.91 697 46 ATAmut1 0.43 3.55 1.77 1.59 2.82
18 dPGM 0.68 1.77 201 2.37 477 47 TM0831 * 2.17 0.42 0.317 2.53 0.804
19 PMI 1.13 0.77 164 2.27 372 48 ATA 0.77 1.66 0.231 2.06 0.475
20 AROH 2.47 0.71 15.1 22.59 341 49 FAProR * 0.56 1.93 0.180 1.32 0.237
21 CypC 0.22 2.43 188 2.71 509 50 HcmABwt 0.19 22.0 0.449 3.43 1.54
22 ALF 0.06 16.4 520 5.14 2671 51 SerR 1.28 0.65 0.060 2.62 0.157
23 CypB 0.26 3.43 214 2.73 584 52 TAM 3.75 1.00 0.0208 10.08 0.210
24 EpiI 1.06 0.85 93.2 2.65 247 53 HcmAmut 0.49 4.00 0.0302 4.05 0.122
25 TPI 0.88 1.39 218 1.16 253 54 NSAARN 0.99 1.01 0.023 2.86 0.066
26 ALS 0.10 2.50 84.5 6.05 512 55 EpiTmut 1.13 0.35 0.0516 0.94 0.048
27 CypA 0.15 8.35 407 2.73 1110 56 GI * 0.98 1.03 0.0097 2.36 0.023
28 AR 3.68 0.91 977 1.79 1751 57 HcmIcm 0.35 9.00 0.0037 5.21 0.0192
29 yPGM 0.88 1.32 95.5 1.03 98.4 58 GI3 * 2.49 0.48 0.000024 2.96 0.00007

See Table 1 for the meaning of the #, * and & symbols. Underlined numbers for CAII, KSI-D38E, AR, and TAM are cases where we had to increase the ligand concentrations to find
the maximum dissipation. The performance parameters highlighted in gray distinguish enzymes for which trade-off variations can find higher enzyme efficiency than observed
(Eff-enzymes) from those with the potential for a higher turnover number (Tur-enzymes).
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variant HsKYNase_66 (C,D). The dissipation calculated for the specialist variant from the 
observed data is double that of the generalist variant (compare yellow points in the upper and 
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Figure 3. Experimentally observed and simulation results for medically important variants of
human kynureninase [47]: the generalist variant HsKYNase_93D9 (A,B), and the specialized variant
HsKYNase_66 (C,D). The dissipation calculated for the specialist variant from the observed data
is double that of the generalist variant (compare yellow points in the upper and lower panels).
The simulations using forward variations (A,C) illustrate an almost vertical linear increase in the
enzyme efficiency kcat/Km for small changes in the dissipation/RT values when all forward rate
constants are subject to the same random noise within the restriction that the equilibrium constants
Ki do not change in the simulation steps. The yellow and red points represent the observed and
maximal kcat/Km values, respectively. The trade-off variations provided different results (B,D). The
maximum entropy production requirement for the trade-off between enzyme–substrate association
and enzyme–product dissociation rate within the framework of fixed total force almost doubled
the optimal enzyme efficiency ((B), light pink point) with respect to the observed value ((B), yellow
point) for the generalist variant. For the specialized variant, trade-off variations resulted in a smaller
optimal kcat/Km value ((D), light pink point) with respect to the observed value ((D), yellow point).
The yellow and red points have the same meaning and similar kcat/Km values as in (A,C).

Another example involves medically important enzymes known as β-lactamases.
These specialized enzymes, including PC1, RTEM, and Lac-1, had their kinetic parameters
established before the evolution of bacterial resistance prompted changes in their character-
istics [97]. These enzymes share a common ancestor and are evolutionarily related [16,94].
We conducted a molecular phylogenetic analysis to determine the evolutionary distances
from the putative common ancestor (Figure 4). We investigated whether specialized en-
zymes like β-lactamases exhibit higher dissipation, turnover number (kcat), and catalytic
efficiency (kcat/Km) as their evolutionary distance from a common ancestor increases. The
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results shown in Figure 5A–C offer a positive answer to these questions. Since β-lactamases
fall within our Tur-enzyme class, the simulated trade-off variations increased their turnover
numbers, from observed rates of 61, 975, and 1905 s−1 to optimal values of 151, 2000, and
2977 s−1 for the PC1, RTEM, and Lac-1 enzymes, respectively. The relationship between
optimal kcat and evolutionary distance, as presented in Figure 5D, appears almost perfectly
linear. However, it is worth noting that the degree of proportionality and linearity in the
figures is based on only three data points. This can be viewed as a general trend and
suggests that including other families of evolutionarily related enzymes in future studies
would be beneficial.
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Figure 4. Molecular phylogenetic tree and calculation of evolutionary distances by maximum
likelihood method for β-lactamases PC1, RTEM, and Lac1 [96] after using the corrected sequence
of Lac1 [95]. Summing all relevant branch lengths (number above each branch leading to the label
“Ambler sequence” in red color) gives the following results in evolutionary distances: 1.19 for PC1,
1.44 for RTEM, and 1.60 for Lac1 (reproduced from [17]).
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Figure 5. The performance parameters and evolutionary distances (from a common ancestor) of three
β-lactamases: PC1 from S. aureus, RTEM from E. coli, and Lac1 from B. cereus. The increase in the
evolutionary distance PC1 = 1.19 < RTEM = 1.44 < Lac-1 = 1.60 [16,19] is associated with the higher
dissipation (A), catalytic constant (B), enzyme efficiency (C), and optimal kcat that we derived from
the maximal entropy production requirement (D). The PC1 (x,y) parameters define the lowest, RTEM
the middle, and Lac-1 the highest point in all four panels.

4. Discussion
4.1. Is the Proportionality Between Dissipation and Kinetic Parameters of Enzymes Expected
(Trivial) or a Scientifically Valuable Result?

Before interpreting Figure 2 as our central result, we should consider whether it holds
scientific value. For the constant force X, one could attempt to replace the dissipation
expression J·X with the product kcat·X, as the numerical values of the catalytic constant kcat

in the forward direction and net flux J are often similar (see Table 1). Additionally, their
units are identical. However, this raises several issues.

According to the second law of thermodynamics, entropy production must be greater
than or equal to zero. The net flux J can be negative when X is also negative to maintain the
positivity of the J·X product. The definition of net flux is given as follows:

J = J+ − J− (12)

where J+ is the forward flux and J− is the backward flux.
When the backward flux is greater, the net flux J becomes negative. In contrast, kcat is

defined as the ratio of maximum reaction velocity to the total enzyme concentration involv-
ing two quantities that are always positive, meaning that kcat must be positive. A negative
kcat would imply that the enzyme reduces the product formation rate, which contradicts en-
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zymes’ fundamental role as biological catalysts. Furthermore, we noted in the Introduction
that kcat represents the turnover rate, which is inherently a non-negative quantity.

The second issue arises when kcat and J are positive but have significantly different
numerical values. In forward-directed reactions, the turnover rate is always higher than
the net flux J (compare the kcat and J columns in Table 1, or columns B and X in Dataset S1).
In several cases that we examined, the ratio kcat/J exceeds 10. Examples from our dataset
include D-psicose 3-epimerase (ratio = 12.2), glutamate racemase mutant R25A (ratio = 18.7),
glutamate racemase (ratio = 23.3), and D-psicose 3-epimerase mutant R215K (ratio = 103.4).

Finally, it is important to note that the calculation of kcat does not consider the as-
sociation rate constants for the enzyme + substrate and enzyme + product systems (see
Section 2.2). The kcat value reflects the speed of the irreversible decomposition of the
enzyme–substrate complex into free enzyme and free product. The original Michaelis–
Menten kinetics scheme inspired the definition of kcat; unfortunately, that scheme is in-
compatible with a thermodynamic description due to the omission of the reverse reaction
E + P → ES.

Figure 2 may seem trivial if the dissipation, ϕ, is simply an analytical function of kcat

or kcat/Km. We should note that kcat and kcat/Km, the preferred performance parameters
in enzyme kinetics, have different units and meanings than entropy production, which is
a fundamental physical quantity in non-equilibrium thermodynamics. Thus, it would be
inappropriate to derive fundamental physics from empirical kinetic parameters that are
primarily valuable for biochemistry. Moreover, Figure 2 would lack significance if other
researchers had previously collected, published, and interpreted similar datasets. However,
this does not appear to be the case.

We can also entertain the possibility that all of our flux and force calculations are wrong
because these quantities are concentration-dependent, meaning that their values would
change along the course of the reaction. With unknown concentrations, it is impossible to
calculate flux, force, and entropy production for non-equilibrium conditions using Terrell
Hill’s [7] or any other method. Equations (5)–(9) for flux and force calculations do not
contain substrate and product concentrations. Moreover, the absence of time in these
equations precludes any change from occurring during the reaction course. These are
serious objections, but let us explain what the limitations of this work are and are not.

Hill’s terse style gives additional importance to each sentence in his book [7]. The
first sentence of the preface draws the reader’s attention to the book’s subtitle: “The
Steady-State Kinetic and Thermodynamic Formalism”. The steady-state approximation
that we used in all calculations, as Hill did, does not allow for changes with time. We
assumed constant fixed concentrations to ensure the non-equilibrium situation—that is,
the chemiostatic condition when concentrations are kept steady by continuous product
withdrawal and substrate injection. The substrate concentration did not disappear from
the system after the multiplication by the first forward second-order rate constant. The
product concentration did not disappear after the multiplication by the reverse second-
order binding rate constant. Thus, the concentration dependence survived when we
followed Hill in treating all transitions between functionally important enzyme states as
first-order processes.

For each reaction, we used the substrate concentration and temperature mentioned in
the corresponding reference (see the Supplementary Materials), where we found observed
or estimated kinetic constants. An element of subjectivity remained when we could not
find the calculated, stated, or physiological product concentration for the reaction that the
research paper of interest studied. Product concentrations were often variable in the cited
literature. We aimed to keep X/(RT) positive for each reaction, roughly from 1.0 to 10.0.
Choosing a 10 times lower product from substrate concentration achieved that goal for
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about half of the explored reactions. For the remaining reactions, the product concentration
had to range from 25 times higher to 1000-fold lower than the substrate concentration to
achieve the same goal.

In rare cases, one of the transitions was irreversible, essentially going only in the
forward direction. This was the case for the chorismate mutase (AROH), with its reverse
rate constant in the second transition estimated as k4 = 10−8 (s−1) [77]. A high X/(RT)
≈ 23 force could not be avoided (see the Supplementary Materials). We also included
Escherichia coli β-galactosidase (GAL) data due to its importance as a test case on how
single enzyme molecules work. However, the reverse binding constant k4 for the product
is close to zero but unknown for that enzyme [40,99]. Setting the reverse rate constant
equal to zero for the second transition would prevent the calculation of entropy production.
The choice of some small number different from zero is then, to some degree, arbitrary.
When we used the choice k4 = 10−5 s−1 [99], we obtained the same result of 2553 s−1 for
overall dissipation as these authors, a satisfactory confirmation that Hill’s method leads
to the identical result for overall entropy production when a different method is used to
describe the same non-equilibrium steady state. On the other hand, the corresponding
affinity X/(RT) = 16.8 is on the high side. In Dataset S1 and Table 1, we chose 10 times lower
product concentration (from substrate concentration) and k4 = 0.1 s−1. That choice led to
the overall dissipation/(RT) = 1153.5 s−1 and the thermodynamic force X/(RT) = 7.6. In
each case we verified the invariance in the quotient between second-order and first-order
kinetic constants in each direction, giving the same equilibrium constant from the J = 0
requirement or Haldane relationship.

One can explore whether the logarithmic proportionality between dissipation and
kinetic parameters survives when the system relaxes toward equilibrium. That question
is beyond the scope of the present paper. Interested readers can study our previous
publication [19] for the regularities during the catalysis time course for β-galactosidase
(GAL), glucose isomerase (GI), three β-lactamases (Lac1, RTEM, and PC1), ketosteroid
isomerase (KSI), triosephosphate isomerase (TPI), and three carbonic anhydrases (CAII,
CAII-T200H, and CAI). These are 10 among the 58 enzymatic reactions that we included
here only as a snapshot of steady states. To conclude this section, the results presented in
Figure 2 are unexpected and essential; they connect fundamental physics and key kinetic
parameters in biochemistry, highlighting that high catalytic efficiency does not necessarily
require low or minimal dissipation.

4.2. Why Must Performance Gain Be Paid with Higher Dissipation?

We argued in a previous text about the unexpected alignment of dissipation with
the turnover number and enzyme efficiency. Although surprising, the correlations do
exist. Do we know why something known as a useless outcome (that cannot perform
work) is tied to obviously beneficial performance gains? The turnover number kcat is an
idealized maximal product release rate. While it always contributes to entropy production
during enzyme cycling, its contribution depends on the reversibility of enzyme action in a
dissipative environment. For instance, prolyl cis ↔ trans interconversion is a reversible
process catalyzed by the cyclophilin family members GeoCyp, CypA, CypB, and CypC [78].
Figure 2A illustrates a near-perfect straight-line arrangement of (kcat, ϕ/RT) red points for
these isomerases with coordinates (37, 92), (97, 238), (103, 246), and (115, 270) (see Table 1).
Similar kcat and net flux J values for each isomerase and almost identical X/RT values (see
Table 1) explain such a good alignment of dissipation and the catalytic rate kcat. The fold
improvements shown in Table 2 for cyclophilins kcat are impressive, confirming that kcat

is governed by rate-limiting chemistry in the product release step. The calculation of the
free-energy profile for CypA and GeoCyp can be performed using the data provided in



Entropy 2025, 27, 365 22 of 30

our Dataset S1 for a nice illustration of how kcat, presented as a vertical vector, can strongly
influence the rate-limiting barrier height, partial entropy production associated with the
product release transition, and overall dissipation. The profile should look similar to Figure
6A from Johnson’s publication [50]. A free-energy profile can be obtained from our data
for all 58 reactions, but that task is beyond the scope of this paper. Computational and
NMR studies are essential for a better understanding how proteins’ dissipative dynamics
enhance the reaction rates in cyclophilins and other enzymes [36,100].

The enzymes reduce the activation energy required to overcome a barrier to the
reaction progress in converting substrate to product. The product release and high turnover
number would not be possible without prior productive substrate capture. In an older,
insightful paper, Northrop proposed [101] that evolution favors increasing both capture
and release in a constant ratio. Enzymes’ efficiency depends on their ability to lower energy
barriers for and after substrate binding in the reaction energy diagram. The kcat/Km can
be regarded as a capture constant with a visual interpretation in the activation energy
diagram [50,101,102]. In some of the cases that we studied, the enzyme specificity constant
kcat/Km governs the height of the highest barrier in the free-energy profile (see [102]
and Figure 6C from Johnson’s publication [50]). Lowering the activation energy barriers
increases the net flux J in the forward direction even when high positive affinity does not
change. Thus, the overall dissipation must also increase. We can verify from the data in
Table 1 and Figure 2B that the (kcat/Km, ϕ/RT) points are close to the regression line for
X/RT values around 10 and higher than 10.

4.3. Does the Sublinear Scaling Law for Enzymes Point Toward the Origin of Kleiber’s Law?

Figure 2B shows that the dissipation rate of enzymes, expressed as dissipation/RT, is
proportional to their catalytic efficiency raised to a power of 0.73. This finding resembles
the scaling law proposed by Max Kleiber nearly a century ago [59,103]. Kleiber concluded
that “the mean, standard metabolic rate of mammals amounts to 70 times the 3/4 power
of their body weight [103]”. The similarity between the exponents (0.73 and 0.75) may
be purely coincidental. Furthermore, other scientists have rediscovered scaling laws in
species and ecological systems not considered by Max Kleiber, raising questions about
the universality of Kleiber’s law [104–106]. The superlinear scaling in prokaryotes [107]
further challenges the notion of a universal allometric dependence with the exponent 2/3
or 3/4 [108].

The question of the origin of Kleiber’s law has a complex history [109,110]. Enzymes
are crucial because neither body mass nor the associated metabolic rate would be possible
without their activity. We can consider dissipation as a substitute for metabolic rate, while
enzyme efficiency serves as the fundamental cause of organic mass accumulation. For
example, the efficient enzymes found in E. coli bacteria facilitate rapid nutrient assimilation
and conversion into biomass, promoting fast growth in nutrient-rich environments. How-
ever, in animals, bioenergetics and body heat dissipation processes are primarily driven
by the work of mitochondrial membrane enzymes [111] rather than the mostly soluble
enzymes discussed in this paper. Establishing a scaling law between dissipation and the
effective accumulation of organic compounds during respiration or photosynthesis remains
challenging, mainly due to the more complex kinetics of membrane enzymes.

Still, for the present database of 58 reactions, statistical analysis indicated the dissipa-
tion and the turnover number kcat scales in a nearly linear manner, while the dissipation
and enzyme efficiency kcat/Km scale as the power-law sublinear function y = 0.015·x0.73

(Figure 2B). The robustness of the exponent estimate at 0.73 for the dependence of dis-
sipation on enzyme efficiency stems from a reasonably narrow 95% confidence interval
(0.67–0.80) after re-sampling the data. The proposed sublinear scaling law between dis-
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sipation and the catalytic efficiency of enzymes encompasses Bacteria and Archaea as
the majority and the Eukaryota domain as a minority among the considered species (see
Dataset S1 in the Supplementary Materials). Thus, discovering a unifying principle in
metabolism already at the level of enzymes is a challenge that this contribution initiated for
the case of soluble enzymes with a most straightforward uni-uni catalytic mechanism.

4.4. Did We Gain Additional Insight into the Proposal That Specialized Enzymes Evolved from
Primitive Generalist Enzymes?

The next question for discussion is the relevance of the presented results to Jensen’s
proposal [46], which states that specialized enzymes evolved from primitive generalist
enzymes. Jensen and most other authors exploring his hypothesis considered biological
evolution to be separate from universal thermodynamic evolution. In this paper, we have
adopted the perspective that biological evolution harnessed, regulated, and enhanced
thermodynamic evolution whenever possible to create new dissipation channels and flows.
Only one generalist enzyme exists among the 30 enzyme-catalyzed reactions with the
highest dissipation (Dataset S1). In contrast, 7 of the 28 low-dissipation reactions involve
bifunctional or generalist enzymes. A statistically significant likelihood is that specialized
enzymes are associated with higher dissipation rates. Notably, primitive generalist enzymes
do not exist anywhere in the current biosphere. Most enzymes in present-day cells are
specialized, with a smaller proportion being promiscuous or multifunctional. In conclusion,
our findings (Table 1, Figure 2, and Dataset S1 in the Supplementary Materials) indicate
that higher dissipation rates distinguish specialized from generalist enzymes.

The specific examples of generalist and specialized variants derived from the same
enzyme provide a basis for testing the proposed physical extension of Jensen’s hypothe-
sis. To investigate this, we compared the dissipation allocation between specialized and
generalist kynureninase variants [47]. The specialized mutant exhibited approximately
twice the total dissipation compared to the generalist mutant enzyme (see Figure 3). Even
after adjusting the concentrations to create the same driving force for both mutants, the
specialized variant still showed higher dissipation (see the Supplementary Materials).
Additionally, we observed a consistent trend of increased dissipation and improved per-
formance parameters in evolutionarily related specialized enzymes, as illustrated by the
more advanced β-lactamase enzymes (see Figures 4 and 5). This increase in dissipation and
efficiency may be typical of specialized orthologous enzymes with greater evolutionary
distance from a common ancestor. Similarly, for Escherichia coli β-galactosidase, other
researchers [99] concluded that a more efficient enzyme is associated with higher total
dissipation. However, their study only examined three combinations of microscopic rate
constants within a two-state kinetic model. A reader skilled in phylogenetic analysis could
explore the relationships (evolutionary distances) among the cyclophilin family members
CypA, CypB, CypC, and GeoCyp (see [78]). All other data for finding possible trends with
dissipation and performance parameters are already in Table 1.

4.5. Simulating the Effect of Stochastic Noise

We generated substantial additional synthetic data by simulating the impact of stochas-
tic noise on microscopic rate constants. When we uniformly accelerated the process for all
catalytic steps (forward variations), we observed nearly perfect proportionality between
kinetic performance and dissipation across all reactions (see the Supplementary Materials).
Under the same fixed force constraint, while allowing for variations in compensatory
substrate–enzyme associations and enzyme–product dissociations (trade-off variations),
we found that enzyme efficiency exceeded the experimental observations for 41% of reac-
tions, and the catalytic constant was higher for 59% of reactions. However, in our dataset
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of 58 enzyme-catalyzed reactions, there was no case where our maximum dissipation
requirement improved both optimal enzyme performance parameters: kcat and kcat/Km.

Figure 3A,C present examples of simulations for kynureninase variants [47], referred
to as “forward variations”. We also utilized these variants to demonstrate the impact of
maximum entropy production requirements on potential steady states, known as trade-
off simulations (see Figure 3B,D). The generalist mutant exhibits a higher potential for
evolvability regarding catalytic efficiency, as shown in Figure 3A,B. Specifically, these
simulations help identify significantly higher optimal enzyme efficiency (as illustrated
in Figure 3B for the generalist mutant) or slightly lower optimal enzyme efficiency (as
shown in Figure 3D for the specialized variant) than the observed values. Both scenarios
are associated with a slight increase in dissipation relative to the observed measurements.

The theoretical possibility of improving enzyme performance parameters by increas-
ing overall dissipation requires experimental verification. There were no attempts to direct
the evolution of enzymes toward higher or maximal dissipation. Laboratory-evolved
enzymes [112] and coupled enzyme systems can incorporate hard-to-predict mutations and
novel functions by artificial selection for higher dissipation, as measured by microcalorime-
try. Table 2 enumerates predicted fold changes (regarding observed values) in the turnover
number and enzyme efficiency in trade-off simulations for the maximum dissipation.

4.6. Comparison with Earlier Simulations

Earlier simulations, called “fixed-forward-product” simulations, were designed to find
the maximum total entropy production in cyclic enzyme catalysis and operated under dif-
ferent constraints [113,114]. One key requirement of these simulations was that the product
of all forward kinetic constants ki was fixed to its observed value. This approach also led to
maximal ϕ and optimal performance parameters. However, the maximal ϕ and optimal
parameters derived from these simulations can often be significantly smaller than the dissi-
pation, kcat, and kcat/Km values calculated using the observed values for the microscopic
kinetic constants (see references [16,19] for examples using PC1 β-lactamase parameters).

Typically, the fixed-forward-product simulations result in an unrealistic distribution
of state probabilities across each conformational state and an equal allocation of dissipation
among each conformational transition. However, the partial entropy productions associated
with transitions between enzyme functional states are unequal when the goal is flux
maximization [55]. Forcing the enzyme to have a similar steady-state probability for all
functional states and an equal dissipation allocation to each catalytic step can destroy its
biological function [114].

Each transition can be optimized using our theorem for maximal partial entropy
production [17,18]. We introduced maximal-partial-dissipation simulations, which have a
significant advantage: our research over the past 20 years has shown that these simulations
yield higher-than-observed performance parameters and total dissipation in each enzyme-
catalyzed reaction that we examined. Examples can be found in reference [17]. Verification
for the 58 reactions discussed here is beyond the scope of this contribution.

4.7. The Support for the “Evolution-Coupling Hypothesis”

To connect all of the threads, we can explore the unforeseen benefits that arose from our
focus on dissipative free-energy channeling involving 51 enzymes from various kingdoms
of life. These enzymes enable downstream processes that partially convert free energy into
biological power. Although these enzymes do not collectively form any known metabolic
network, we have identified an unexpected link between catalytic performance parameters
and their associated dissipation. This connection stems from the enzymes’ ability to open
specific dissipation channels.
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We propose that these enzymes are products of both biological evolution and universal
thermodynamic evolution. They occupy an essential position in the hierarchy of free-
energy harvesting, channeling energy to meet cellular needs, and releasing dissipation
to the environment to maintain temporary homeostasis and the necessary time lag for
realizing growth potential. Their activity accelerates the thermodynamic evolution of
the environment.

As biological evolution has advanced over the ages, it has favored the emergence of
increasingly complex organisms that could retain captured free energy for longer dura-
tions [30]. Extending the time lag for reproduction did not inhibit the increase of entropy
production in the environment beyond what would occur without mature species. For
instance, our Table 1 and Dataset S1 include examples of mammalian enzymes that are
as proficient at dissipating energy as the best bacterial enzymes. Furthermore, cases of
enzymes showing modest or low performance and dissipation highlight the significant
roles of regulation and dynamic kinetic stability in understanding biological evolution,
provided that thermodynamic constraints are met [115,116].

The evolution of chemistry to life may occur in favorable circumstances beyond Earth,
but not without being powered by the dissipation of available gradients [117]. For instance,
harnessing and dissipating the geochemical chemiosmotic potential is how life may have
originated at submarine hydrothermal vents [118]. The present contribution supports
the “evolution-coupling” hypothesis, which posits a link between thermodynamic and
biological evolution [14,119].

The synergy between thermodynamic and biological evolution is one possible expla-
nation for why enzyme performance parameters are related to overall dissipation. It is
attractive because of nature’s spontaneous tendency to dissipate force gradients whenever
barriers decrease or vanish for corresponding flows. The cyclical activity is essential to
most enzymes, as reflected in the name of the turnover number. It takes place at room
temperature in a highly dissipative environment. Various biological evolutionary pressures
can influence enzyme performance but cannot eliminate dissipation, except in the quantum
realm. If thermodynamic evolution does not exist, that would eliminate the evolution-
coupling hypothesis, but not dissipation due to the movements of electrons, protons, atoms,
water molecules, and protein loops within the protein microenvironment. Such movements
are essential for conformational and chemical changes after substrate capture. They are
not random and cannot be divorced from evolutionary advances. Specifically, we propose
that the increase in coupled catalytic efficiency and entropy production is fundamental to
the evolution of enzymes. A broader perspective highlights the crucial role of dissipating
available free-energy gradients in the least time as both a cause and a consequence of life.

5. Conclusions
Enzymes play a crucial role in the metabolism of all living cells. Internal entropy

production and exported dissipation are key indicators of enzymatic catalytic activity.
Calculating the steady-state entropy production for any enzyme is straightforward if all
of the relevant microscopic rate constants and concentrations are known. We compiled a
database of enzymes that includes important kinetic and thermodynamic performance pa-
rameters, and we examined their relationships. Our research revealed that the performance
of enzymes increases alongside their dissipation. The most advanced forms —often called
“perfect” or “highly specialized” enzymes—are associated with the highest dissipation
levels. These findings suggest a synergy between thermodynamic and biological evolution,
highlighting its significance in biology, especially when living systems are not artificially
isolated from their environments.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/e27040365/s1. Dataset S1: names of corresponding source codes
for simulating each of the 58 enzyme-catalyzed reactions and the data needed to construct figures.
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14. Juretić, D.; Županović, P. The free-energy transduction and entropy production in initial photosynthetic reactions. In Non-

Equilibrium Thermodynamics and the Production of Entropy; Kleidon, A., Lorenz, R.D., Eds.; Springer: Berlin, Germany, 2005; pp.
161–171. [CrossRef]
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49. Bonačić Lošić, Ž.; Dond̄ivić, T.; Juretić, D. Is the catalytic activity of triosephosphate isomerase fully optimized? An investigation

based on maximization of entropy production. J. Biol. Phys. 2017, 43, 69–86. [CrossRef] [PubMed]
50. Johnson, K.A. New standards for collecting and fitting steady state kinetic data. Beilstein J. Org. Chem. 2019, 15, 16–29. [CrossRef]

[PubMed]
51. Sica, L.; Gilli, R.; Briand, C.; Sari, J.C. A flow microcalorimetric method for enzyme activity measurements: Application to

dihydrofolate reductase. Anal. Biochem. 1987, 165, 341–348. [CrossRef] [PubMed]
52. Todd, M.J.; Gomez, J. Enzyme kinetics determined using calorimetry: A general assay for enzyme activity? Anal. Biochem. 2001,

296, 179–187. [CrossRef]
53. Riedel, C.; Gabizon, R.; Wilson, C.A.M.; Hamadani, K.; Tsekouras, K.; Marqusee, S.; Pressé, S.; Bustamante, C. The heat released

during catalytic turnover enhances the diffusion of an enzyme. Nature 2015, 517, 227–230. [CrossRef]
54. Das, B.; Banerjee, K.; Gangopadhyay, G. Propensity approach to nonequilibrium thermodynamics of a chemical reaction network:

Controlling single E. coli β-galactosidase enzyme catalysis through the elementary reaction steps. J. Chem. Phys. 2013, 139, 244104.
[CrossRef]

55. Brown, A.I.; Sivak, D.A. Allocating dissipation across a molecular machine cycle to maximize flux. Proc. Natl. Acad. Sci. USA
2017, 114, 11057–11062. [CrossRef]

56. Wagoner, J.A.; Dill, K.A. Opposing Pressures of Speed and Efficiency Guide the Evolution of Molecular Machines. Mol. Biol. Evol.
2019, 36, 2813–2822. [CrossRef]

57. Niebel, B.; Leupold, S.; Heinemann, M. An upper limit on Gibbs energy dissipation governs cellular metabolism. Nat. Metab.
2019, 1, 125–132. [CrossRef]

https://doi.org/10.1016/0895-7177(94)90188-0
https://doi.org/10.1017/s0033583500000615
https://doi.org/10.1111/j.1467-9744.1984.tb00943.x
https://doi.org/10.1063/1.5037045
https://www.ncbi.nlm.nih.gov/pubmed/29907050
https://doi.org/10.1098/rspb.1987.0067
https://doi.org/10.1016/0302-4598(84)85125-9
https://doi.org/10.1002/cplx.20323
https://doi.org/10.1002/cplx.20373
https://doi.org/10.1016/S0969-2126(00)00125-8
https://doi.org/10.1021/acs.biochem.8b01004
https://doi.org/10.1073/pnas.2011350117
https://doi.org/10.1038/nchem.1223
https://doi.org/10.1021/jacs.8b10836
https://www.ncbi.nlm.nih.gov/pubmed/30703322
https://doi.org/10.1038/nchembio759
https://www.ncbi.nlm.nih.gov/pubmed/16415859
https://doi.org/10.1140/epje/i2011-11026-7
https://www.ncbi.nlm.nih.gov/pubmed/21400047
https://doi.org/10.1021/acs.accounts.8b00253
https://doi.org/10.1063/5.0180417
https://doi.org/10.1016/j.bpc.2004.12.001
https://doi.org/10.1515/jnetdy.2010.024
https://doi.org/10.1146/annurev.mi.30.100176.002205
https://doi.org/10.1038/s41467-024-51133-y
https://doi.org/10.1016/j.compbiolchem.2003.09.001
https://doi.org/10.1007/s10867-016-9434-3
https://www.ncbi.nlm.nih.gov/pubmed/28050739
https://doi.org/10.3762/bjoc.15.2
https://www.ncbi.nlm.nih.gov/pubmed/30680035
https://doi.org/10.1016/0003-2697(87)90279-X
https://www.ncbi.nlm.nih.gov/pubmed/3425903
https://doi.org/10.1006/abio.2001.5218
https://doi.org/10.1038/nature14043
https://doi.org/10.1063/1.4844195
https://doi.org/10.1073/pnas.1707534114
https://doi.org/10.1093/molbev/msz190
https://doi.org/10.1038/s42255-018-0006-7


Entropy 2025, 27, 365 28 of 30

58. Bar-Even, A.; Noor, E.; Savir, Y.; Liebermeister, W.; Davidi, D.; Tawfik, D.S.; Milo, R. The moderately efficient enzyme: Evolutionary
and physicochemical trends shaping enzyme parameters. Biochemistry 2011, 50, 4402–4410. [CrossRef]

59. Kleiber, M. Body size and metabolism. Hilgardia 1932, 6, 315–353. [CrossRef]
60. Albery, W.J.; Knowles, J.R. Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 1976, 15,

5631–5640. [CrossRef] [PubMed]
61. Newton, M.S.; Arcus, V.L.; Patrick, W.M. Rapid bursts and slow declines: On the possible evolutionary trajectories of enzymes. J.

R. Soc. Interface 2015, 12, 20150036. [CrossRef] [PubMed]
62. Wilhelm, T.; Hoffmann-Klipp, E.; Heinrich, R. An evolutionary approach to enzyme kinetics: Optimization of ordered mechanisms.

Bull. Math. Biol. 1994, 56, 65–106.
63. Heinrich, R.; Schuster, S.; Holzhutter, H.-G. Mathematical analysis of enzymic reaction systems using optimmization principles.

Eur. J. Biochem. 1991, 201, 1–21. [CrossRef]
64. Toney, M.D. Common Enzymological Experiments Allow Free Energy Profile Determination. Biochemistry 2013, 52, 5952–5965.

[CrossRef]
65. Box, G.E.P.; Muller, M.E. A note on the generation of random normal deviates. Ann. Math. Stat. 1958, 29, 610–611. [CrossRef]
66. Behravan, G.; Jonsson, B.H.; Lindskog, S. Fine tuning of the catalytic properties of carbonic anhydrase. Studies of a Thr200→His

variant of human isoenzyme II. Eur. J. Biochem. 1990, 190, 351–357. [CrossRef]
67. Toney, M.D. Carbon Acidity in Enzyme Active Sites. Front. Bioeng. Biotechnol. 2019, 7, 25. [CrossRef]
68. Zyryanov, A.B.; Vener, A.V.; Salminen, A.; Goldman, A.; Lahti, R.; Baykov, A.A. Rates of elementary catalytic steps for different

metal forms of the family II pyrophosphatase from Streptococcus gordonii. Biochemistry 2004, 43, 1065–1074. [CrossRef]
69. McIntyre, L.M.; Thorburn, D.R.; Bubb, W.A.; Kuchel, P.W. Comparison of computer simulations of the F-type and L-type

non-oxidative hexose monophosphate shunts with 31P-NMR experimental data from human erythrocytes. Eur. J. Biochem. 1989,
180, 399–420. [CrossRef] [PubMed]

70. Käpylä, J.; Hyytiä, T.; Lahti, R.; Goldman, A.; Baykov, A.A.; Cooperman, B.S. Effect of D97E substitution on the kinetic and
thermodynamic properties of Escherichia coli inorganic pyrophosphatase. Biochemistry 1995, 34, 792–800. [CrossRef] [PubMed]

71. Cooperman, B.S.; Baykov, A.A.; Lahti, R. Evolutionary conservation of the active site of soluble inorganic pyrophosphatase.
Trends Biochem. Sci. 1992, 17, 262–266. [CrossRef] [PubMed]

72. St Maurice, M.; Bearne, S.L. Kinetics and thermodynamics of mandelate racemase catalysis. Biochemistry 2002, 41, 4048–4058.
[CrossRef]

73. Darvey, I.G.; Shrager, R.; Kohn, L.D. Integrated steady state rate equations and the determination of individual rate constants. J.
Biol. Chem. 1975, 250, 4696–4701. [CrossRef]

74. Zawrotny, M.E.; Pollack, R.M. Reaction energetics of a mutant 3-oxo-delta 5-steroid isomerase with an altered active site base
(D38E). Biochemistry 1994, 33, 13896–13902. [CrossRef]

75. Hwang, W.; Hyeon, C. Quantifying the Heat Dissipation from a Molecular Motor’s Transport Properties in Nonequilibrium
Steady States. J. Phys. Chem. Lett. 2017, 8, 250–256. [CrossRef]

76. Fraser, H.I.; Kvaratskhelia, M.; White, M.F. The two analogous phosphoglycerate mutases of Escherichia coli. FEBS Lett. 1999, 455,
344–348. [CrossRef]

77. Mattei, P.; Kast, P.; Hilvert, D. Bacillus subtilis chorismate mutase is partially diffusion-controlled. Eur. J. Biochem. 1999, 261, 25–32.
[CrossRef]

78. Holliday, M.J.; Armstrong, G.S.; Eisenmesser, E.Z. Determination of the Full Catalytic Cycle among Multiple Cyclophilin Family
Members and Limitations on the Application of CPMG-RD in Reversible Catalytic Systems. Biochemistry 2015, 54, 5815–5827.
[CrossRef]

79. Mutaguchi, Y.; Ohmori, T.; Wakamatsu, T.; Doi, K.; Ohshima, T. Identification, purification, and characterization of a novel amino
acid racemase, isoleucine 2-epimerase, from Lactobacillus species. J. Bacteriol. 2013, 195, 5207–5215. [CrossRef] [PubMed]

80. Kim, H.J.; Yeom, S.J.; Kim, K.; Rhee, S.; Kim, D.; Oh, D.K. Mutational analysis of the active site residues of a D-psicose 3-epimerase
from Agrobacterium tumefaciens. Biotechnol. Lett. 2010, 32, 261–268. [CrossRef] [PubMed]

81. Pozo-Dengra, J.; Martínez-Gómez, A.I.; Martínez-Rodríguez, S.; Clemente-Jiménez, J.M.; Rodríguez-Vico, F.; Las Heras-Vázquez,
F.J. Racemization study on different N-acetylamino acids by a recombinant N-succinylamino acid racemase from Geobacillus
kaustophilus CECT4264. Process Biochem. 2009, 44, 835–841. [CrossRef]

82. Mehboob, S.; Guo, L.; Fu, W.; Mittal, A.; Yau, T.; Truong, K.; Johlfs, M.; Long, F.; Fung, L.W.-M.; Johnson, M.E. Glutamate racemase
dimerization inhibits dynamic conformational flexibility and reduces catalytic rates. Biochemistry 2009, 48, 7045–7055. [CrossRef]

83. Watanabe, S.; Tanimoto, Y.; Nishiwaki, H.; Watanabe, Y. Identification and characterization of bifunctional proline race-
mase/hydroxyproline epimerase from archaea: Discrimination of substrates and molecular evolution. PLoS ONE 2015, 10,
e0120349. [CrossRef]

84. Kato, S.; Hemmi, H.; Yoshimura, T. Lysine racemase from a lactic acid bacterium, Oenococcus oeni: Structural basis of substrate
specificity. J. Biochem. 2012, 152, 505–508. [CrossRef]

https://doi.org/10.1021/bi2002289
https://doi.org/10.3733/hilg.v06n11p315
https://doi.org/10.1021/bi00670a032
https://www.ncbi.nlm.nih.gov/pubmed/999839
https://doi.org/10.1098/rsif.2015.0036
https://www.ncbi.nlm.nih.gov/pubmed/25926697
https://doi.org/10.1111/j.1432-1033.1991.tb16251.x
https://doi.org/10.1021/bi400696j
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1111/j.1432-1033.1990.tb15582.x
https://doi.org/10.3389/fbioe.2019.00025
https://doi.org/10.1021/bi0357513
https://doi.org/10.1111/j.1432-1033.1989.tb14662.x
https://www.ncbi.nlm.nih.gov/pubmed/2924774
https://doi.org/10.1021/bi00003a012
https://www.ncbi.nlm.nih.gov/pubmed/7827038
https://doi.org/10.1016/0968-0004(92)90406-Y
https://www.ncbi.nlm.nih.gov/pubmed/1323891
https://doi.org/10.1021/bi016044h
https://doi.org/10.1016/S0021-9258(19)41357-4
https://doi.org/10.1021/bi00250a044
https://doi.org/10.1021/acs.jpclett.6b02657
https://doi.org/10.1016/s0014-5793(99)00910-2
https://doi.org/10.1046/j.1432-1327.1999.00169.x
https://doi.org/10.1021/acs.biochem.5b00746
https://doi.org/10.1128/JB.00709-13
https://www.ncbi.nlm.nih.gov/pubmed/24039265
https://doi.org/10.1007/s10529-009-0148-5
https://www.ncbi.nlm.nih.gov/pubmed/19859667
https://doi.org/10.1016/j.procbio.2009.03.020
https://doi.org/10.1021/bi9005072
https://doi.org/10.1371/journal.pone.0120349
https://doi.org/10.1093/jb/mvs120


Entropy 2025, 27, 365 29 of 30

85. Liu, C.-Y.; Severin, L.C.; Lyu, C.-J.; Zhu, W.-L.; Wang, H.-P.; Jiang, C.-J.; Mei, L.-H.; Liu, H.-G.; Huang, J. Improving thermostability
of (R)-selective amine transaminase from Aspergillus terreus by evolutionary coupling saturation mutagenesis. Biochem. Eng. J.
2021, 167, 107926. [CrossRef]

86. Miyamoto, T.; Moriya, T.; Katane, M.; Saitoh, Y.; Sekine, M.; Sakai-Kato, K.; Oshima, T.; Homma, H. Identification of a novel
D-amino acid aminotransferase involved in D-glutamate biosynthetic pathways in the hyperthermophile Thermotoga maritime.
FEBS J. 2022, 289, 5933–5946. [CrossRef]

87. Yaneva, N.; Schuster, J.; Schäfer, F.; Lede, V.; Przybylski, D.; Paproth, T.; Harms, H.; Müller, R.H.; Rohwerder, T. Bacterial acyl-CoA
mutase specifically catalyzes coenzyme B12-dependent isomerization of 2-hydroxyisobutyryl-CoA and (S)-3-hydroxybutyryl-CoA.
J. Biol. Chem. 2012, 287, 15502–15511. [CrossRef]

88. Gogami, Y.; Kobayashi, A.; Ikeuchi, T.; Oikawa, T. Site-directed mutagenesis of rice serine racemase: Evidence that Glu219 and
Asp225 mediate the effects of Mg2+ on the activity. Chem. Biodivers. 2010, 7, 1579–1590. [CrossRef]

89. Christenson, S.D.; Wu, W.; Spies, M.A.; Shen, B.; Toney, M.D. Kinetic analysis of the 4-methylideneimidazole-5-one-containing
tyrosine aminomutase in enediyne antitumor antibiotic C-1027 biosynthesis. Biochemistry 2003, 42, 12708–12718. [CrossRef]
[PubMed]

90. Converti, A.; Borghi, M.D. Kinetics of glucose isomerization to fructose by immobilized glucose isomerase in the presence of
substrate protection. Bioprocess Eng. 1998, 18, 27–33. [CrossRef]

91. Gaily, M.H.; Sulieman, A.K.; Abasaeed, A.E. Kinetics of a three-step isomerization of glucose to fructose using immobilized
enzyme. Int. J. Chem. Eng. Appl. 2013, 4, 31–34. [CrossRef]

92. Schomburg, I.; Jeske, L.; Ulbrich, M.; Placzek, S.; Chang, A.; Schomburg, D. The BRENDA enzyme information system-From a
database to an expert system. J. Biotechnol. 2017, 261, 194–206. [CrossRef]

93. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol.
Evol. 2016, 33, 1870–1874. [CrossRef]

94. Ambler, R.P. The structure of β-lactamases. Philos. Trans. R Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [CrossRef]
95. Hussain, M.; Pastor, F.I.; Lampen, J.O. Cloning and sequencing of the blaZ gene encoding beta-lactamase III, a lipoprotein of

Bacillus cereus 569/H. J. Bacteriol. 1987, 169, 579–586. [CrossRef]
96. Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl.

Biosci. 1992, 8, 275–282. [CrossRef]
97. Christensen, H.; Martin, M.T.; Waley, G. β-lactamases as fully efficient enzymes. Determination of all the rate constants in the

acyl-enzyme mechanism. Biochem. J. 1990, 266, 853–861. [CrossRef]
98. Williams, D.L.; Sikora, V.M.; Hammer, M.A.; Amin, S.; Brinjikji, T.; Brumley, E.K.; Burrows, C.J.; Carrillo, P.M.; Cromer, K.;

Edwards, S.J.; et al. May the Odds Be Ever in Your Favor: Non-deterministic Mechanisms Diversifying Cell Surface Molecule
Expression. Front. Cell Dev. Biol. 2022, 9, 720798. [CrossRef]

99. Banerjee, K.; Bhattacharyya, K. States with identical steady dissipation rate in reaction networks: A nonequilibrium thermody-
namic insight in enzyme efficiency. Chem. Phys. 2014, 438, 1–6. [CrossRef]

100. Agarwal, P.K. Role of protein dynamics in reaction rate enhancement by enzymes. J. Am. Chem. Soc. 2005, 127, 15248–15256.
[CrossRef] [PubMed]

101. Northrop, D.B. On the Meaning of Km and V/K in Enzyme Kinetics. J. Chem. Educ. 1998, 75, 1153–1157. [CrossRef]
102. Park, C. Visual Interpretation of the Meaning of kcat/KM in Enzyme Kinetics. J. Chem. Educ. 2022, 99, 2556–2562. [CrossRef]
103. Kleiber, M. Body size and metabolic rate. Physiol. Rev. 1947, 27, 511–541. [CrossRef]
104. White, C.R.; Blackburn, T.M.; Seymour, R.S. Phylogenetically informed analysis of the allometry of mammalian basal metabolic

rate supports neither geometric nor quarter-power scaling. Evolution 2009, 63, 2658–2667. [CrossRef]
105. Hulbert, A.J. A Sceptics View: “Kleiber’s Law” or the “3/4 Rule” is neither a Law nor a Rule but Rather an Empirical Approxima-

tion. Systems 2014, 2, 186–202. [CrossRef]
106. Niklas, K.J.; Kutschera, U. Kleiber’s Law: How the Fire of Life ignited debate, fueled theory, and neglected plants as model

organisms. Plant Signal. Behav. 2015, 10, e1036216. [CrossRef]
107. DeLong, J.P.; Okie, J.G.; Moses, M.E.; Sibly, R.M.; Brown, J.H. Shifts in metabolic scaling, production, and efficiency across major

evolutionary transitions of life. Proc. Natl. Acad. Sci. USA 2010, 107, 12941–12945. [CrossRef]
108. Makarieva, A.M.; Gorshkov, V.G.; Li, B.-L.; Chown, S.L.; Reich, P.B.; Gavrilov, V.M. Mean mass-specific metabolic rates are

strikingly similar across life’s major domains: Evidence for life’s metabolic optimum. Proc. Natl. Acad. Sci. USA 2008, 105,
16994–16999. [CrossRef]

109. West, G.B.; Brown, J.H.; Enquist, B.J. A general model for the origin of allometric scaling laws in biology. Science 1997, 276,
122–126. [CrossRef] [PubMed]

110. Banavar, J.R.; Cooke, T.J.; Rinaldo, A.; Maritan, A. Form, function, and evolution of living organisms. Proc. Natl. Acad. Sci. USA
2014, 111, 3332–3337. [CrossRef] [PubMed]

https://doi.org/10.1016/j.bej.2021.107926
https://doi.org/10.1111/febs.16452
https://doi.org/10.1074/jbc.M111.314690
https://doi.org/10.1002/cbdv.200900257
https://doi.org/10.1021/bi035223r
https://www.ncbi.nlm.nih.gov/pubmed/14580219
https://doi.org/10.1007/s004490050406
https://doi.org/10.7763/IJCEA.2013.V4.255
https://doi.org/10.1016/j.jbiotec.2017.04.020
https://doi.org/10.1093/molbev/msw054
https://doi.org/10.1098/rstb.1980.0049
https://doi.org/10.1128/jb.169.2.579-586.1987
https://doi.org/10.1093/bioinformatics/8.3.275
https://doi.org/10.1042/bj2680808a
https://doi.org/10.3389/fcell.2021.720798
https://doi.org/10.1016/j.chemphys.2014.04.007
https://doi.org/10.1021/ja055251s
https://www.ncbi.nlm.nih.gov/pubmed/16248667
https://doi.org/10.1021/ed075p1153
https://doi.org/10.1021/acs.jchemed.1c01268
https://doi.org/10.1152/physrev.1947.27.4.511
https://doi.org/10.1111/j.1558-5646.2009.00747.x
https://doi.org/10.3390/systems2020186
https://doi.org/10.1080/15592324.2015.1036216
https://doi.org/10.1073/pnas.1007783107
https://doi.org/10.1073/pnas.0802148105
https://doi.org/10.1126/science.276.5309.122
https://www.ncbi.nlm.nih.gov/pubmed/9082983
https://doi.org/10.1073/pnas.1401336111
https://www.ncbi.nlm.nih.gov/pubmed/24550479


Entropy 2025, 27, 365 30 of 30

111. Nath, S. Size matters in metabolic scaling: Critical role of the thermodynamic efficiency of ATP synthesis and its dependence on
mitochondrial H+ leak across mammalian species. Biosystems 2024, 242, 105255. [CrossRef] [PubMed]

112. Arnold, F.H. Directed Evolution: Bringing New Chemistry to Life. Angew. Chem. Int. Ed. Engl. 2018, 57, 4143–4148. [CrossRef]
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