
May 1997 Draft of the ASM Guide

Yuri Gurevich

Abstract

This is only a draft of a portion of the ASM guide, but there are no plans

to change this part in any substantial way, only to augment it.

Contents

� Introduction (to be written)

� States

� Actions

� Basic Rules

� Shortcuts

� First-order extensions

� Nondeterministic Basic Rules

� Etc.

1

1 States

What mathematical objects are needed to describe arbitrary states of arbitrary algo-
rithms on their natural abstraction levels? Is there one kind of mathematical objects
su�cient for the job? Mathematical logic o�ers us a good candidate: structures. The
notion of structure was introduced in [Tarski 1936] and quickly became standard.
Experience con�rms the suitability of structures.

For the use of structure in dynamic situations, a slight modi�cation of the notion
of structure is convenient. Modi�ed structures will be called states.

Remark for logicians. Tarski structures may be called one-sorted �rst-order struc-
tures. It is well known, however, that many-sorted and/or higher-order structures are
naturally represented by Tarski structures. For example, a topological space can be
represented as a Tarski structure with subuniverses Points, PointSets, the binary rela-
tion 2 and a unary relation Open over PointSets. In states, such subuniverses will be
called universes. Accordingly, the base set of the state may be called a superuniverse.
2

1.1 Vocabularies

A vocabulary is a �nite collection of function names, each of a �xed arity. Some
function names may be marked as relational or static, or both. Relational names
may be called predicates. In this guide, the Greek letter � is reserved to denote
vocabularies, and function names are by default non-relational (that is, if we introduce
a function name and do not say explicitly that it is relational, then it is not relational).

Every vocabulary contains the following logic names: the equality sign, nullary
function names true, false, undef , unary predicate Boole and the names of the usual
Boolean operations. All logic names are static. With the exception of undef , all logic
names are relational. We forgo the precise syntax of function names here.

Examples 1. A vocabulary for oriented trees: a unary predicate Nodes and unary
function names Parent, FirstChild and NextSibling.

2. A vocabulary for pointed oriented trees, that is oriented trees with a distin-
guished node. Add a nullary function name C (an allusion to Current Node) to the
tree vocabulary.

3. A vocabulary for (string) labeled oriented trees. Add the following names to
the oriented tree vocabulary: a unary predicate Strings and a unary function Label.

4. Combine 2 and 3 to get a vocabulary for pointed labeled oriented trees. 2

2

1.2 Terms

Another syntactic category is variables which has a syntactic subcategory of Boolean
variables; we forgo the precise syntax of variables as well. Terms are de�ned recur-
sively, as in �rst-order logic. We use the same recursion to de�ne Boolean terms.

� A variable is a term. If the variable is Boolean, then the term is Boolean.

� If f is a function name of arity r and t1; : : : ; tr are terms, then f(t1; : : : ; tr) is a
term. If f is relational than the composed term is Boolean.

Remark. In the second clause, r may be zero. A pedantic question arises whether
one should write f or f() in that case. Both are admissible. We use the shorter
version.

Examples Here are several Boolean terms in the vocabulary of pointed oriented
trees. The intended meaning should be clear:

Parent(C) = undef

FirstChild(C) = undef

NextSibling(C) = undef

Parent(FirstChild(C)) = C

Parent(C) = Parent(NextSibling(C))

1.3 States

A state A of vocabulary � = Voc(A) is a nonempty set X together with interpre-
tations of the function names in � on X. The set X is called the base set or supe-
runiverse of A; it will be denoted BaseSet(A). An r-ary function name is interpreted
as a function from Xr to X, a basic function of A. In particular, a nullary name is
interpreted as an element of X. There are some constraints on the interpretations.

� true; false; undef . The interpretations of these three names are distinct. We
will not distinguish between these three names and their interpretations.

� Predicates. The interpretation of an r-ary predicate P is a function from Xr

to ftrue; falseg, a basic relation of A. Think about a basic relation P as the
collection of r-tuples �a such that P (�a) = true . If relation P is unary it can be
viewed as a universe.

� Boole and Boolean operations. Boole is the universe ftrue; falseg. The Boolean
operations behave in the usual way on Boole and produce false if at least one of
the arguments is not Boolean. The equality sign is interpreted as the identity
relation on X.

3

Terminological remark. Elements of X will also be called elements of A.

Remark on the Boolean terms. If a Boolean term t evaluates to the element true
at a state A, we say that t holds at A and that A satis�es t; symbolically A j= t. If t
evaluates to false, we say that t fails at A.

Remark on the role of undef . Formally speaking, basic functions are total. How-
ever, we view them as being partial and de�ne the domain Dom(f) of an r-ary basic
function f as the set of r-tuples �x such that f(�x) 6= undef . Let us stress though that
undef is an ordinary element of the superuniverse. Often, a basic function produces
undef if at least one argument equals undef , but this is not required and there are
exceptions, for example, the equality produces true at (undef ; undef). As a rule,
undef is not included in universes.

Example An oriented tree with n nodes gives rise to a state with n + 3 ele-
ments. In addition to n nodes, the base set contains the obligatory logic elements
true; false; undef . The universe Nodes contains the n nodes and does not contain the
logic elements. 2

1.4 The reserve of a state

Many algorithms require additional space as they run. In the abstract setting, this
seems to mean that the state acquires new elements. It may be more convenient to
have a source of new elements inside the state.

The reserve of a state A contains all elements of A such that

� Every basic relation, with the exception of equality, evaluates to false if at least
one of its arguments belongs to the reserve.

� Every non-relational basic function evaluates to undef if at least one of its
arguments belongs to the reserve.

� No basic function outputs an element of the reserve.

Remark for those familiar with the Lipari guide. The function name Reserve is
obsolete; the new and simpler de�nition of reserve is purely semantical. 2

Dealing with algorithms that may require additional space, we will assume the
following proviso.

Proviso Every state has an in�nite reserve. 2

Example The previous example needs to be revised when the proviso is in force.
In addition to the nodes of the tree and the logic elements, the base set of the state
includes an in�nite reserve. 2

4

1.5 Variable Assignments

A variable assignment over a state A is a function � from some collection of variables
to BaseSet(A). Of course, �(v) is Boolean for every Boolean variable v in Dom(�).
The less obvious constraint is this: � cannot assign the same reserve element to
di�erent variables.

If � is a variable assignment over A, then the pair B = (A; �) is an expanded state,
A = State(B), � = Assign(B), Voc(B) = Voc(A), and Var(B) = Dom(�). We do not
distinguish between A and the expanded state (A; �) where � is the empty function.

Suppose that B is an expanded state (A; �) as above, �v is a sequence v1; : : : ; vj
of distinct variables, and �a is a sequence a1; : : : ; aj of elements of A. Modify � by
assigning or reassigning ai to vi for i = 1; : : : ; j. If the result � 0 is a legal variable
assignment, then � 0 will be denoted �(�v 7! �a) and the expanded state (A; � 0) will be
denoted B(�v 7! �a).

1.6 Term Evaluation

An expanded state A and a term t are appropriate for each other if the vocabulary of
A contains all function names in t and the variables of A include the variables of t.

Consider an expanded state A and let t range over terms appropriate for A. The
value ValA(t) of a term t at A is de�ned by the obvious induction. If t is a variable
and � = Assign(A) then ValA(t) = �(t). If t = f(�s) = f(s1; : : : ; sr) then

ValA(t) = fA
�
ValA(s1); : : : ;ValA(sr)

�
= fA

�
ValA(�s)

�
:

5

2 Actions

In dynamic situations, it is convenient to view a state as a kind of memory that maps
locations to values. Fix a state A of vocabulary �.

2.1 Locations

A location of A is a pair ` = (f; �a), where f is a function name in � of some arity r

and �a is an r-tuple of elements of A; location ` is relational if f is a predicate. In the
case that f is nullary, (f; ()) is abbreviated to f . The element fA(�a) is the content
of location `. Thus a state can be viewed as a mapping from its locations to their
contents.

Example Assume that we have a pointed tree and let a be any of the nodes. Then
some locations are

C, (Parent,a), (FirstChild,a), (NextSibling, a). 2

If B is an expanded state and A = State(B), then every term t of the form f(�s),
appropriate for B, gives rise to a location

LocB(t) = (f;ValB(�s))

over A. (The only terms that do not have the form f(�s) are variables.)

2.2 Updates

An update of A is a pair � = (`; b), where ` is a location of A and b an element of A;
if ` is relational then b must be Boolean. To �re � at A, put b into the location `,
that is, rede�ne A to map ` to b. The other locations remain intact. The resulting
state is the sequel of A with respect to �.

Example Again, assume that we have a pointed tree and let a; b be any two nodes.
Then some updates are

(C,a), ((Parent,a),b), ((FirstChild,b),a). 2

Two updates (`1; b1) and (`2; b2) clash if `1 = `2 but b1 6= b2.

6

2.3 Update Sets

An update set over a state A is simply a set of updates of A. In this section, we
consider only �nite update sets. For theoretical purposes, one may raise the issue of
in�nite update sets; that issue will be addressed elsewhere.

The reserve support ResSupp(�) of an update set � is the collection of reserve
elements a such that some update (`; b) 2 � involves a, that is a = b or, if ` =
(f; (a1; : : : ; ar)), then a = ai for some i.

An update set � is consistent if no two updates in � clash. To �re a consistent
update set � = f(`i; bi) : i 2 Ig, �re all its updates simultaneously. For all i 2 I, the
content of `i is reset to bi; the other locations remain intact. The resulting state is
the sequel of A with respect to �. To �re an inconsistent update set, do nothing; the
sequel of A is A itself.

Two update sets �1 and �2 clash if the union �1 [�2 is inconsistent.

Reserve Permutations A permutation � of the reserve of state A can be viewed
as a permutation of the whole base set of A which leaves all non-reserve elements
intact. It is easy to see that � is an automorphism of A (that is an isomorphism from
A onto A). � can be expanded to locations, updates and update sets in the following
natural way:

� If ` is a location (f; (a1; : : : ; ar)), then �(`) = (f; (�(a1); : : : ; �(ar))).

� If � is an update (`; b), then �(�) = (�(`); �(b)).

� If � is a set f�i : i 2 Ig of updates then �(�) = f�(�i) : i 2 Ig.

2.4 Actions

Call two update sets equivalent if

� either both update sets are consistent and there is a reserve permutation which
maps one of them onto the other,

� or both sets are inconsistent.

An action is an equivalence class of update sets. (Recall that we consider only
�nite update sets.) The action containing an update set � will be denoted [�]. The
action [�] is consistent if and only if � is so.

Lemma 1 If �0 2 [�], then the sequel B of A with respect to � and the sequel B0

of A with respect to �0 are isomorphic. Furthermore, if [�] is consistent, then any

7

reserve permutation � (viewed as a permutation of BaseSet(A)) which takes � to �0

is an isomorphism from B onto B0.

Proof The case of inconsistent [�] is obvious. So we assume that that [�] is con-
sistent. Suppose that a reserve permutation � takes � to �0 and f(a1; : : : ; ar) = a0
in B. We need to check only that f(�(a1); : : : ; �(ar)) = �(a0) in B0. Let ` be the
location (f; (a1; : : : ; ar)).

Case 1: ` does not occur in �. Then � does not change the content of `, so
that f(a1; : : : ; ar) = a0 in A. Since ` does not occur in �, �(`) does not occur in
�(�) and thus �(�) does not change the content of �(`). It remains to show that
f(�(a1); : : : ; �(ar)) = �(a0) in A.

If a1; : : : ; ar are all non-reserve in A, then, in A, a0 is non-reserve and we have

f(�(a1); : : : ; �(ar)) = f(a1; : : : ; ar) = a0 = �(a0):

If some ai, i 2 [1::r], is a reserve element of A, then, in A, �(ai) is a reserve
element, a0 = undef , and thus

f(�(a1); : : : ; �(ar)) = undef = �(undef) = �(a0):

Case 2: ` does occur in �. Since � is consistent, it contains a unique update �

of location `. Clearly, � = (`; a0). Then �(�) contains the update (�(`); �(a0)) and
therefore f(�(a1); : : : ; �(ar)) = �(a0) in B 0. 2

The lemma justi�es the following de�nitions: To perform an action [�], �re �.
The sequel of A with respect to [�] is the sequel of A with respect to �. Thus the
sequel of A with respect to [�] depends on the choice of an update set in [�], but it
is de�ned uniquely up to isomorphism.

2.5 The Sum of Actions

Lemma 2 Let
1; : : : ;
n be actions.

1. There exist update sets �i 2
i with pairwise disjoint reserve supports.

2. If update sets �i 2
i have pairwise disjoint reserve supports and if update sets
�0i 2
i have pairwise disjoint reserve supports, then

�1 [� � � [�n is equivalent to �01 [� � � [�0n:

8

Proof

1. Pick arbitrary �0i 2
i. We construct the desired �i by induction on i. Suppose
that �j have been constructed for all j < i and let ResSupp(�0i) = fa1; : : : ; amg
where the m elements are distinct. Pick distinct reserve elements b1; : : : ; bm outside
of
S
j<i ResSupp(�j) as well as outside of fa1; : : : ; amg. The desired �i = �(�0i) where

�(a) =

8<
:
bk if a = ak
ak if a = bk
a otherwise

2. Let Xi = ResSupp(�i) and X 0

i = ResSupp(�0i). For each i, there exists a reserve
permutation �i that moves �i to �0i. Since sets Xi are pairwise disjoint and sets X 0

i

are pairwise disjoint, we can de�ne a partial map

�0(a) = �i(a) if a 2 Xi

on
S
iXi. Extend �0 to a reserve permutation � in an arbitrary way. Clearly, � movesS

i �i to
S
i �

0

i. 2

To de�ne the sum of actions
1; : : : ;
n, choose update sets �i 2
i with pairwise
disjoint reserve supports.

1 + � � � +
n =
h
�1 [� � � [�n

i
:

2.6 Action Families

An action family � over A is a nonempty set of actions over A. To �re � over A,
nondeterministically choose one action
 2 � and perform it at A.

9

3 Basic Rules

3.1 Syntax

Rules are de�ned inductively.

The Skip Rule

skip

is a rule.

Update Rules

f(�s) := t

is a rule with head function f . If f is relational, then the term t must be Boolean.
Here �s is a tuple (s1; : : : ; sr) of terms where r = Arity(f) � 0.

Conditional Rules If g is a Boolean term and R1; R2 are rules then

if g then R1

else R2

endif

is a rule.

Blocks If R1; R2 are rules then

do in-parallel

R1

R2

enddo

is a rule with components R1; R2. Do-in-parallel rules are called blocks.

10

Import Rules If v is a variable and R0 is a rule, then

import v

R0(v)
endimport

is a rule with head variable v and body R0. Free and bound (occurrences of) variables
are de�ned in the obvious way with \import v" binding v. Usually v occurs freely in
R0(v) (hence the notation R0(v)), but this is not required.

3.2 Informal Semantics

A rule R and an expanded state A are appropriate for each other if Voc(R) � Voc(A)
and FreeVar(R) � Var(A). Assume that R and A are appropriate for each other. We
explain informally the e�ect of �ring of R at A.

The Skip Rule skip causes no change.

Update Rules An update rule f(�s) := t causes an update (LocA(f(�s));ValA(t)).
Recall that LocA(f(�s)) = (f;ValA(�s)).

Conditional Rules Let R be a conditional rule if g then R1 else R2 endif.
To �re R at A, examine the guard g. If g holds at A, then �re R1; otherwise �re R2.

Blocks The components of a block may contradict each other. For example, con-
sider

do in-parallel

f := true

f := false

enddo

To �re a block R, determine �rst if the components are mutually consistent at a
given expanded state A. If yes, then �re them simultaneously. If not, do nothing; R
is inconsistent at A.

Import Rules Suppose that R is an import rule with head variable v and the body
R0(v). Choose a fresh reserve element a and �re R0(a).

11

It is supposed that di�erent imports produce di�erent reserve elements. For ex-
ample, the block

do in-parallel

import v Parent(v) := C endimport

import v Parent(v) := C endimport

enddo

creates two children of node C (rather than sometimes two and sometimes one). The
reserve can be thought of as additional memory (or storage space) partitioned into
disjoint units. Then an import re
ects allocation of a unit of memory. It would be
wrong to allocate the same unit of memory to di�erent processes at the same time.

3.3 Denotational Semantics

The deterministic denotation Den(R) of a rule R is a function on expanded states
A appropriate for R. Each Den(R)(A) (or Den(R;A) for brevity) is an action over
State(A). To �re R at A, perform the action Den(R;A) at State(A). The sequel of
A with respect to R is the sequel of State(A) with respect to Den(R;A). Den(R;A)
is de�ned by induction on R.

The Skip Rule Den(skip; A) =
h
;
i
.

Update Rules If R is an update rule f(�s) := t, and � is the update
(LocA(f(�s));ValA(t)), then

Den(R;A) =
h
f�g

i

Conditional Rules If R is a conditional rule if g then R1 else R2

endif, then

Den(R;A) =
�
Den(R1; A) if A j= g

Den(R2; A) otherwise.

Import Rules If R is an import rule with head variable v and body R0, then

Den(R;A) = Den(R0; A(v 7! a))

where a is any reserve element outside the range of Assign(A).

12

Blocks If R is a block with components R1; R2, then

Den(R;A) = Den(R1; A) + Den(R2; A)

3.4 Syntactic Sugar

Blocks The pair of keywords do in-parallel/enddo may be replaced with
block/endblock or shortened to do/enddo.

It is easy to see that the operation do-in-parallel over rules is associative. Use

do in-parallel

R1

R2

R3

enddo

without worrying whether it abbreviates

do in-parallel

R1

do in-parallel

R2

R3

endo

enddo

or

do in-parallel

do in-parallel

R1

R2

endo

R3

enddo

Similarly use

do in-parallel

R1
...

Rk

enddo

for any k including k = 0 (in which case the rule is a synonym of skip) and k = 1
(in which case the rule is a synonym of R1). If two or more components �t on the
same line, separate them by commas:

13

do in-parallel

R1; R2

R3

enddo

The operation do-in-parallel is also commutative and thus the order of components
does not matter.

For brevity, the keywords do in-parallel/endo, may be simpli�ed to do/enddo,
replaced by block/endblock, or omitted altogether (where no confusion arises).

Remark In the Lipari guide, by de�nition, a block can have an arbitrary �nite
number of components. The di�erence is of no importance. The present de�nition is
slightly more convenient for theoretical purposes. 2

Conditional Rules Abbreviate

if g1 then R1

else

if g2 then R2

else R3

endif

endif

to

if g1 then R1

elseif g2 then R2

else R3

endif

Similarly de�ne conditional rules with multiple clauses:

if g1 then R1

elseif g2 then R2

...

elseif gk then Rk

else Rk+1

endif

The else clause can be omitted in case Rk+1 is skip. In particular we have if-then
rules of the form

if g then R1 endif

Remark In the Lipari guide, by de�nition, conditional rules had the form

14

if g1 then R1

elseif g2 then R2

...

elseif gk then Rk

endif

Again, the di�erence in the de�nitions is of no importance; the present form is a little
more convenient for theoretical purposes. 2

Import Rules Abbreviate

import v1
import v2

R

endimport

endimport

to
import v1; v2

R

endimport

and generalize this to more than two imports. Further, abbreviate

import v1; : : : ; vk
U(v1) := true
...

U(vk) := true

R

endimport

to
extend U with v1; : : : ; vk

R

endextend

Here U is any unary predicate.

The Ends One can use a simple end instead of endif, enddo, etc. though the fuller
forms make parsing easier. This remark applies also to rule constructs introduced in
later sections.

15

4 Shortcuts

Some convenient syntactic sugar is o�ered.

4.1 The let Construct

Sometimes a lengthy term t appears several times in a rule. In such cases, the auxiliary
let construct saves the trouble of writing t over and over again.

Syntax

let x = t

R0(x)
endlet

where a Boolean variable if t is Boolean-valued.

Semantics The let rule above is equivalent to the rule

R0(x 7! t)

where R0(x 7! t) is the result of substituting t for x (with all the care that substitu-
tions require, as in �rst-order logic).

4.2 If-then-else Terms

Extend the de�nition of terms with the following clause. If b is a Boolean term and
t1; t2 are terms, then

(if b then t1 else t2)

is a term. In the case when t1; t2 are Boolean, the new term is Boolean (and equivalent
to (b ^ t1) _ (:b ^ t2)).

The semantics is obvious. Alternatively, one can introduce a new ternary logic
function IfThenElse.

16

4.3 The try Construct

4.3.1 Syntax

Try Rules If R1; R2 are rules then

try

R1

else

R2

endif

is a rule with positive component R1 and negative component R2.

4.3.2 Semantics

Let R be a try rule with positive component R1 and negative component R2, and let
A be an expanded state appropriate for R. To �re R at A, check if R1 is consistent
at A. If yes, �re R1; otherwise �re R2. In other words,

Den(R;A) =
�
Den(R1; A) if this action is consistent;
Den(R2; A) otherwise.

4.3.3 Guaranteed Consistency

Abbreviate

try

do in-parallel

R1; R2

enddo

else

R3

endtry

to

try in-parallel

R1; R2

ifclash

R3

enddo

Theorem 1 If R is any rule where the do-in-parallel construct is used only within
the try-in-parallel construct, then the action Den(R;A) is consistent at any expanded
state appropriate for R.

17

4.3.4 Try Rules can be Eliminated

Theorem 2 Every rule in the basic programming language extended with the try
construct is equivalent to a basic rule.

18

5 First-Order Extensions

First, we enrich basic rules by introducing �rst-order terms. Then we generalize the
do-in-parallel construct.

5.1 First-Order Terms

Even though the de�nition of terms in the States section is the usual de�nition of
terms in �rst-order logic, the treatment of relations as Boolean-valued functions al-
lows us to represent quanti�er-free �rst-order assertions as Boolean terms. Many
applications require more general �rst-order terms.

5.1.1 Syntax of First-Order Terms

Extend the de�nition of terms of Section 1 with the following clause.

� If v is a variable and g(v); s(v) are Boolean terms, then

(8v : g(v)) s(v); (9v : g(v)) s(v)

are terms with head variable v, guard g(v) and body s(v). Both terms are
Boolean.

The de�nition of free and bound variables is the obvious one. In particular, v is
bound in (8v : g(v)) s(v) and (9v : g(v)) s(v). It is not required that the variable v
has free occurrences in the guard g(v) or the body s(v), but it usually does. Terms
de�ned in Section 1 may be called quanti�er-free.

In applications, the guard ensures the �niteness and feasibility of the quanti�cation
range. Logically, quanti�cation makes perfect sense even if the range is in�nite. In
any case, the guard g(v) may be the term true in which case it may be omitted.

Notice that the enrichment of the notion of term enriches the notion of rule.

Remark. It seems contrary to the tradition of �rst-order logic to use strange
terms like f((9v : g(v)) s(v)) which use quanti�ed terms as arguments. We could
forbid such strange terms; then a Boolean term would be not necessarily a term. But
it does not really matter. Rules with strange terms can be transformed to equivalent
rules without strange terms. For example,

19

f((9v : g(v)) s(v)) := t is equivalent to

if (9v : g(v)) s(v) then

f(true) := t

else

f(false) := t

endif

5.1.2 Semantics of First-Order Terms

De�ne

RangeA(v : g(v)) =
n
a 2 BaseSet(A) : a is nonreserve and A j= g(a)

o

where, as usual in �rst-order logic, A j= g(a) means A(v 7! a) j= g(v). Here the
extended state A is appropriate for the term (9v) g(v), so that every A(v 7! a) is
appropriate for g(v).

A pedantic point. In general a is not a term and therefore g(a) is not a term. It
can be called a quasi-term.

Now let t1 = (8v : g(v)) s(v) and t2 = (9v : g(v)) s(v). If an expanded state A is
appropriate for t1; t2, then

ValA(t1) =
�
true if ValA(v 7!a)(s(v)) = true for all a 2 RangeA(v : g(v));
false otherwise.

ValA(t2) =
�
true if ValA(v 7!a)(s(v)) = true for some a 2 RangeA(v : g(v));
false otherwise.

Notice that the quanti�cation is restricted to non-reserve elements. Intuitively,
the reserve represents the outside world.

Example In a state that includes a directed graph with a distinguished node C,
the rule

if (9v : v 2 Nodes) E(C; v) then

Color(C) := Green

endif

colors C green provided C has an outgoing edge. 2

20

5.1.3 Abbreviations

(8u; v : g(u; v)) s(u; v)

can be de�ned as a double quanti�cation. One can impose no guard on u:

(8u)
�
(8v : g(u; v)) s(u; v)

�
;

one can impose the strongest guard on u:

�
8u : (9v) g(u; v)

��
(8v : g(u; v)) s(u; v)

�
;

any intermediate guard will work as well. Logically all these formulas are equivalent.
The case of 9 is similar. This generalizes to quanti�cation over triples of variables,
quadruples of variables, etc.

Example Suppose that variables u; v have been declared to range over non-negative
integers. The quanti�cation scope of

(8u; v : u < v < 100)E(u; v)

consists of
100 � 99

2
integer pairs u < v < 100. 2

5.2 Do-forall Rules

5.2.1 Syntax

Extend the de�nition of rules with the following clause:

Do-forall Rules If v is a variable, g(v) is a Boolean term and R0(v) is a rule, then

do forall v : g(v)
R0(v)

enddo

is a rule with head variable v, guard g(v) and body R0. The de�nition of free and
bounded variables is obvious.

Remark. The do-forall construct replaces the var (or vary) construct of the Lipari
guide.

21

5.2.2 Informal Semantics

A do-forall rule is similar to the do-in-parallel rule, except that the component are not
listed explicitly one after another. Suppose that R is the do-forall rule above. At an
expanded state A appropriate for R, the components are R0(a) where a 2 RangeA(v :
g(v)). To �re R at A, �re simultaneously all these R0(a) unless they are mutually
inconsistent. In the latter case, do nothing.

A pedantic point. In general a is not a term and thus R0(a) is not a rule. It may
be called a quasi-rule. Firing R0(a) at a given expanded state A appropriate for R
means �ring the rule R0(v) at the further expanded state A(v 7! a)).

Example In an expanded state that includes a directed graph with variable u indi-
cating a node, the rule

do forall v;w : v 2 Nodes and w 2 Nodes and E(v;w),
Color(v) := Blue

Color(w) := Yellow

enddo

colors blue all nodes with outgoing edges and colors yellow all nodes with incoming
edges, unless the two sets of nodes intersect, in which case nothing is done. 2

5.2.3 do-in-parallel as a Special Case of do-forall

The rule

do

R1; R2

enddo

is equivalent to the rule

do forall v : Boole(v)
if v then R1 else R2 endif

enddo

where v is a fresh Boolean variable (and thus the guard Boole(v) is redundant).

Abbreviations A two-parameter do rule

22

do forall u; v : g(u; v)
R0(u; v)

enddo

abbreviates

do forall u : (9v) g(u; v)
do forall v : g(u; v)

R0(u; v)
enddo

enddo

Instead of (9v) g(u; v), a more liberal guard may be used; logically this makes no
di�erence.

In a similar way, de�ne do-forall rules with any number k > 2 of head variables.

23

6 Nondeterministic Rules

6.1 Syntax

Extend the de�nition of rules with the following clause.

Choose Rules If v is a variable, g(v) is a Boolean term, and R0(v) is a rule, then

choose v : g(v)
R0(v)

endchoose

is a rule with head variable v, guard g(v) and body R0(v). Free and bound variables
are de�ned in the obvious way. Choose rules are called forks.

6.2 Informal Semantics

Let R be the choose rule above and let A be an expanded state appropriate for R.
To �re R at A, check if the set

RangeA(v : g(v)) =
n
a 2 BaseSet(A) : a is nonreserve and A j= g(a)

o

is empty. If yes, do nothing. Otherwise, choose any a 2 RangeA(v : g(v)) and �re the
branch R0(a) (that is �re the rule R0(v) at A(v 7! a)).

Example In a state that includes a directed graph with at least one edge, the rule

choose v;w : v 2 Nodes and w 2 Nodes and E(v;w)
ColorEdge(v,w) := Green

endchoose

colors green one of the edges in the graph. The rule does nothing if there are no edges
in the graph. 2

6.3 Denotational Semantics

The nondeterministic denotation NDen(R) of a rule R is a function on expanded
states A appropriate for R. Each NDen(R)(A) (or NDen(R;A) for brevity) is an

24

action family. To �re R at A, choose an action
 2 NDen(R;A) and perform it at
State(A); the sequel of State(A) with respect to
 is a sequel of A with respect to R.
We de�ne NDen(R;A) by induction on R. It is assumed that a given expanded state
A is appropriate for R.

Skip and Update rules If R is skip or an update rule, then

NDen(R;A) =
n
Den(R;A)

o
:

Conditional Rules If R is

if g then R1 else R2 endif

then

NDen(R;A) =
�
NDen(R1; A) if A j= g(a);
NDen(R2; A) otherwise

Do-forall Rules If R is

do forall v : g(v)
R0(v)

enddo

then

NDen(R;A) =
nX

a

a : a 2 RangeA(v : g(v)) ^
 2 NDen(R0(v); A(v 7! a))
o

Import Rules If R

import v

R0(v)
endimport

and if a is any reserve element outside of the range of Assign(A), then

NDen(R;A) = NDen(R0; A(v 7! a)):

25

Choose Rules If R is

choose v : g(v)
R0(v)

endchoose

and Q = RangeA(v : g(v)) then

NDen(R;A) =

8<
:
nh
;
io

if Q = ;Sn
NDen(R0(v); A(v 7! a)) : a 2 Q

o
otherwise

This completes the de�nition of NDen.

Remark Notice a small deviation from the Lipari semantics of choose rules. If
RangeA(v : g(v)) is empty then the action family NDen(R;A) is not empty but
contains one action, namely the do-nothing action. Thus, choosing from the empty
set of actions is not considered to be contradictory; the result of such a choice is the
do-nothing action. 2

6.4 Explicit Choice

De�ne

choose among

R1

R2

endchoose

as an abbreviation for

choose v : Boole(v)
if v then R1 else R2 endif

endchoose

where variable v is Boolean. This gives rise to explicit forks

choose among

R1; : : : ; Rk

endchoose

where k is any natural number.

26

Example Consider a set of nodes with two distinguished nodes Source and Sink
and with three unary partial functions BluePointer, GreenPointer, RedPointer from
nodes to nodes. Question: Is there a path from Source to Sink that follows, at each
step, one of the tree pointer functions? We construct a nondeterministic program for
this task. The program uses an auxiliary nullary function C, intuitively the current
node. Initially, C equals Source.

if C = Sink then Mode := Final

else

choose

C := BluePointer(C)

C := GreenPointer(C)

C := RedPointer(C)

endchoose

endif

2

6.5 Re�ning Forks

In applications, a fork

choose v : g(v)
R0(v)

endchoose

may be an abstraction from a mechanism that implements a choice function f(�u)
subject to constraint

(9v)g(v)) g(f(�u)):

The choice function can be made explicit as an external function:

if (9v) g(v) then

R0(f(�u))
endif

27

