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Outline

The world image of Theoretical Physics 
Classical Dynamics 
Its computational counterpart: Molecular Dynamics  
Classical (Equilibrium) Statistical Mechanics: Ensembles 
Derivation of physical properties: what can be done

Thermodynamics  Thermodynamic potential(s) 
Probabilistic interpretation: Entropy 
Ensemble Theory: Legendre transforms (characteristic 
functions) 
A misconception: Entropy as a measure of order.  
Hard sphere transition
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The fundamental laws (1)

In principle, the behavior of a piece of matter in 
ordinary conditions comes out of t-dependent 
Schroedinger Equation and Q.Stat.Mech. with
[Relativistic Quantum Field Theory not needed for that!]

ℋ(r, R; p, P) = KN(P) + Ke(p) + V(r, R)

He(r, p |R)
Coulomb

ıℏ
∂Ψ̃(r, R, t)

∂t
= ℋ Ψ̃(r, R, t) ⟺ ℋΦ̃n = ℋΦ̃n

 Not Soluble by Brute Force  
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The fundamental law (2)

since   mN ≫ me

He(r, p |R) Φs(r |R) = Es(R) Φs(r |R)

Born-Oppenheimer approximation

and ∇RΦs ≪ ∇rΦs
Born-Oppenheimer surface

Ψ(r, R; t) =∑
s

χs(R; t) Φs(r |R) ≃ χ0(R; t) Φ0(r |R)

i.e the (often valid) adiabatic approximation  
where
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The fundamental law (3)

the dynamics of the nuclei, apparently independent from 
the electrons, is driven by    as interaction potential 

(a mean field, modelizable, no more Coulomb!)
E0(R)

the strict adiabatic approximation  (no electronic  
jumps allowed)

  is given by χ0(R; t)

 

                   

ıℏ
∂χ0(R; t)

∂t
= HN(R, P) χ0(R; t)

≡ [KN(P) + E0(R)] χ0(R; t)
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The fundamental law (4)

when

 Λ = h / 2πmNkBT ≪ internuclear distance  R

mN
··R = −∇E0(R)

{nuclei are heavy enough 
temperature is high enough so that 

Dynamics, no more quantum, is Newton’s 
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The fundamental law (5)

to sum up 

a classical system of particles interacting via an effective 
interaction potential,  

 can be obtained ab initio (AIMD) or by some suitable 
fitting procedure   phenomenological model,   e.g.  
with a Pairwise Additive Potential (PAP)   

if PAP, the equations of motion are numerically integrable 
for a number of particles finite but larger enough to study, 
by statistical approach, the thermal properties of matter

E0

E0

⟶
V(R) = ∑

i<j

υ(Rij)
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Molecular Dynamics (1)

Theoretically: 
•  atoms/molecules  point particles (p.p.), 

 / connected sets of p.p.   
•  Interactions between p.p,  
• Boundary Conditions (compulsory: no BC’s no equilibrium) 
• Initial Conditions (necessary to start although irrelevant for 

macroscopic behavior. However, they can be a headache!) 
• Evolutions laws: Newton equations of motion and Laplace 

deterministic dream, 

N( → ∞ ; N/V = const) ⟺
(R1, R2, …, RN) ({R1}, {R2}, …, {RN})

VN({R1}, {R2}, …, {RN})

{R(t; R0, P0), P(t; R0, P0)}t∈(0,τ→∞)

(BO originated) Classical Statistical Mechanics Model
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Molecular Dynamics (2)

Computationally: 
•  
• Boundary Conditions: periodic (PBC)  
• Initial Conditions: positions, regular lattice; velocities, Maxwellian 
• : simple  pairwise additive ; short range (MIC) 

       extensions:  long range (Coulomb) by Ewald Sums 
                              body potentials  , but glue potential 
                                      
                              stiff intramolecular potentials: 
                             Constraints:   :  SHAKE 
                             Multiple timestep (Martyna, Tuckerman, Berne): RESPA 

• Integration algorithms: robust, time reversible, symplectic: e.g. Verlet 
• Various ensembles (thermostats, barostats, … ): 

               extended variables simulations (Andersen, Nosé, Hoover,…) 

N ∼ 32 ÷ 109 , n = N/V

VN ⟶ (∑ i<jυij ; 𝒪(N2))
⟶
⟶ n− 𝒪(Nn)

VN(α) with α = ∑i<jφij …
⟶

σ(r) = 0 ; m··r = F − λ∇σ{
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Classical Equilibrium Statistical Mechanics (1)

• a closed system evolving in time under time-
independent forces will reach a STATIONARY state 

• the microscopic properties are ‘irrelevant’ while 
the statistical (or macroscopic) ones are stable and 
interesting (THERMODYNAMICS) 

• thermodynamic properties can be computed by 
time averages or, as we will see, by ensemble 
averages



Giovanni Ciccotti 11

Classical Equilibrium Statistical Mechanics (2)

ObservableBoltzmann

properties coming from an observable  mechanical ( e.g. pressure) 
properties coming from , i.e probability  thermal ( e.g. free energy)

⟶
nℓ or ρ ⟶

 probability 
of state 
νl

l

Gibbs
Ensemble or  
probability density
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Classical Equilibrium Statistical Mechanics (3)

THE NATURE OF THE ENSEMBLE

The Boltzmann hypothesis:  
ALL VISITABLE MICROSTATES ARE EQUIPROBABLE  

Since the motion is constrained to be on the hypersurface , 
the so-called Microcanonical Ensemble becomes: 

     

H = E

ρ =
1

μ(surf H = E)
=

1
∫ dΓ δ(H − E)

=
1

Σ(E)
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Classical Equilibrium Statistical Mechanics (4)

Simple liquids, (anharmonic) solids, dense gases

Charged systems / mixtures

Molecular systems

Macromolecular & biological systems 
(“restricted” models: e.g., no photosynthesis)

1956

1971

1976

	

Eqs. of State, 
Continuum dynamics, 
Engineering

Plasma physics

Materials Science 

What has & can be done?

Inorganic, organic, life  
(i.e. the whole of Condensed,  
soft & hard, Matter)
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Provisional Conclusions

For whatever system describable by Classical Dynamics we have 
achieved our goal: Theoretical Physics (via Statistical Mechanics) 
can reconstruct and understand the physical world. 

All phenomena requiring a quantum description, i.e. describable 
by Quantum Dynamics and its statistical treatment, still need a lot 
of technical work which we will not be pursued here.  
HOWEVER the path to follow has been laid down, completing the 
program of Theoretical Physics.  

We can now turn to dig on the statistical concepts introduced,  
to better see their meaning, with particular emphasis on ENTROPY.
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Thermodynamics and Thermodynamic Potentials (1)

Theory of principles: main example Thermodynamics 
 –  Theories which delimit but do not predict or 
compute 

Constructive theories, e.g. Statistical Mechanics 
 –  Theories proceeding from the fundamental laws 
(dynamics) which compute and predict

A useful distinction by Einstein for physical theories:
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Thermodynamics and Thermodynamic Potentials (1)

1st and 2nd principles can be resumed (for a simple one-component 
fluid with given ) as 

                           

     such that  

NOTHING ELSE HAS TO BE ADDED TO KNOW COMPLETELY  
THE SYSTEM FROM THE THERMODYNAMIC POINT OF VIEW. 

Every physical property of the system should be derivable from   
via analytical operations. 
                                  
                                    is the first   THERMODYNAMIC POTENTIAL  
while, e.g.  or   are just    EQUATIONS OF STATE

N

dS =
1
T

dE −
p
T

dV ⇒ S = S(E, V )

( ∂S
∂E )

V
=

1
T

 and  ( ∂S
∂V )

E
= −

p
T

S

⇓
S = S(E, V )

T = T(E, V ) p = p(E, V )
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Thermodynamics and Thermodynamic Potentials (2)

1.                          are two completely independent 
    and                                         functions who both generate all  

                        thermodynamic properties of any 
                                                    mechanical system (of many particles) 
                                                    by analytical operations 

2.                                  is an estensive property of the system  
                                                    homogenous of first degree in  
                                                       

                                grows with  as  
3. They convey on different scales exactly the identical information  

(  is the fundamental thermodynamic/statistic parameter since 
everything said must be true for  with  ).

S = S(E, V; N)

Σ = Σ(E, V; N)

S(E, V; N)
N

S(E, V; N) = N S(E/N, V/N; 1)
Σ(E, V; N) N 𝒪(eN)

N
N, V ⟶ ∞ N/V constant

STATISTICAL INTERPRETATION OF THERMODYNAMICS
⇓
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Probabilistic interpretation (1)

• Entropy (Boltzmann, the famous )  

 

• Similarly in general ensembles as we will see 

 

where  generates the probability density function  
of the given ensemble

S = k ln W

S(E, V ) = kB ln Σ(E, V ) ≡ − kB ln
1

Σ(E, V )
= − kB ln 𝒫E(Γ)

M(T, V ) = −
F(T, V )

T
= kB ln Q(T, V )

Q

Probabilistic interpretation of the thermal properties 
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Probabilistic interpretation (2)

 

    

                          

    

     

𝒪 = lim
τ→∞

1
τ ∫

τ

0
dt �̂�(Γ(t)) = ∑

s

𝒫s𝒪s =

= ∫dΓ (
exp [−βS(E)]

0 ) �̂�(Γ) =

δ(H(Γ) − E)
∫ dΓ δ(H(Γ) − E)

= ∫d𝒪* 𝒪* {∫dΓ δ(�̂�(Γ) − 𝒪*)
δ(H(Γ) − E)

∫ dΓδ(H(Γ) − E) } =

= ∫d𝒪* 𝒪* 𝒫�̂� (𝒪*)

Mechanical vs thermal properties 
mechanical property 

thermal property 

probability density

marginal of probability density
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• Given a collective variable (i.e. a function of the configuration 
space) , the free energy associated with its probability density 
function is 

  

           

                            

�̂�(x)

−
F�̂�(𝒪*)

T
= kB ln 𝒫�̂�(𝒪*) =

= kB ln∫dΓ f(Γ) δ(�̂�(x) − 𝒪*)

20

Probabilistic interpretation (3)

Free energy of collective variables

marginal probability density

Free energy or reversible work
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New description  

 

                                  

 

or, e.g.  

        

where from all this multitude ?

S = S(E, V ) ⟷ E = E(S, V )

( ∂S
∂E )

V
=

1
T(E, V )

, ( ∂S
∂V )

E
= −

p(E, V )
T(E, V ) ( ∂E

∂S )
V

= T(S, V ) , ( ∂E
∂V )

V
= − p(S, V )

M(1/T, V ) = −
F(T, V )

T
= S −

1
T

E ⟷ F(T, V ) = E − TS

dM = E d( 1
T )− p

T dV dF = − S dT − p dV

( ∂ M
∂ 1/T )

V
= E(1/T, V ) ( ∂ M

∂ V )
1/T

= − p( 1
T , V )( 1

T ) ( ∂ F
∂ T )

V
= − S(T, V ) ( ∂ F

∂ V )
T

= − p(T, V )

H(S, p) = E + pV dH = T dS + V dp ( ∂ H
∂ S )

p
= T(S, p) ( ∂ H

∂ p )
S

= V(S, p)

21

Legendre Transforms (1)

More equivalent descriptions

Massieu function Helmholtz free energy

Enthalpy
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Legendre transform (of a convex function) [from calculus!]:  

let     be such that        
 

           and        

             since 
 

Or also:        

in fact,                              

Remember not only the various thermodynamic potentials but also the 
correspondence Lagrangian Hamiltonian 

FUNCTIONS ASSOCIATED BY A LEGENDRE TRANSFORM REPRESENT THE SAME 
INFORMATION IN A DIFFERENT REPRESENTATION. 

see that geometrically

f(x1, x2)
u1 = ( ∂f

∂x1 )x2

= u1(x1, x2) , u2 = ( ∂f
∂x2 )x1

= u2(x1, x2)

⟹ df = u1 dx1 + u2 dx2 x1 = x1(u1, u2) , x2 = x2(u1, u2)

⟹ g1(x1, u2) = f(x1, x2(x1,u2)) − u2 x2(x1, u2)
dg1 = (df ) − d(u2 x2) = (u1 dx1 + u2 dx2) − (u2 dx2 + x2 du2) = u1 dx1 − x2 dx2

gtot(u1, u2) = f − (u1 x1 + u2 x2)

dgtot = x1 du1 + x2 du2

↔

⟶
22

Legendre Transforms (2)
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Legendre transform (one variable) GEOMETRICALLY  

           

         

Obs 1        
                  with a NON-EQUIVALENT MATHEMATICAL CONTENT since to know 
                  for any  will not tell us anything on the corresponding  

Obs 2      Knowing the tangent in  , i.e.  , and constructing  
                  the intercept at  , gives  , i.e  

                   
           Now    i.e.    

The curves   contain exactly the same information 

Y = f(X)

U = dY
dX = u(X)

X = x(U) ⇒ Y = Y(x(U))

U, Y X

X, Y U
X = 0 U = Y − G

X − 0

G(U) = Y − UX ≡ Y(U) − UX(U)
dG = − XdU dG

dU = − X

(X, Y ) and (G, U)
23

Legendre Transforms (3)
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Hypothesis of equiprobability of the mechanical states  , i.e.   
points   in phase space  for the probability to be around  

 with the probability density     

as said, THEN,   
Question:  
       Given the Massieu function  and its corresponding 

       Canonical Ensemble          

       normalized by     , such that    

       WHAT IS THE RELATION BETWEEN  ?

(rN, pN)
Γ ⇒ Γ by dΓ

𝒫(Γ, dΓ) =
dΣ(E, V )
Σ(E . V )

f(Γ) =
1

Σ(E, V )
S(E, V ) = kB ln Σ(E, V )

M ( 1
T , V)

fc(Γ) ∝ exp {− H
kBT }

Q = ∫ dΓe−ℋ/kBT M ( 1
T , V) = kB ln Q

Q and Σ
24

Ensembles (1)

Ensembles
Σ(E) ≡ ∫V

dΓ δ(H − E) = ∫H=E,V
dΣ(E, V )

geometric measure of the  
hypersurface  H = E

Ensemble
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 , as much as  ,       ONE TO ONE  

NB      In probability  is the inverse of a probability density,    
             is its CHARACTERISTIC FUNCTION, then it has the same 
            probabilistic content than  in a possibly more suitable 
            representation (here  against ,  much more  
             difficult to measure than  ) 

                           There is more: Equivalence of Ensembles (  large)  

Q = ∫ dΓ e−βH = ∫
∞

0
dE e−βE ∫Σ(E,V)

dΓ δ(H − E) = ∫
∞

0
dE Σ(E, V )e−βE

β = 1
kBT

Q = LT(Σ)
S and M Q and Σ

Σ
Q

Σ
(T, V ) (S, V ) S

T

N ⟶
25

Ensembles (2)

Q vs Σ !

Laplace transform of Σ
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                                with     

   

         

  

Q = eMcan/kB = ∫ dΓ e−βH = ∫ dE e−βE ∫ dΓ δ(H − E) = ∫ dE e−βE Σ(E)

= ∫ dE e−β(E−T S) E − T S(E, V ) ∼ 𝒪(N)

∙ ∂
∂E (E − TS) = 0 ⇒ ( ∂S

∂E )V
= 1

T(E, V) = 1
T

∙ ∙ E − TS ≃ Emc − TSmc+
1
2

(E − Emc)2

T CV
Q = e−β(Emc−TSmc) ∫ dE e−

1
2

(E − Emc)2

kBT2CV

⟹ Mcan = Mmc+
1
2 kB ln CV

26

Ensembles (3)

Equivalence of Ensembles

 
Its max dominates the integral

⇓
fixed

fixed, canonical  
           temperature

 ⇓
𝒪(ln N) NB:  N ∼ 1023 ln N ∼ 23
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From Wikipedia (En) 
In thermodynamics Entropy is often incorrectly associated with the amount of order or disorder in a 
thermodynamic system. 

To highlight the fact that order and disorder are commonly understood to be measured in term of entropy,  
below are current science encyclopedia and science definitions of entropy: 

• A measure of the unavailability of a system’s energy to do work; also a measure of disorder; the higher the 
entropy the greater the disorder. [4] 

• A measure of disorder; the higher the entropy the greater the disorder.[5] 

• In thermodynamics, a parameter representing the state of disorder of a system at the atimic, ionic,  
or molecular level; the greater the disorder the higher the entropy.[6] 

• A measure of disorder in the universe or of the unavailability of the energy in a system to do work.[7] 
[4] Oxford Dictionary of Science, 2005 
[5] Oxford Dictionary of Chemistry, 2004 
[6] Barnes & Noble’s Essential Dictionary of Science, 2004 
[7] Gribbin’s Encyclopedia of Particle Physics, 2000 

Let’s clarify the misconception by one (of a family of) counterexample(s):  
The spontaneous crystallization on decreasing density of hard spheres. 

27

Entropy and disorder (1)

A paralogism: Entropy as a measure of disorder.
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Dynamics: only binary 
                     elastic collision 
                     conserving kinetic energy 

Temperature not a thermodynamic variable 
only parameter   better measured 
as   packing fraction 

ρ = N /V
η =

28

The counterexample of hard spheres (1)

The model 

                 u𝙷𝚂(r) = {∞ r < σ
0 r ≥ σ

Event driven dynamics: 
(1) Collision times (CT) 
(2) Solution of collision 
(3) updating of CT
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Alder & Wainwright 1957 MD 
+ 

Wood & Jacobson 1957 MC 

found a spontaneous crystallization  
with increasing density for a  
packing fraction       

For a disordered system  
free volume  

For an FCC  crystal        

η = 0.49

= 0 ⇒ ηcp = 0.64

ηcp = 0.74

29

The counterexample of hard spheres (2)

         only Entropy 
can drive the transition
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The counterexample of hard spheres (3)

      
       
  Experimentally 

M = S− 1
T E
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From      Frenkel and Smit  
                Understanding Mol. Sim. p. 256-7

Speedy (b)

(a).    

                      ,         

 

 

 

interpolation formulas  
by Speedy for 

 

J. Phys. Cond. Matt.  
(a)     9, 8591 (1997) 
(b)  10, 4387 (1998

βp
ρ

= 1+ 2
3 πρσ3g(σ)

F(ρ)
NkBT = Fid(ρ)

NkBT + 1
kBT ∫

ρ

0
dρ′ p(ρ′ )

βμ(ρ) = βG
N = βF

N + βp
ρ

( βp
ρ )liq

& ( βp
ρ )sol

31

The counterexample of hard spheres (3)
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By way of conclusions

Our attempt to define aim and method of theoretical physics has 
been clarified 

Specific relevant concepts such as Entropy can be clearly defined 
and well circumscribed 

Possible pitfalls following abusive definitions can be avoided.  
A discovery that can help to appreciate what to do to proceed 
scientifically with confidence


