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Outline

+ The world image of Theoretical Physics

+ Classical Dynamics

+ Its computational counterpart: Molecular Dynamics

+ Classical (Equilibrium) Statistical Mechanics: Ensembles
+ Derivation of physical properties: what can be done
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+ Thermodynamics — Thermodynamic potential(s)

+ Probabilistic interpretation: Entropy

+ Ensemble Theory: Legendre transforms (characteristic
functions)

2 + A misconception: Entropy as a measure of order.
+ Hard sphere transition
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The fundamental laws (1)

In principle, the behavior ot a piece of matter in
ordinary conditions comes out of t-dependent
Schroedinger Equation and Q.Stat.Mech. with

[Relativistic Quantum Field Theory not needed for that!]

Z (r,R;p, P) = K\(P) + K (p) + V(r, R)

Coulomb
H/(r,p|R)
a‘i’(r, R, 1) - - -
ih =AY(r,R,t) & HO,=HD,
ot Not Soluble by Brute Force
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The fundamental law (2)

Born-Oppenheimer approximation

since my > m,
H(r,p|R) @(r|R) = E(R) O(r|R)

Born-Oppenheimer surface
and | V@, | < | V,®,

W(r, Ry 1) = ) 2,(Rs ) D (| R) = yo(R; 1) P(r| R)

i.e the (often valid) adiabatic approximation
where

MY
=kd




The fundamental law (3)

Yo(R: 1) is given by

0vn(R; t
ih )(O(at ) = Hy(R, P) yy(R; 1)

= |Ky(P) + Ey(R)| xo(R; 1)

the strict adiabatic approximation (no electronic
jumps allowed)

the dynamics of the nuclei, apparently independent from

the electrons, is driven by Ey(R) as interaction potential
(a mean tield, modelizable, no more Coulomb!)




The fundamental law (4)

{ nuclei are heavy enough
when

temperature is high enough so that

A = h/\/Z]Z'meBT < internuclear distance R

Dynamics, no more quantum, is Newton'’s

myR = —VEy(R)
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The fundamental law (5)

to sum up

% a classical system of particles interacting via an effective
interaction potential, £,
* L, can be obtained ab initio (AIMD) or by some suitable

fitting procedure — phenomenological model, e.g.
with a Pairwise Additive Potential (PAP) V(R) = Z v(R;)
i<j
% it PAP, the equations of motion are numerically integrable
for a number of particles finite but larger enough to study,

by statistical approach, the thermal properties of matter

uuuuuu
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Molecular Dynamics (1)

(BO originated) Classical Statistical Mechanics Model

Theoretically:

e N( — oo0; N/V = const) atoms/molecules < point particles (p.p.),
(R, Ry, ...,Ry) / connected sets of p.p. ({R;}, {R,}, ..., {Ry})

* Interactions between p.p, Vi({R;}, {R,}, ..., {Ry})

* Boundary Conditions (compulsory: no BC's no equilibrium)
* Initial Conditions (necessary to start although irrelevant for
macroscopic behavior. However, they can be a headache!)

* Evolutions laws: Newton equations of motion and Laplace
deterministic dream, {R(t; Ry, Py), P(t; Ry, PO)}

te(0,7—>0)

RN
(0]
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Molecular Dynamics (2)

Computationally:

¢« N~32:10°,n=N/V
* Boundary Conditions: periodic (PBC)
 Initial Conditions: positions, regular lattice; velocities, Maxwellian

o Vy:simple — pairwise additive< Zl Vi @(N2)) short range (MIC)

extensions: — long range (Coulomb) by Ewald Sums
— n—body potentials O(N") , but glue potential
Vi(a) with a = Zi<j¢ij
— stiff intramolecular potentials:
Constraints: 6(r) = 0; m¥ =F —-AVo : SHAKE
Multiple timestep (Martyna, Tuckerman, Berne): RESPA
* Integration algorithms: robust, time reversible, symplectic: e.g. Verlet

* Various ensembles (thermostats, barostats, ... ):
extended variables simulations (Andersen, Nosé, Hoover,...)
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Classical Equilibrium Statistical Mechanics (1)

* aclosed system evolving in time under time-
independent forces will reach a STATIONARY state

* the microscopic properties are ‘irrelevant’ while
the statistical (or macroscopic) ones are stable and
interesting (THERMODYNAMICS)

* thermodynamic properties can be computed by
time averages or, as we will see, by ensemble

averages

ety !
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Classical Equilibrium Statistical Mechanics (2)

Observable

Boltzmann

\—

T—00 T

AN .
0 =[O(R.P)E lim * / HO(R(). P(1))
0

1 N 142
=y LO®mPem = 3. ||y
= €visited states \

V; probability

~ / dRAP|p(R, PYO(R, P) =|(0)| |17
L — T~

Ensemble or .
probability density Gibbs

+ properties coming from an observable — mechanical ( e.g. pressure)
+ properties coming from n, or p, i.e probability — thermal ( e.g. free energy)

11
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Classical Equilibrium Statistical Mechanics (3)

THE NATURE OF THE ENSEMBLE

o The Boltzmann hypothesis:
ALL VISITABLE MICROSTATES ARE EQUIPROBABLE

o Since the motion is constrained to be on the hypersurface H = E,
the so-called Microcanonical Ensemble becomes:

1 1 1
u(sufH=E) |dUS6(H - E) - X(E)

°© p
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Classical Equilibrium Statistical Mechanics (4)

What has & can be done?

1956

Simple liquids, (anharmonic) solids, dense gases

\ Egs. of State,

A Continuum dynamics,

Charged systems / mixtures \ Engineering
Plasma physics

v

Molecular systems 1971
\> Materials Science

v

Macromolecular & biological systems
(“restricted” models: e.g., no photosynthesis)

’“‘-\\\\\\\\\\\\\\\\\9 1976
Inorganic, organic, life

(i.e. the whole of Condensed,
soft & hard, Matter)
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Provisional Conclusions

o For whatever system describable by Classical Dynamics we have
achieved our goal: Theoretical Physics (via Statistical Mechanics)
can reconstruct and understand the physical world.

o All phenomena requiring a quantum description, i.e. describable
by Quantum Dynamics and its statistical treatment, still need a lot
of technical work which we will not be pursued here.

HOWEVER the path to follow has been laid down, completing the
program of Theoretical Physics.

o We can now turn to dig on the statistical concepts introduced,
to better see their meaning, with particular emphasis on ENTROPY.

(X °
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Thermodynamics and Thermodynamic Potentials (1)

A useful distinction by Einstein for physical theories:

o Theory of principles: main example Thermodynamics
- Theories which delimit but do not predict or
compute

o Constructive theories, e.g. Statistical Mechanics
- Theories proceeding from the fundamental laws
(dynamics) which compute and predict

Giovanni Ciccotti
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Thermodynamics and Thermodynamic Potentials (1)

1stand 2nd principles can be resumed (for a simple one-component
tfluid with given N) as

I
dS = —dE - Lav = s=SE. V)
7T T

oS | oS
such that (— = — and — | = — P
oE v T oV i T
NOTHING ELSE HAS TO BE ADDED TO KNOW COMPLETELY
THE SYSTEM FROM THE THERMODYNAMIC POINT OF VIEW.

Every physical property of the system should be derivable from §
via analytical operations.

U

S=S(E,V) isthefirst THERMODYNAMIC POTENTIAL

while,e.g. T=T(E,V)orp = p(E,V) are just EQUATIONS OF STATE

0eD 1
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Thermodynamics and Thermodynamic Potentials (2)

1.85=5S(E,V;N) are two completely independent

and

functions who both generate all

> =2(E,V;N) thermodynamic properties of any

mechanical system (of many particles)
by analytical operations

2. S(E,V;N) is an estensive property of the system

homogenous of first degree in N
S(E,V;N)=NS(E/N,VIN; 1)

2(E,V;N) grows with N as O(e™)

3. They convey on different scales exactly the identical information

( N is the fundamental thermodynamic/statistic parameter since

everything said must be true for N, V— oo with N/V constant).

U
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Probabilistic interpretation (1)

Probabilistic interpretation of the thermal properties

e Entropy (Boltzmann, the famous S = kIn W)

1
S(E,V)=k,In2(E,V) = — kpIn = — kpIn P(I
(E,V) = kgln X(E, V) ST pIn Pp(l’)

* Similarly in general ensembles as we will see

M(T,V) = F(Y;V) = kzpIn Q(T, V)

where Q generates the probability density function
of the given ensemble

ben 1
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Probabilistic interpretation (2)

Mechanical vs thermal properties

1 (7 mechanical property
0 = lim— | dt OCW) = )’ @S@S{

rmee o S \
thermal property
—pS(E .
J’dr (eXP[ pS( )]>@(F)=

0

S(H(T) — E)

[dT 8(H() — E) — probabuhty denS|ty

S(HT) — E)
|dUS(H() — E)

Jd@* O* { ndr S(O) — O%)

Jd@* 6% P (6%)
" marginal of probability density
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Probabilistic interpretation (3)

Free energy of collective variables

* Given a collective variable (i.e. a function of the configuration
space) O(x), the free energy associated with its probability density

function is
Free energy or reversible work
N s
F4(6%)
; = kpln P p(OF) = . " .
T marginal probability density

= kyIn Jdl“ AD) 8(O(x) — O%)

0eD 1
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Legendre Transforms (1)

More equivalent descriptions
S=8E,V) «— E=EGS,V)

(as) 1 <aS> p(E, V) <aE> <0E>
o\ _ (=) =- — ) =TS, V), | — ) =-p@S,V)
0E), TEV) \oV/)., TEV) as ), v/,
New description
F(T,V) |
M(/T,V) = =S——F ««— FT,V)=E-TS
Massieu function T T Helmholtz free energy
dM:Ed(;) —dv dF = — SdT — pdV
<8—M> — E(1/T, V) <6—M> - —p(& V)<i) <6—F> — _ S(T, V) (a—F> = — (T, V)
olT ), W \av) TP N\T) \ar ), o \av), T
or, e.g.
HS,p)=E+pV dH=TdS+ Vdp <a—H> = T(S, p) (6—H> = V(S, p)
Enthalpy 93 p op S

where from all this multitude ?

Giovanni Ciccotti
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Legendre Transforms (2)

_egendre transform (of a convex function) [from calculus!]:

et f(x;,x,) be such that
of of

— df =u;dx;+u,dx, and x;=xu,uy), X, = x(uy, Uy)

= g(x;, uy) = flx, %, (x1,uy)) — u, x,(x,u,)  since

dg, = df) —du, x,) = (u; dx; + u, dx,) — (u, dx, + x, du,) = uy dx; — x,dx,
Oralso: g, (u;, uy) =f— (u; x; + uy x,)

infact, dg,,, = x,;du; + x,du,

Remember not only the various thermodynamic potentials but also the
correspondence Lagrangian<Hamiltonian

FUNCTIONS ASSOCIATED BY A LEGENDRE TRANSFORM REPRESENT THE SAME
INFORMATION IN A DIFFERENT REPRESENTATION.
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Legendre Transforms (3)

Legendre transform (one variable) GEOMETRICALLY
YA

¥ = f0X)

X

L4
’
L4
L4 |
4

Obs1 X=x(U) = Y=Yx(U))
with a NON-EQUIVALENT MATHEMATICAL CONTENT since to know
for any U, Y will not tell us anything on the corresponding X

Obs?2 Knowingthetangentin X, Y, i.e. U, and constructing
Y- G

the interceptat X = 0, gives U = ~—o €
GU)=Y-UX=YWU)-UXU)
Now dG = — XdU i.e. Z—g =—-X

The curves (X, Y) and (G, U) contain exactly the same information

(X °
: .~ . USR
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Ensembles (1)

Ensembles

S(E) = j AT 8(H — E) = j d3(E, V)
v H=E,V
Hypothesis of equiprobability of the mechanical states (", p) , i.e.
points I'in phase space = for the probability to be around I by dI

d2(E,V) " .
PI,dIN) = with the probability density f(I') =
2(E.V) >(E, V)

as said, THEN, S(E, V) = kzIn 2(E, V) Ensemble

Question:
Given the Massieu function M <%, V) and its corresponding

Canonical Ensemble f(F) X exXp { kHT}

normalized by Q = dF ~ [ksT , such that{ M (%, V) = kzlnQ

geometric measure of the
hypersurface H = E

WHAT IS THE RELATION BETWEEN Q and 2 ?

0eD 1
Giovanni Ciccotti . A
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Ensembles (2)

)vs 2!

Q= |dle M= dE e‘ﬁEJ ATSH-E) = | dEX(E, V)e?*
- 70 Z(E,V) J()

p= ﬁ Laplace transform of X

Q=LT()

Sand M ,asmuchasQ and X, ONETO ONE

NB In probability X is the inverse of a probability density,
0 is its CHARACTERISTIC FUNCTION, then it has the same

probabilistic content than X in a possibly more suitable
representation (here (T, V) against (S, V), S much more
difficult to measure than T')

There is more: Equivalence of Ensembles ( N large) —

(1L ° )
. . o~ . ucD @4
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Ensembles (3)

Equivalence of Ensembles

Q = Mn/ks = | dT e = |dEe™PF | dT 8(H — E) = JdEe‘ﬁE S(E)

= |dE e PETS) with E—TS(E,V) ~ O(N)
; J
fixed lts max dominates the integral
0 oS 1 1 fixed, ical
+ g E-15)=0 = (TE)V =TEV) T T femperature
1 (E—E )2 5 1 (E_Emc)2

eo [/ — TS ~ Emc — TSmC I Q — e_ﬁ(Emc_TSmc) dEe_2 kpT2Cy

2 TGy

1

U
O(n N) NB: N~ 10 InN ~ 23

W i °
: C : Uch
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Entropy and disorder (1)

A paralogism: Entropy as a measure of disorder.
From Wikipedia (En)

In thermodynamics Entropy is often incorrectly associated with the amount of order or disorder in a
thermodynamic system.

To highlight the fact that order and disorder are commonly understood to be measured in term of entropy,
below are current science encyclopedia and science definitions of entropy:

* A measure of the unavailability of a system’s energy to do work; also a measure of disorder; the higher the
entropy the greater the disorder. [4]

* A measure of disorder; the higher the entropy the greater the disorder.[°]

* Inthermodynamics, a parameter representing the state of disorder of a system at the atimic, ionic,
or molecular level; the greater the disorder the higher the entropy.!¢!

e A measure of disorder in the universe or of the unavailability of the energy in a system to do work.[”]

4] Oxford Dictionary of Science, 2005

5] Oxford Dictionary of Chemistry, 2004

[¢]Barnes & Noble's Essential Dictionary of Science, 2004
71 Gribbin's Encyclopedia of Particle Physics, 2000

Let’s clarify the misconception by one (of a family of) counterexample(s):
The spontaneous crystallization on decreasing density of hard spheres.

bep 1
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The counterexample of hard spheres (1)

The model
) = { %

uHS(r)A

r <o
r> o

Dynamics: only binary
elastic collision

conserving kinetic energy

Temperature not a thermodynamic variable
only parameter p = N/V better measured

as 1 = packing fraction

PBC

o O

Event driven dynamics:

(1) Collision times (CT)
(2) Solution of collision
(3) updating of CT

Giovanni Ciccotti
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The counterexample of hard spheres (2)

Alder & Wainwright 1957 MD
+

LIQUID (DISORDERED)
Wood & Jacobson 1957 MC

found a spontaneous crystallization
with increasing density for a

? only Entropy

packing fraction 1 = 0.49 ' can drive the transition
For a disordered system \

free volume =0 = 7, =0.64

Foran FCC crystal 7, =0.74
CRYSTAL (ORDERED)
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The counterexample of hard spheres (3)

Hard-sphere liquid

A X Cannot pay energy
overmor |y gL

Experimentally

Freezing in a suspension of hard colloids is driven
by entropy !

Computer simulation of hard-sphere freezing

(Alder & Wood 1957)

| Higher Entropy... "

Hard-sphere crystal
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The counterexample of hard spheres (3)

30 ' | ’ ] M ! v 1 v 25 ' Ll M I M T M 1 /
-=--=- @os: sold . | ===~ eos: solid S
o haame i j 20 0232,'12“'1 _ -
O Alder et al.: liqui { O Smit and Frenke ’
ﬂ p _ 1 20 < ;ngeret:a:.: 'sgli: ,’- [ 4---<cS:oe)t<istence ':l',‘
i S1po’g(0) b ; o
" | @®NPT: solid &
F(,U) Fld(p) | 1 pd / ( /) 10 - ﬁ
NkgT ~— NkgT kT ) PP * T
ﬁ () BG BF  fp %2 04 06 08 10 12 1.1
= — = p
HAP I, N T
inte rpo lation formulas Figure 19.2: Pressure}’ (left) and cher'mcal potential u (right) as a function .of
the density p. The solid curves, showing the pressure and chemical potential
by Speedy for of the liquid phase, are obtained from the equation of state of Speedy (a).
Bp Bp The dashed curve gives the pressure of the solid phase as calculated from
(— ) & <— ) the equation of state of Speedy (b) The open and filled symbols are the results
lig P/ sol of computer simulations for the liquid and solid phases,

respectively. The coexistence densities are indicated with horizontal lines.

J. Phys. Cond. Matt. F R
rom renkel ana smit
(a) 9: 8591 (1 997) Understanding Mol. Sim. p. 256-7

(b) 10,4387 (1998

(1L
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By way of conclusions

o Qur attempt to define aim and method of theoretical physics has

been clarified

o Specific relevant concepts such as Entropy can be clearly defined

and well circumscribed

o Possible pitfalls following abusive definitions can be avoided.
A discovery that can help to appreciate what to do to proceed

scientifically with confidence

(Y] °
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