Entropy and all that

Giovanni Ciccotti

Sapienza University of Rome
IAC-CNR "Mauro Picone"
School of Physics UCD Dublin

Outline

$L+$ The world image of Theoretical Physics
e + Classical Dynamics

+ Its computational counterpart: Molecular Dynamics
+ Classical (Equilibrium) Statistical Mechanics: Ensembles
1 - Derivation of physical properties: what can be done
$L+$ Thermodynamics \longrightarrow Thermodynamic potential(s)
e +Probabilistic interpretation: Entropy
+ Ensemble Theory: Legendre transforms (characteristic functions)
$2+$ A misconception: Entropy as a measure of order.
+ Hard sphere transition

The fundamental laws (1)

In principle, the behavior of a piece of matter in ordinary conditions comes out of t-dependent Schroedinger Equation and Q.Stat.Mech. with [Relativistic Quantum Field Theory not needed for that!]

$$
\mathscr{H}(r, R ; p, P)=K_{N}(P)+\underbrace{K_{e}(p)+\frac{V(r, R)}{\text { Coulomb }}}_{H_{e}(r, p \mid R)}
$$

$\partial \tilde{\Psi}(r, R, t)$
∂t

$$
=\mathscr{H} \tilde{\Psi}(r, R, t) \Longleftrightarrow \mathscr{H} \tilde{\Phi}_{n}=\mathscr{H} \tilde{\Phi}_{n}
$$

Not Soluble by Brute Force -

The fundamental law (2)

Born-Oppenheimer approximation

since $m_{N} \gg m_{e}$

$$
H_{e}(r, p \mid R) \Phi_{s}(r \mid R)=E_{s}(R) \Phi_{s}(r \mid R)
$$

and $\left|\nabla_{R} \Phi_{s}\right| \ll\left|\nabla_{r} \Phi_{s}\right|$ Born-Oppenheimer surface

$\Psi(r, R ; t)=\sum \chi_{s}(R ; t) \Phi_{s}(r \mid R) \simeq \chi_{0}(R ; t) \Phi_{0}(r \mid R)$

i.e the (often valid) adiabatic approximation where

The fundamental law (3)

$\chi_{0}(R ; t)$ is given by

$$
\begin{aligned}
2 \hbar \frac{\partial \chi_{0}(R ; t)}{\partial t} & =H_{N}(R, P) \chi_{0}(R ; t) \\
& \equiv\left[K_{N}(P)+E_{0}(R)\right] \chi_{0}(R ; t)
\end{aligned}
$$

the strict adiabatic approximation (no electronic jumps allowed)
the dynamics of the nuclei, apparently independent from the electrons, is driven by $E_{0}(R)$ as interaction potential (a mean field, modelizable, no more Coulomb!)
when
\{ nuclei are heavy enough temperature is high enough so that

$$
\Lambda=h / \sqrt{2 \pi m_{N} k_{B} T} \ll \text { internuclear distance } R
$$

Dynamics, no more quantum, is Newton's

$$
m_{N} \ddot{R}=-\nabla E_{0}(R)
$$

The fundamental law (5)

to sum up

* a classical system of particles interacting via an effective interaction potential, E_{0}
* E_{0} can be obtained ab initio (AIMD) or by some suitable fitting procedure \longrightarrow phenomenological model, e.g. with a Pairwise Additive Potential (PAP) $V(R)=\sum_{i<j} v\left(R_{i j}\right)$
* if PAP, the equations of motion are numerically integrable for a number of particles finite but larger enough to study, by statistical approach, the thermal properties of matter

Molecular Dynamics (1)

(BO originated) Classical Statistical Mechanics Model

Theoretically:

- $N(\rightarrow \infty ; N / V=$ const $)$ atoms/molecules \Longleftrightarrow point particles (p.p.), ($R_{1}, R_{2}, \ldots, R_{N}$)/ connected sets of p.p. $\left(\left\{R_{1}\right\},\left\{R_{2}\right\}, \ldots,\left\{R_{N}\right\}\right)$
- Interactions between p.p, $V_{N}\left(\left\{R_{1}\right\},\left\{R_{2}\right\}, \ldots,\left\{R_{N}\right\}\right)$
- Boundary Conditions (compulsory: no BC's no equilibrium)
- Initial Conditions (necessary to start although irrelevant for macroscopic behavior. However, they can be a headache!)
- Evolutions laws: Newton equations of motion and Laplace deterministic dream, $\left\{R\left(t ; R_{0}, P_{0}\right), P\left(t ; R_{0}, P_{0}\right)\right\}_{t \in(0, \tau \rightarrow \infty)}$

Molecular Dynamics (2)

Computationally:

- $N \sim 32 \div 10^{9}, n=N / V$
- Boundary Conditions: periodic (PBC)
- Initial Conditions: positions, regular lattice; velocities, Maxwellian
- $V_{N}:$ simple \longrightarrow pairwise additive $\left(\sum_{i<j} v_{i j} ; \mathcal{O}\left(N^{2}\right)\right)$; short range (MIC) extensions: \longrightarrow long range (Coulomb) by Ewald Sums
$\longrightarrow n$-body potentials $\mathcal{O}\left(N^{n}\right)$, but glue potential $V_{N}(\alpha)$ with $\alpha=\sum_{i<j} \varphi_{i j} \ldots$
\longrightarrow stiff intramolecular potentials:
$\{$ Constraints: $\sigma(r)=0 ; m \ddot{r}=F-\lambda \nabla \sigma:$ SHAKE Multiple timestep (Martyna, Tuckerman, Berne): RESPA
- Integration algorithms: robust, time reversible, symplectic: e.g. Verlet
- Various ensembles (thermostats, barostats, ...):
extended variables simulations (Andersen, Nosé, Hoover,...)

Classical Equilibrium Statistical Mechanics (1)

- a closed system evolving in time under timeindependent forces will reach a STATIONARY state
- the microscopic properties are 'irrelevant' while the statistical (or macroscopic) ones are stable and interesting (THERMODYNAMICS)
- thermodynamic properties can be computed by time averages or, as we will see, by ensemble averages

Classical Equilibrium Statistical Mechanics (2)

+ properties coming from an observable \longrightarrow mechanical (e.g. pressure)
+ properties coming from n_{ℓ} or ρ, i.e probability \longrightarrow thermal (e.g. free energy)

Classical Equilibrium Statistical Mechanics (3)

The nature of the Ensemble

- The Boltzmann hypothesis: All Visitable Microstates are Equiprobable
- Since the motion is constrained to be on the hypersurface $H=E$, the so-called Microcanonical Ensemble becomes:
- $\quad \rho=\frac{1}{\mu(\operatorname{surf} H=E)}=\frac{1}{\int d \Gamma \delta(H-E)}=\frac{1}{\Sigma(E)}$

Classical Equilibrium Statistical Mechanics (4)

What has \& can be done?

- For whatever system describable by Classical Dynamics we have achieved our goal: Theoretical Physics (via Statistical Mechanics) can reconstruct and understand the physical world.
- All phenomena requiring a quantum description, i.e. describable by Quantum Dynamics and its statistical treatment, still need a lot of technical work which we will not be pursued here. HOWEVER the path to follow has been laid down, completing the program of Theoretical Physics.
- We can now turn to dig on the statistical concepts introduced, to better see their meaning, with particular emphasis on ENTROPY.

Thermodynamics and Thermodynamic Potentials (1)

A useful distinction by Einstein for physical theories:

- Theory of principles: main example Thermodynamics
- Theories which delimit but do not predict or compute
- Constructive theories, e.g. Statistical Mechanics
- Theories proceeding from the fundamental laws
(dynamics) which compute and predict

Thermodynamics and Thermodynamic Potentials (1)

$1^{\text {st }}$ and $2^{\text {nd }}$ principles can be resumed (for a simple one-component fluid with given N) as

$$
d S=\frac{1}{T} d E-\frac{p}{T} d V \Rightarrow S=S(E, V)
$$

such that $\left(\frac{\partial S}{\partial E}\right)_{V}=\frac{1}{T}$ and $\left(\frac{\partial S}{\partial V}\right)_{E}=-\frac{p}{T}$
Nothing else has to be added to know completely THE SYSTEM FROM THE THERMODYNAMIC POINT OF VIEW.

Every physical property of the system should be derivable from S via analytical operations.
\Downarrow
$S=S(E, V) \quad$ is the first Thermodynamic potential
while, e.g. $T=T(E, V)$ or $p=p(E, V)$ are just EQUATIONS OF STATE

Thermodynamics and Thermodynamic Potentials (2)

1. $S=S(E, V ; N)$ and
$\Sigma=\Sigma(E, V ; N)$
2. $S(E, V ; N)$
are two completely independent functions who both generate all thermodynamic properties of any mechanical system (of many particles) by analytical operations
is an estensive property of the system homogenous of first degree in N

$$
S(E, V ; N)=N S(E / N, V / N ; 1)
$$

$\Sigma(E, V ; N)$
3. They convey on different scales exactly the identical information (N is the fundamental thermodynamic/statistic parameter since everything said must be true for $N, V \longrightarrow \infty$ with N / V constant).

Probabilistic interpretation (1)

Probabilistic interpretation of the thermal properties

- Entropy (Boltzmann, the famous $S=k \ln W$)
$S(E, V)=k_{B} \ln \Sigma(E, V) \equiv-k_{B} \ln \frac{1}{\Sigma(E, V)}=-k_{B} \ln \mathscr{P}_{E}(\Gamma)$
- Similarly in general ensembles as we will see

$$
M(T, V)=-\frac{F(T, V)}{T}=k_{B} \ln Q(T, V)
$$

where Q generates the probability density function of the given ensemble

Probabilistic interpretation (2)

Mechanical vs thermal properties

$$
\begin{aligned}
& \begin{aligned}
\mathcal{O} & =\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau} d t \hat{\mathcal{O}}(\Gamma(t))=\sum_{s} \mathscr{P}_{S} \mathcal{O}_{S}=\text { mechanical property } \\
& =\int d \Gamma \underbrace{\binom{\exp [-\beta S(E)]}{0} \hat{\mathcal{O}}(\Gamma)=}_{\text {thermal property }} \begin{array}{l}
\frac{\delta(H(\Gamma)-E)}{\int d \Gamma \delta(H(\Gamma)-E)} \\
\text { probability density }
\end{array}
\end{aligned} \\
& =\int d \mathcal{O}^{*} \mathcal{O}^{*}\left\{\int d \Gamma \delta\left(\hat{O}(\Gamma)-\mathcal{O}^{*}\right) \frac{\delta(H(\Gamma)-E)}{\int d \Gamma \delta(H(\Gamma)-E)}\right\}= \\
& =\int d \mathcal{O}^{*} \mathscr{O}^{*} \frac{\mathscr{P}_{\hat{\mathcal{O}}}\left(\mathcal{O}^{*}\right)}{\text { marginal of probability density }}
\end{aligned}
$$

Probabilistic interpretation (3)

Free energy of collective variables

- Given a collective variable (i.e. a function of the configuration space) $\hat{\mathcal{O}}(x)$, the free energy associated with its probability density function is

Free energy or reversible work

$$
\begin{aligned}
&-\frac{\underline{F}_{\hat{O}}\left(\mathcal{O}^{*}\right)}{T}=k_{B} \ln \underline{\mathscr{O}_{\hat{O}}\left(\mathcal{O}^{*}\right)}= \\
& \text { marginal probability density } \\
&=k_{B} \ln \int d \Gamma f(\Gamma) \delta\left(\hat{O}(x)-\mathcal{O}^{*}\right)
\end{aligned}
$$

Legendre Transforms (1)

More equivalent descriptions

$$
S=S(E, V) \quad \longleftrightarrow \quad E=E(S, V)
$$

$$
\left(\frac{\partial S}{\partial E}\right)_{V}=\frac{1}{T(E, V)},\left(\frac{\partial S}{\partial V}\right)_{E}=-\frac{p(E, V)}{T(E, V)} \quad\left(\frac{\partial E}{\partial S}\right)_{V}=T(S, V),\left(\frac{\partial E}{\partial V}\right)_{V}=-p(S, V)
$$

New description

$$
d M=E d\left(\frac{1}{T}\right)-\frac{p}{T} d V \quad d F=-S d T-p d V
$$

$$
\left(\frac{\partial M}{\partial 1 / T}\right)_{V}=E(1 / T, V)\left(\frac{\partial M}{\partial V}\right)_{1 / T}=-p\left(\frac{1}{T}, V\right)\left(\frac{1}{T}\right) \quad\left(\frac{\partial F}{\partial T}\right)_{V}=-S(T, V)\left(\frac{\partial F}{\partial V}\right)_{T}=-p(T, V)
$$

or, egg.
$\underset{\text { Enthalpy }}{H(S, p)}=E+p V \quad d H=T d S+V d p \quad\left(\frac{\partial H}{\partial S}\right)_{p}=T(S, p) \quad\left(\frac{\partial H}{\partial p}\right)_{S}=V(S, p)$ where from all this multitude?

Legendre Transforms (2)

Legendre transform (of a convex function) [from calculus!]:
let $f\left(x_{1}, x_{2}\right)$ be such that
$u_{1}=\left(\frac{\partial f}{\partial x_{1}}\right)_{x_{2}}=u_{1}\left(x_{1}, x_{2}\right), \quad u_{2}=\left(\frac{\partial f}{\partial x_{2}}\right)_{x_{1}}=u_{2}\left(x_{1}, x_{2}\right)$
$\Longrightarrow \quad d f=u_{1} d x_{1}+u_{2} d x_{2}$ and $x_{1}=x_{1}\left(u_{1}, u_{2}\right), \quad x_{2}=x_{2}\left(u_{1}, u_{2}\right)$
$\Longrightarrow \quad g_{1}\left(x_{1}, u_{2}\right)=f\left(x_{1}, x_{2}\left(x 1, u_{2}\right)\right)-u_{2} x_{2}\left(x_{1}, u_{2}\right) \quad$ since
$d g_{1}=(d f)-d\left(u_{2} x_{2}\right)=\left(u_{1} d x_{1}+u_{2} d x_{2}\right)-\left(u_{2} d x_{2}+x_{2} d u_{2}\right)=u_{1} d x_{1}-x_{2} d x_{2}$
Or also: $\quad g_{\text {tot }}\left(u_{1}, u_{2}\right)=f-\left(u_{1} x_{1}+u_{2} x_{2}\right)$
in fact, $\quad d g_{\text {tot }}=x_{1} d u_{1}+x_{2} d u_{2}$
Remember not only the various thermodynamic potentials but also the correspondence Lagrangian \leftrightarrow Hamiltonian

Functions associated by a Legendre Transform represent the same INFORMATION IN A DIFFERENT REPRESENTATION.

Legendre Transforms (3)

Legendre transform (one variable) GEOMETRICALLY

$$
\begin{aligned}
& Y=f(X) \\
& U=\frac{d Y}{d X}=u(X)
\end{aligned}
$$

Obs $1 \quad X=x(U) \quad \Rightarrow \quad Y=Y(x(U))$ with a NON-EQUIVALENT MATHEMATICAL CONTENT since to know for any U, Y will not tell us anything on the corresponding X

Obs 2 Knowing the tangent in X, Y, i.e. U, and constructing the intercept at $X=0$, gives $U=\frac{Y-G}{X-0}$, i.e

$$
G(U)=Y-U X \equiv Y(U)-U X(U)
$$

Now $d G=-X d U$ i.e. $\frac{d G}{d U}=-X$
The curves (X, Y) and (G, U) contain exactly the same information

Ensembles (1)

Ensembles

$$
\Sigma(E) \equiv \int_{V} d \Gamma \delta(H-E)=\int_{H=E, V} d \Sigma(E, V) \quad \begin{aligned}
& \text { geometric measure of the } \\
& \text { hypersurface } H=E
\end{aligned}
$$

Hypothesis of equiprobability of the mechanical states $\left(r^{N}, p^{N}\right)$, i.e. points Γ in phase space \Rightarrow for the probability to be around Γ by $d \Gamma$ $\mathscr{P}(\Gamma, d \Gamma)=\frac{d \Sigma(E, V)}{\Sigma(E . V)}$ with the probability density as said, THEN, $S(E, V)=k_{B} \ln \Sigma(E, V)$

$$
f(\Gamma)=\frac{1}{\Sigma(E, V)}
$$

Ensemble

Question:

Given the Massieu function $M\left(\frac{1}{T}, V\right)$ and its corresponding Canonical Ensemble $f_{c}(\Gamma) \propto \exp \left\{-\frac{H}{k_{B} T}\right\}$ normalized by $Q=\int d \Gamma e^{-\mathscr{H} / k_{B} T}$, such that $M\left(\frac{1}{T}, V\right)=k_{B} \ln Q$ What is the relation between Q and Σ ?

Ensembles (2)

Q vs $\Sigma!$

$$
\begin{aligned}
& Q=\int d \Gamma e^{-\beta H}=\int_{0}^{\infty} d E e^{-\beta E} \int_{\Sigma(E, V)} d \Gamma \delta(H-E)=\frac{\int_{0}^{\infty} d E \Sigma(E, V) e^{-\beta E}}{\beta=\frac{1}{k_{B} T}} \quad \begin{array}{l}
\text { Laplace transform of } \Sigma
\end{array}
\end{aligned}
$$

$$
Q=\operatorname{LT}(\Sigma)
$$

S and M, as much as Q and Σ, \quad ONE TO ONE

NB In probability Σ is the inverse of a probability density, Q is its CHARACTERISTIC FUNCTION, then it has the same probabilistic content than Σ in a possibly more suitable representation (here (T, V) against (S, V), S much more difficult to measure than T)

There is more: Equivalence of Ensembles (N large) \longrightarrow

Ensembles (3)

Equivalence of Ensembles

$Q=e^{M_{c a n} / k_{B}}=\int d \Gamma e^{-\beta H}=\int d E e^{-\beta E} \int d \Gamma \delta(H-E)=\int d E e^{-\beta E} \Sigma(E)$

$$
=\int d E e_{\text {fixed }}^{-\beta(E-T S)}
$$

with $\frac{E-T S(E, V)}{\Downarrow} \sim \mathscr{O}(N)$
Its max dominates the integral

- $\frac{\partial}{\partial E}(E-T S)=0 \quad \Rightarrow \quad\left(\frac{\partial S}{\partial E}\right)_{V}=\frac{1}{T(E, V)}=\frac{1}{T} \quad$ fixed, canonical $\begin{gathered}\text { temperature }\end{gathered}$
$\cdots E-T S \simeq E_{m c}-T S_{m c}+\frac{1}{2} \frac{\left(E-E_{m c}\right)^{2}}{T C_{V}} \quad Q=e^{-\beta\left(E_{m c}-T S_{m c}\right)} \int d E e^{-\frac{1}{2} \frac{\left(E-E_{m c}\right)^{2}}{k_{B^{2}} T^{2} C_{V}}}$
$\Longrightarrow M_{c a n}=M_{m c}+\frac{1}{2} k_{B} \ln C_{V}$
\Downarrow
$\mathcal{O}(\ln N) \quad$ BB: $N \sim 10^{23} \quad \ln N \sim 23$

Entropy and disorder (1)

A paralogism: Entropy as a measure of disorder. From Wikipedia (En)

In thermodynamics Entropy is often incorrectly associated with the amount of order or disorder in a thermodynamic system.

To highlight the fact that order and disorder are commonly understood to be measured in term of entropy, below are current science encyclopedia and science definitions of entropy:

- A measure of the unavailability of a system's energy to do work; also a measure of disorder; the higher the entropy the greater the disorder. ${ }^{[4]}$
- A measure of disorder; the higher the entropy the greater the disorder. ${ }^{[5]}$
- In thermodynamics, a parameter representing the state of disorder of a system at the atimic, ionic, or molecular level; the greater the disorder the higher the entropy. ${ }^{[6]}$
- A measure of disorder in the universe or of the unavailability of the energy in a system to do work. ${ }^{[7]}$
${ }^{[4]}$ Oxford Dictionary of Science, 2005
${ }^{[5]}$ Oxford Dictionary of Chemistry, 2004
${ }^{[6]}$ Barnes \& Noble's Essential Dictionary of Science, 2004
${ }^{[7]}$ Gribbin's Encyclopedia of Particle Physics, 2000
Let's clarify the misconception by one (of a family of) counterexample(s): The spontaneous crystallization on decreasing density of hard spheres.

The counterexample of hard spheres (1)

The model

$$
u^{\mathrm{HS}}(r)=\left\{\begin{array}{cc}
\infty & r<\sigma \\
0 & r \geq \sigma
\end{array}\right.
$$

Dynamics: only binary elastic collision conserving kinetic energy

Temperature not a thermodynamic variable only parameter $\rho=N / V$ better measured as $\eta=$ packing fraction

Event driven dynamics:
(1) Collision times (CT)
(2) Solution of collision
(3) updating of CT

The counterexample of hard spheres (2)

Alder \& Wainwright 1957 MD

$+$

Wood \& Jacobson 1957 MC
found a spontaneous crystallization with increasing density for a packing fraction $\quad \eta=0.49$

For a disordered system free volume $=0 \Rightarrow \eta_{c p}=0.64$

For an FCC crystal $\quad \eta_{c p}=0.74$

LIQUID (DISORDERED)

$?$ only Entropy
can drive the transition

The counterexample of hard spheres (3)

Hard-sphere liquid

Cannot pay energy

$M=S-\frac{1}{T} E$
Experimentally
Freezing in a suspension of hard colloids is driven by entropy !

Computer simulation of hard-sphere freezing (Alder \& Wood 1957)

Hard-sphere crystal

Higher Entropy...

The counterexample of hard spheres (3)

$\frac{\beta p}{\rho}=1+\frac{2}{3} \pi \rho \sigma^{3} g(\sigma)$
$\frac{F(\rho)}{N k_{B} T}=\frac{F^{i d}(\rho)}{N k_{B} T}+\frac{1}{k_{B} T} \int_{0}^{\rho} d \rho^{\prime} p\left(\rho^{\prime}\right)$
$\beta \mu(\rho)=\frac{\beta G}{N}=\frac{\beta F}{N}+\frac{\beta p}{\rho}$

Figure 10.2: Pressure P (left) and chemical potential μ (right) as a function of the density ρ. The solid curves, showing the pressure and chemical potential of the liquid phase, are obtained from the equation of state of Speedy (a). The dashed curve gives the pressure of the solid phase as calculated from the equation of state of Speedy (b) The open and filled symbols are the results of computer simulations for the liquid and solid phases, respectively. The coexistence densities are indicated with horizontal lines.

From Frenkel and Smit
Understanding Mol. Sim. p. 256-7

By way of conclusions

- Our attempt to define aim and method of theoretical physics has been clarified
- Specific relevant concepts such as Entropy can be clearly defined and well circumscribed
- Possible pitfalls following abusive definitions can be avoided. A discovery that can help to appreciate what to do to proceed scientifically with confidence

